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Abstract
Genetic recombination plays two essential biological roles. It ensures the fidelity of the
transmission of genetic information from one generation to the next and it generates new
combinations of genetic variants. Therefore, recombination is a critical process in shaping
arrangement of polymorphisms within populations. “Recombination breakpoints” in a given set of
genomes from individuals in a population divide the genome into haplotype blocks, resulting in a
mosaic structure on the genome. In this paper, we study the Minimum Mosaic Problem: given a
set of genome sequences from individuals within a population, compute a mosaic structure
containing the minimum number of breakpoints. This mosaic structure provides a good estimation
of the minimum number of recombination events (and their location) required to generate the
existing haplotypes in the population. We solve this problem by finding the shortest path in a
directed graph. Our algorithm’s efficiency permits genome-wide analysis.

1. Introduction
Ancestral genetic recombination events play a critical role in shaping extant genomes.
Characterizing the patterns of recombination (e.g. the recombination locations and rates), is
a crucial step for reconstructing evolutionary histories, performing disease association
mapping, and solving other population genetics problems.

During meiosis diploid organisms recombine two homologous genome copies on a
chromosome by chromosome basis to form a haploid gamete, which contributes half of the
genetic content to its offspring. This mixing of genomes leads to mosaic chromosome
(haplotype) structure composed of segments from each grandparent. We refer to the
boundaries between the segments of each haplotype as the recombination breakpoints in this
paper. Recombination breakpoints represent locations where the crossovers have occurred,
either during the generation of the haplotype itself, or in previous generations.

In this paper, we are interested in inferring the possible mosaic structure of a given set of
related haplotypes. This is accomplished by finding a set of recombination breakpoints that
divide the haplotypes into compatible blocks according to the Four-Gamete Test (FGT)?.
The FGT states that, under the infinite-sites assumption?, all pairs of polymorphisms should
co-occur in only three out of their four possible configurations. Thus, when four
configurations are observed in a pair of markers, it implies that either a recombination or a
homoplastic event has occurred between them. We propose an efficient algorithm to solve
the “Minimum Mosaic Problem”, which finds the mosaic with the minimum number of
breakpoints. The algorithm is suitable for genome-wide study.
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2. Related Work
Many algorithms have been developed for estimating a lower bound on the minimum
number of recombination events necessary to generate a given set of haplotypes. Hudson
and Kaplan? proposed a lower bound (HK bound) computed using the FGT?. Their
algorithm computes a minimum set of non-overlapping intervals where all pairs of SNPs in
an interval are compatible according to the FGT. This number of intervals, less one, is the
HK bound. Myers and Griffiths? proposed a tighter bound, RecMin. However, it is only
computationally tractable to find the optimal RecMin in relatively small data sets. Myer and
Song et al.? proposed a RecMin approximation algorithm known as HapBound using Integer
Linear Programming (ILP). They also proposed an algorithm, SHRUB, which finds a
plausible evolutional history for the given haplotypes, called an Ancestral Recombination
Graph (ARG). The ARG establishes an upper-bound on the minimum number of
recombinations. Different from RecMin or SHRUB, our algorithm focuses on the mosaic
structure of a set of sample sequences without explicitly computing the evolutionary history,
assuming that the genomic structures of the sample sequences are of more interest.
However, the breakpoints on the sample sequences may reflect possible recombination
events happened in the history.

In addition to estimating lower-bounds on the number of recombinations, algorithms have
also been proposed for finding a set of founders which generate a given set of recombinant
sequences. Ukkonen first proposed the founder set reconstruction problem ?. A dynamic
programming algorithm was developed to compute a minimum number of founders with a
given set of sample haplotype sequences, where a segmentation of all the sequences in the
sample set can be derived which contains the minimum number of segments. Wu and
Gusfield ? studied a slightly different problem to compute a set of K founders where a
segmentation of the given sequences can be derived with a minimum number of segments.
They proposed a polynomial time algorithm for genotype sample sequences with only two
founders. Different from these works, we do not construct the founder sequences, or rely on
the existence of a founder set for segmentation and inferring the mosaic structures on the
genome.

3. Problem Formulation
Suppose that we have a set of n haplotypes over m SNPs, represented by a binary data
matrix D = [dij]i=1‥n,j=1‥m. Row i in D corresponds to a haplotype hi, and column j in D
corresponds to a SNP sj. Matrix entry dij is either 0 or 1, representing the majority allele or
minority allele at SNP sj respectively. In this paper, we only consider crossover
recombination events, ignoring gene conversion and homoplasy (assuming they do not have
a significant role).

Over any pair of SNPs sj and sj′, a haplotype takes one of four possible gametes 00, 01, 10,
11 (the combination of alleles at sj and sj′). We denote the set of haplotypes taking 00, 01,

10, or 11 at SNP pair (sj, sj′) as , , ,  respectively. If all
four sets are nonempty, according to the FGT?, a historical recombination event must have
occurred between sj and sj′. In this case, we say that the SNP pair (sj, sj′) is incompatible.
We represent a recombination breakpoint as a tuple (hi, sb), where the breakpoint locates on
haplotype hi between SNPs sb and sb+1. It is possible that multiple haplotypes may have
breakpoints at the same location since they may “inherit” the breakpoint from a common
ancestor sequence.
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We define a compatible block of SNPs as a continuous set of SNPs such that any two SNPs
inside the block are compatible. Two SNP blocks are incompatible with each other if there
exist two incompatible SNPs, one from each block.

A complete set of breakpoints creates a haplotype mosaic structure over the set of genome
sequences. A Mosaic M over a SNP data matrix D is defined as a set of recombination
breakpoints M = {(hi, sb)}, i ∈ [1, n], b ∈ [1, m]. The set of distincta locations of breakpoints
sb in M divides the entire range of SNPs [s1, sm] into blocks that satisfy: 1) each block is a
compatible block, 2) any two neighboring blocks are incompatible, and 3) any two
neighboring blocks (assume the boundary is between sb and sb+1) would become compatible
if the set of haplotypes that have breakpoints between sb and sb+1 are excluded. In this paper,
we develop an efficient algorithm for computing Minimum Mosaic (denoted as Mmin) – the
mosaic structure that contains the least number of breakpoints. We refer to this problem as
the Minimum Mosaic Problem.

4. Inferring the Local Mosaic
4.1. Maximal Intervals

We begin by defining the concept of maximal interval. An interval I = [sb, se] is a set of
consecutive SNPs which are compatible with each other starting from sb and ending at se.
We define an interval I as a maximal interval if and only if there is no other interval I′, I′ ≠
I, , which contains I: , and . The complete set of maximal intervals
can be computed in O(mn) time?, assuming that the compatibility test of any two SNPs
using FGT takes O(1) time?.

4.2. Finding Local Breakpoints
Maximal intervals are useful for inferring the local mosaic. The set of distinct breakpoint
locations sb in a mosaic M = {(hi, sb)} divide the entire SNP range [s1, sm] into compatible
blocks, where neighboring blocks are incompatible. The set of breakpoints in M is the union
of the set of breakpoints on the boundary of each pair of neighboring blocks. We first
consider the breakpoints on the boundary of a pair of neighboring blocks. We observe that,
every pair of neighboring blocks in M fall inside a pair of overlapping or adjacent maximal
intervals, as stated in the following Lemma:

Lemma 4.1—For any pair of neighboring blocks (BL, BR) deduced by a mosaic, there
exists a pair of overlapping or adjacent maximal intervals (IL, IR), where BL completely falls
inside IL (BL ⊆ IL) but not IR (BL \ IR ≠ ϕ), and BR completely falls inside IR (BR ⊆ IR) but
not IL (BR \ IL ≠ ϕ). We refer to (IL, IR) as (BL, BR)’s containing interval pair; and (BL, BR)
as (IL, IR)’s contained block pair (Fig. 1).

Proof: Details of the proof are presented in ?.

For each pair of overlapping or adjacent intervals (IL, IR), there exists a set of incompatible
SNP pairs SNPPair(IL, IR) = {(sl, sr)}, where l < r, sl and sr are incompatible, and sl ∈ IL\IR,
sr ∈ IR\IL. For example, in Fig. 1(a) and 1(b), each dot represents an incompatible SNP pair.
Let (BL, BR) be a contained block pair of the interval pair (IL, IR). We denote the
incompatible SNP pairs contained in (BL, BR) as SNPPair(BL, BR) = {(sl, sr)}, where l < r, sl
and sr are incompatible, and sl, sr ∈ BL ∪ BR. Apparently, SNPPair(BL, BR) is a subset of
SNPPair(IL, IR). The incompatible SNP pairs in SNPPair(BL, BR) determine the minimum
number of the breakpoints on the boundary of BL and BR, as well as the corresponding set of

aMultiple breakpoints can correspond to the same sb
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haplotypes having these breakpoints. Given an interval pair, several candidate block pairs
may be derived, each of which corresponds to a different SNPPair(BL, BR). Fig. 2(a)–2(d)
show four different candidate block pairs derived from the same interval pair. The exact set
of incompatible SNP pairs in SNPPair(BL, BR) depends on the positions of BL and BR, i.e.,
the leftmost SNP of BL, and the rightmost SNP of BR. Formally, we define the start range
Rs, the end range Re of a block pair (BL, BR) as the ranges where SNPPair(BL, BR) remains
unchanged if the leftmost SNP of BL changes within Rs and the rightmost SNP of BR
changes within Re. Moreover, the breakpoint range Rb of (BL, BR) is defined as the range
where the boundary of BL and BR falls into. The breakpoint range is the overlapping region
of IL and IR (if IL and IR overlap), or the boundary of IL and IR (if IL and IR are adjacent to
each other). For example, in Fig. 2(a), SNPPair(BL, BR) contains only one incompatible
SNP pair (sq, sr). The start range Rs(BL, BR) is (sp, sq], the end range Re(BL, BR) is [sr, ss),
and the breakpoint range Rb(BL, BR) is IL ∩ IR. In Fig. 2(b), SNPPair(BL, BR) contains two
incompatible SNP pairs (sq, sr) and (sp, sr). The start range Rs(BL, BR) is [s*, sp] (s* denotes
the leftmost SNP of interval IL), and the end range Re(BL, BR) is [sr, ss), and the breakpoint
range Rb(BL, BR) is IL ∩ IR.

Any contained block pair (BL, BR) of any overlapping/adjacent maximal interval pair (IL,
IR) can be a possible neighboring block pair inside a mosaic M. A subset of these block pairs
constitute a mosaic. Specifically, for any neighboring block pair (BL, BR) which is inside a
Minimum Mosaic Mmin, we have the following Lemma:

Lemma 4.2—Let (BL, BR) be a neighboring block pair in a Minimum Mosaic Mmin, and
Breakpoints(BL, BR) be the set of breakpoints on the boundary of BL and BR in Mmin, and
HapSet(Breakpoints(BL, BR)) be the set of haplotypes having breakpoints in
Breakpoints(BL, BR). Then Breakpoints(BL, BR) is the smallest number of breakpoints
which satisfies:

(1)

Proof: Details of the proof are presented in ?.

It is easy to compute Breakpoints(BL, BR) if SNPPair(BL, BR) only contains one pair of

incompatible SNPs (as shown in Fig. 2(a)). We can choose the smallest set of ,

,  and  to be Breakpoints(BL, BR). If SNPPair(BL, BR) contains
more than one pair of incompatible SNPs (as shown in Fig. 2(b), 2(c), and 2(d)), we need to

find the smallest set of haplotypes which is a superset of at least one of , ,

 and , for each pair of incompatible SNPs (sl, sr). The computation
complexity is O(4k), where k = |Breakpoints(BL, BR)|. In practice, k is small. Moreover,
many incompatible SNP pairs are caused by a small number of SNP patterns, which enables
further reduction in computation.

5. Finding Minimum Mosaic - A Graph Problem
The set of all possible block pairs {(BL, BR)} of all overlapping/adjacent maximal interval
pairs are the building blocks of a mosaic. We can use them and construct a graph as follows.
A node nd in this graph represents the combination of three block pairs BP1 = (BL1, BR1),
BP2 = (BL2, BR2), BP3 = (BL3, BR3) that satisfy the following constraints: 1) the breakpoint
range of BP1 overlaps with the start range of BP2: Rb(BP1)∩Rs(BP2) ≠ ϕ; 2) the end range of
BP1, the breakpoint range of BP2, and the start range of BP3 overlap: Re(BP1) ∩ Rb(BP2) ∩
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RS(BP3) ≠ ϕ; 3) the end range of BP2 overlaps with the breakpoint range of BP3: Re(BP2) ∩
Rb(BP3) ≠ ϕ. As shown in Fig. 3, BP1, BP2, and BP3, are the left block pair, middle block
pair, and right block pair of nd, respectively. The breakpoint range of nd is the intersection
of the end range of BP1, the breakpoint range of BP2, and the start range of BP3: Rb(nd) =
Re(BP1)∩Rb(BP2)∩Rs(BP3). The set of breakpoints associated with nd is the same as
Breakpoints(BP2), denoted as Breakpoints(nd). The weight of the node is the number of
breakpoints in Breakpoints(nd), weight(nd) = |Breakpoints(nd)|.

We also create two special kinds of nodes – starting nodes and ending nodes to model the
two ends of a chromosome. We first identify all block pairs with start range beginning from
the first SNP s1, referred to as starting block pairs. We create a starting node nds for every
combination of a starting block pair BPs and another block pair BP satisfying 1) the
breakpoint range of BPs overlaps with the start range of BP: Rb(BPs) ∩ Rs(BP) ≠ ϕ, and 2)
the end range of BPs overlaps with the breakpoint range of BP: Re(BPs) ∩ Rb(BP) ≠ ϕ. BPs
is the middle block pair of the starting node nds, BP is the right block pair of nds. There is no
left block pair for nds. The set of breakpoints associated with nds is the same as
Breakpoints(BPs): Breakpoints(nds) = Breakpoints(BPs). The weight of nds is weight(nds) =
|Breakpoints(nds)|. Similarly we create a set of ending nodes {nde} associated with the set of
ending block pairs {BPe}.

After generating all nodes, we connect nodes with directed edges according to the following
rule. For nodes nd1 and nd2, if nd1’s middle block pair is the same as nd2’s left block pair
and nd1’s right block pair is the same as nd2’s middle block pair, we add an edge from nd1
to nd2. The nodes and edges form a directed graph. A Minimum Mosaic corresponds to a
shortest path from any starting node to any ending node in this graph. The weight of the path
is the sum of all node weights on the path. The set of breakpoints {Breakpoints(nd)}
associated with all nodes on the shortest path is the Minimum Mosaic solution. We can use
any shortest path algorithm to compute the solution. The details of the complete algorithm
and the correctness proof are presented in ?.

6. Experimental Studies
Our algorithm is implemented in C++ and all experiments were performed on a machine
with an Intel Core2 Duo processor of 1.60GHz and 3GB RAM.

6.1. Kreitman’s ADH Data
The alcohol dehydrogenase (ADH) data of Kreitman? consists of 11 haplotypes over 43
polymorphic sites of the ADH locus of fruit fly, Drosophila melanogaster. The haplotypes
were sampled from 5 geographically distinct populations: Washington, Florida, Africa,
France, and Japan?. Our algorithm detected 7 breakpoints shown in Fig. 4(a). We can
estimate the exact locations of 6 out of 7 breakpoints: H1 : (S3, S4), H5 : (S3, S4), H5 : (S16,
S17), H5 : (S35, S36), H6 : (S35, S36), H6 : (S36, S37). For the remaining breakpoint on H1, its
location can be either (S12, S13), or (S13, S14), or (S14, S15), or (S15, S16) with equal
probability.

Note that 7 is the lower and upper bounds of the minimum number of recombinations,
estimated by HapBound and SHRUB, respectively?. Therefore, 7 is the exact number of
minimum number of recombination events for the ADH data. The corresponding ARG
generated by SHRUB is shown in Fig. 4(c). The breakpoints in the ARG are illustrated in a
SNP matrix in Fig. 4(b). By comparing Fig. 4(a) and 4(b), we observe that almost the same
set of breakpoints are inferred by our algorithm and SHRUB.
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6.2. Running Time and Scalability Analysis
We tested the performance of our algorithm on two genome-wide SNP data sets from
mouse. Both sets represent a combination of experimental and imputed genotypes? in two
overlapping sets of laboratory inbred strains available from the Center of Genome Dynamics
at the Jackson’s Laboratory?. The 51-strain data set contains 51 inbred mouse strains with
7,870,134 SNPsb. The 74-strain data set contains 74 inbred mouse strains with 7,989,200
SNPsc.

Fig. 5 shows the running time comparison of Hapbound and our algorithm using the first w
SNPs from Chromosome 19 of both data sets where w varies from 1000 to 4000. Our
algorithm is 250× – 7000× faster than Hapbound on 74-strain dataset, and 350× – 4000×
faster on 51-strain dataset.

Our algorithm is efficient enough to finish on all chromosomes (Chr 1–19 and Chr X).
Results from the 51-strain data set are shown in Table 1. Genome-wide, the number of
breakpoints in the Minimum Mosaic varies between 15253 (Chr X) and 266006 (Chr 1), and
the number of derived blocks in the Minimum Mosaic varies between 9888 (Chr X) and
68261 (Chr 1). The average number of breakpoints per neighboring block pair is 2.2.

7. Conclusions
Genetic recombination during meiosis generates a mosaic structure of the genome, where
each resulting haplotype consists of segments from different ancestral sequences. In this
paper, we study the Minimum Mosaic model that contains a minimum number of
breakpoints to generate the haplotypes present within extant populations. The resulting
blocks are compatible where no recombinations can be inferred within a block according to
the FGT. We proposed a novel algorithm to compute the minimum mosaic structure of
genomes. the efficiency of our algorithm allows for genome-wide analysis.
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Figure 1.
Neighboring blocks BL, BR fall inside overlapping/adjacent maximal intervals IL, IR
respectively. The dots in the shaded region represent incompatible SNP pairs of IL and IR.
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Figure 2.
Neighboring blocks BL, BR contain different subsets of the incompatible SNP pairs. The
dots represent the incompatible SNP pairs contained in the overlapping maximal intervals
IL, and IR. The dots inside the shaded triangle are contained in the neighboring block pair BL
and BR.
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Figure 3.
Three block pairs form a node. Block pair 1, 2, and 3 are the left, middle, and right block
pair of the node respectively. The breakpoint range of the node is the intersection of the end
range of block pair 1, the breakpoint range of block pair 2, and the start range of block pair
3. The vertical stripes correspond to the start range, breakpoint range, and end range of a
block. The marked haplotypes in the stripes are the haplotypes which have breakpoints in
the corresponding region.
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Figure 4.
Comparison of Minimum Mosaic and Hapbound/SHRUB results on ADH data, (a): the
Minimum Mosaic result; (b): the result inferred from the ARG in (c); (c): the ARG
computed using SHRUB?. The bars in (a) and (b) represent the breakpoints. The dots in (c)
represents the recombination events.
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Figure 5.
Comparison of the running times of MinMosaic and Hapbound over varying number of
SNPs (in log scale). The datasets used are from Chrl9 of 51-strain dataset and 74-strain
dataset. The number of SNPs included varies from 1000 to 4000.
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Table 1

The result on genome-wide 51-strain mouse data set.

Chr # of SNP # of breakpoints # of blocks Runtime (min)

1 694809 266006 68261 6.87

2 524667 210797 47793 11.27

3 509892 113715 52487 8.90

4 476425 100702 43776 7.84

5 496888 110157 49938 33.98

6 509547 97740 49562 6.42

7 405733 94973 46884 38.83

8 444910 87659 45796 37.10

9 361571 86755 40189 3.89

10 399126 64806 35764 3.21

11 259028 65092 27575 23.52

12 396114 89243 42159 1.30

13 399930 75323 39914 3.03

14 345783 67304 34089 2.54

15 337461 78181 35776 4.08

16 305078 57257 28449 1.14

17 266421 73542 31517 0.75

18 291266 69546 31271 8.61

19 222031 49276 22839 1.46

X 223456 15253 9888 0.96
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