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Abstract: The goal of this project was to utilize an information theoretic formalism for medical image
analysis initially proposed in [Young et al. (2005): Phys Rev Lett 94:098701-1] to detect and quantify
subtle global and regional differences in spatial patterns in patients suffering from Alzheimer’s disease
(AD) and frontotemporal dementia (FTD) by estimating the structural complexity of anatomical brain
MRI. The sensitivity and specificity of the results are compared with those of a recent analysis, cur-
rently considered state of the art for MR studies of neurodegeneration. The previous study used re-
gional estimates of cortical thinning and/or volume loss to differentiate between normal aging, AD,
and FTD. The analysis illustrates that the structural complexity estimation method, a general multivari-
ate approach to the study of variation in brain structure which does not depend on highly specialized
volumetric and thickness estimates, is capable of providing sensitive and interpretable diagnostic infor-
mation. Hum Brain Mapp 30:1667–1677, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Changes in brain structure during aging are complex
and it is often hard to distinguish the effects of normal
aging from early changes resulting from neurodegenera-

tive pathologies, such as Alzheimer’s disease (AD) and

frontotemporal dementia (FTD) [Dickstein et al., 2007;

Tononi, 2005; Zhang et al., 2007]. Subtle changes in struc-

ture can nonetheless lead to severe consequences that can

be highly specific for a given pathology. In particular, AD

and FTD are sometimes difficult to clinically differentiate

because of overlapping symptoms [McKhann et al., 1984;

Neary et al., 1998; Siri et al., 2001]. Definite diagnosis cur-

rently requires histopathological examination of brain tis-

sue. Although structural MRI data depicts characteristic

patterns of brain atrophy in AD and FTD, aiding a differ-

entiating diagnosis between the dementias [Frisoni et al.,

1999; Gee et al., 2003; Grossman et al., 2004; Kitagaki et al.,

1998; Laakso et al., 2000; Lipton et al., 2004; Rosen et al.,

2002], a complete separation based on MRI has not been

accomplished. Histopathological studies have indicated

that AD and FTD pathology are associated with damage to
specific cortical layers, e.g., Layer II of the entorhinal cor-
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tex and Layer III of the neocortex in AD and Layers III
and V of frontal and temporal lobes in FTD [Gomez-Isla
et al., 1996; Kersaitis et al., 2004; Lewis et al., 1987; Pearson
et al., 1985]. Even though current MRI methods lack power
to resolve individual cortical layers, these histological
observations led to a MRI-based study of cortical thickness
[Du et al., 2007], in the hopes that such estimates would
improve differential diagnosis between AD and FTD.
However, since the cortex is a highly folded structure and
its surface is rarely aligned with any of the cardinal axes
in MRI, estimates of cortical thickness are difficult, espe-
cially in the presence of pathological alterations. Although
elegant techniques have recently been developed for esti-
mating cortical thickness from MRI [Dale et al., 1999;
Fischl and Dale, 2000; Fischl et al., 1999; Lerch et al., 2005],
they were not shown to be substantially more effective
than brain volume estimates for distinguishing AD and
FTD subjects [Du et al., 2007]. This raises the possibility
that specialized volumetric and thickness estimates may
not be the most effective way to extract available informa-
tion by the given current MRI resolution and geometry. In
particular, a number of combined effects such as variations
in sulcal depth, cortical area, and cortical thickness are
likely involved in different pathologies and such effects
would appear in combination at current MRI resolution.
This suggests the use of image markers that capture some
degree of combined global and local variability in brain
structures while also supplying some degree of interpret-
ability. To this end, we have explored the use of informa-
tion theoretic quantities that provide quantitative measures
of structural complexity as image markers [Crutchfield
and Young, 1989; Feldman and Crutchfield, 2003; Hopcroft
and Ullman, 2000; Young and Schuff, 2008; Young et al.,
2005]. This approach seems particularly compelling in light
of recent evidence that distributed changes in structural
complexity of the brain have been shown to occur in spe-
cific forms in both normal and pathological age-related
loss of cognitive function [Dickstein et al., 2007].
Since its introduction as a means of studying communi-

cation over noisy channels [Cover and Thomas, 2006;
Shannon, 1948], information theory has been successfully
applied in a variety of scientific settings, including neuroi-
maging [Pluim et al., 2004] and modeling of brain function
[Tononi, 2005]. Information theoretic methods provide a
convenient framework for summarizing information in the
form of quantitative measures. The particular information
theoretic measures chosen for the analysis, presented in
this article, were initially introduced via a graph theoreti-
cal, optimal prediction-based formalism that provided
estimates of dynamical complexity in time series data
[Crutchfield and Young, 1989]. These methods were later
generalized to allow for the study of structure in multidi-
mensional, multivariate data sets, in particular multimodal
medical images, such as structural and spectroscopic MRI
[Young and Schuff, 2008; Young et al., 2005]. The funda-
mental hypothesis is that the complexity of spatial patterns
in neuroimages, such as the convoluted spatial distribution

of human cortex evident in MRI, can effectively be cap-
tured by structure-based information theoretic measures
that correspond well with visual impressions of image
complexity. Hence, the specific information theoretic quan-
tities discussed in this article will be referred to as com-
plexity measures.
The specific objectives of this study were to (1) deter-

mine the extent to which structural complexity measures
capture the characteristic spatial patterns of tissue loss and
cortical thinning in AD and FTD relative to cognitive nor-
mal (CN) subjects, (2) compare the sensitivity and specific-
ity of complexity measures for differentiating between AD
and FTD with that provided by current state of the art
MRI estimates of cortical volume loss and thinning.

SUBJECTS AND METHODS

Subjects

Twenty-three CN subjects, 24 patients diagnosed with
AD, and 19 patients diagnosed with FTD were included in
the study (Table I). Patients with FTD and AD were
recruited from the Memory and Aging Center of the Uni-
versity of California, San Francisco, for a previously
described study [Du et al., 2006]. All patients were diag-
nosed based upon information obtained from an extensive
clinical history and physical examination. MRI data were
used to rule out other major neuropathologies such as tu-
mor, stroke, severe white matter disease, or inflammation
but not for diagnosis of dementia. Inclusion criteria were
age between 35 and 80 years and no history of brain
trauma, brain tumor, stroke, epilepsy, alcoholism, psychi-
atric illness, or systemic disease that affects brain function.
FTD was diagnosed according to the established consensus
criteria. Patients with FTD, who had motor neuron dis-
ease-related symptoms, were excluded. Patients with AD
were diagnosed according to the criteria of the National
Institute of Neurological and Communication Disorders
and Stroke/Alzheimer’s Disease and Related Disorders
Association [McKhann et al., 1984]. All subjects received a
standard battery of neuropsychological tests. This included
assessment of global cognitive impairment by Mini-Mental
State Examination (MMSE) [Folstein et al., 1975] and global
functional impairment by Clinical Dementia Rating (CDR)
Scale [Morris, 1993]. In addition, the California Verbal
Learning Test (CVLT)-Short Form was administered to
assess episodic memory, and a modified version of the
Trail-Making Test (TMT) was administered to evaluate

TABLE I. Study demographics

Number (F/M) Age MMSE CDR box score

Control 23 (14/9) 61.9 6 6.3 29.9 6 0.3 0 6 0
AD 24 (8/16) 63.5 6 7.4 19.1 6 6.1 5.0 6 2.7
FTD 19 (3/16) 61.7 6 7.5 25.1 6 5.7 6.3 6 3.7
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executive function. Two patients with FTD and two CN
subjects, who had MRI of inferior quality, were eliminated
as the MRI was not suitable for tissue segmentation and
spatial normalization processing with FreeSurfer (https://
surfer.nmr.mgh.harvard.edu).

Data Acquisition and Processing

Data acquisition has also been described in detail [Du
et al., 2007]. MRI data were obtained on a 1.5 T Siemens
VisionTM System (Siemens, Iselin NJ), including coronal
T1-weighted images using a volumetric magnetization-pre-
pared rapid gradient echo sequence (MPRAGE, TR/TE/TI
5 10/7/300 ms timing, 158 flip angle, 1.00 3 1.00 mm2 in-
plane resolution, and 1.40-mm thick coronal partitions. The
3D MPRAGE images were segmented into gray matter,
white matter, CSF, and non-brain tissue and then mapped
to the Montreal neuroimaging (MNI) brain atlas [Tzourio-
Mazoyer et al., 2002] for spatial normalization using the
FreeSurfer software.

Assessments of Image Complexity

Three information theoretic measures, the statistical
complexity (SC), the entropy (H), and the excess entropy
(EE), introduced in [Crutchfield and Young, 1989; Feldman
and Crutchfield, 2003], described in more detail in the ap-
pendix, and applied to medical image analysis [Young and
Schuff, 2008; Young et al., 2005], were estimated from the
spatially normalized, segmented images. As outlined
[Young and Schuff, 2008], SC measures the degree of spa-
tially correlated structure in the image. It accomplishes
this by quantifying the amount of information required for
predicting the image values in a region given the image
values in a neighboring region, averaged over the entire
image or region under consideration. H measures the
degree of apparent randomness in the image and thus cor-
responds to the usual notion of entropy in physics. It is a
complimentary measure of complexity to SC in that it
measures the number of patterns observed in an image or
region without regard to their correlation structure. While
H is a maximum for completely uncorrelated sets of pat-
terns, SC is a minimum for such sets. Lastly, EE provides
a quantitative complexity measure of the spatial scaling
properties of the image. In particular, EE quantifies how
long it takes the average of H over a volume to converge
to a constant value as a function of increasing volume. As
simple examples: (1) the ordered pattern of a black and
white checkerboard (without noise) would have low H,
low SC, and low EE; (2) in contrast, a completely random
black and white pattern would have high H, low SC, and
low EE. More complicated patterns, like an image of the
cortex, would have intermediate values of H, and higher
values of SC and EE relative to these two simpler patterns.

STATISTICS

To determine the ability of H, SC, and EE to detect
structural changes in the brain in AD and FTD, the meas-
ures were obtained for 13 brain regions that MRI studies
reported, e.g. [Varma et al., 2002], to be affected by AD,
FTD, or both. These regions included the anterior cingu-
lum, posterior cingulum, inferior frontal lobe, superior
frontal lobe, Heschl gyrus, hippocampus, insula, inferior
parietal lobe, superior parietal lobe, precentral gyrus, pre-
cuneus, putamen, and inferior temporal lobe.
H, SC, and EE estimates were obtained for the 13 brain

regions using the methods described in the appendix at a
scale of 2 mm for H and SC and a range of scales from the
voxel size to the size of the region for EE. Classification ac-
curacy between paired groups, i.e., AD or FTD versus CN
and AD versus FTD was tested using Platt’s sequential
minimal optimization algorithm for training a support vec-
tor classifier. The algorithm used a linear kernel, cache size
250007, and complexity parameter 1.0. Sensitivity, specific-
ity, and overall classification accuracy was assessed using
10-times 10-fold stratified cross validation [Hastie et al.,
2001].
In addition, to test how well-structural complexity esti-

mation performed when trying to separate all three classes
at once, linear discriminant analysis (LDA) was performed
for various sets of regions for a combined three group
analysis using the structural complexity estimates and
compared with a similar LDA analysis using cortical thick-
ness estimates.

RESULTS

The variability of the three complexity measures in dif-
ferent brain regions is illustrated in Figure 1, separately for
single, representative CN, AD, and FTD subjects. An addi-
tive red-green-blue (RGB) color space is used to represent
simultaneous values of H, EE, and SC. In this color space,
the value of H is represented on the red axis, EE on the
green axis, and SC on the blue axis. In this representation,
a higher saturation of red represents a higher value of H,
implying lack of correlation of structural patterns in an
image region. Similarly, a higher saturation of green repre-
sents a higher value of EE, implying increased long-range
correlations of structural patterns and a higher saturation
of blue represents a higher value of SC, implying an
increase of locally correlated patterns. Accordingly, a
simultaneous increase/decrease of all three complexity
measures results in brighter/darker levels of gray. The
most prominent effects in the AD subject when compared
with the CN and FTD subjects, as seen in this representa-
tion, are decreased correlation in the hippocampus (faint
red regions, yellow arrows in Columns 1 and 2) and
diminished long-range correlations of structural patterns
in superior parietal lobe regions (faint green regions,
arrows in Column 6). In contrast, the most prominent
effect in the FTD subject when compared with the CN and
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AD subjects is greater long-range correlation in medial
frontal lobe and anterior cingulum (intense green regions,
arrows in Columns 5 and 6). Somewhat surprisingly, AD
and FTD show little change of the complexity measures in
the posterior cingulum (gray regions, arrows in Column 4)
relative to CN. In addition to differences between the
groups, the color scheme also illustrates anatomical differ-
ences in that inferior brain regions seem dominated by
decreased correlation in spatial patterns (red, H), whereas
superior brain regions are dominated by greater long-
range correlations of patterns (green, EE) and subcortical
structures, such as the basal ganglia, by more locally corre-
lated patterns (blue, SC). This representation was provided
to convey a direct visual impression of how the complexity
measures vary across individual subjects in different
groups but to increase its utility, for example, as it might
be used for clinical assessment, a way to additionally pro-

vide a visual characterization of group variability for the
various groups (and in particular normal subjects) would
be necessary.
Table II compares results using the structural complexity

estimation against results on the use of cortical thickness
estimation using the FreeSurfer software on the same set
of subjects. In the table, comparisons are between classifi-
cation accuracy based on structural complexity estimation
and classification accuracy based on tissue volume and
cortical thickness estimation (the parietal lobes provided
the best separation between AD and CN subjects and the
only significant separation between AD and FTD subjects
for the volume and thickness estimates). For each, com-
plexity or FreeSurfer, the regions providing the best sepa-
ration between the groups are listed, i.e. for complexity,
the hippocampus, parietal lobe, precuneus, and Heschl
gyrus taken together, and for FreeSurfer, the thickness of

Figure 1.

Simultaneous variability of entropy (H), excess entropy (EE), and statistical complexity (SC) of

different brain regions in a single control subject, a single subject diagnosed with AD, and a single

subject diagnosed with FTD, represented in an additive red-green-blue (RGB) color space.

TABLE II. Comparison of classification accuracy (in percent of total subjects)

between AD/CN groups, FTD/CN groups, and AD/FTD groups for complexity

estimation methods and cortical thinning

Measure AD vs. CN (%) FTD vs. CN (%) AD vs. FTD (%)

Parietal gray matter volume (FreeSurfer) 95 6 4 81 6 7 85 6 6
Parietal gray matter thickness (FreeSurfer) 96 6 3 82 6 6 86 6 6
Complexity estimates (hippocampus,

parietal lobe, precuneus, heschel gyrus)
92 6 0.8 87 6 0.7 91 6 0.8

r Young et al. r
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parietal lobe gray matter. This shows that structural com-
plexity measures slightly outperformed volume and corti-
cal thickness measures for the differential classification
between AD and FTD as well as between FTD and CN.
For the classification between AD and CN, volume and
cortical thickness estimation achieved slightly higher clas-
sifications than structural complexity estimation. In addi-
tion to classification accuracy, used in the direct compari-
son with the cortical thickness and volume study, Table III
lists the sensitivity and specificity obtained for structural
complexity estimation for the two group comparisons.
Table IV lists the prediction accuracy of structural com-

plexity and FreeSurfer measures when trying to separate
all three groups at once, using LDA based on either com-
plexity or FreeSurfer volume and thickness estimates. The
prediction accuracy is also illustrated graphically in Figure
2a–c, which depicts the projections onto the first two linear
discriminants (labeled LD1 and LD2 in the figures) from
the LDA corresponding to the region selections for com-
plexity estimation. This shows first that group separation
prominently increased from global measures, such as
whole brain, to more focal measures, such as each of the
13 regions, as expected. Second, structural complexity
measures outperformed cortical thickness and volume esti-
mates when utilizing specific focal information. In detail,
using the structural complexity estimates from all 13 brain
regions produced an LDA prediction accuracy of 96%,
whereas a similar LDA for volume and cortical thickness
(illustrated in Fig. 3) estimates in the same regions [Du
et al., 2007] achieved a prediction accuracy of 90%.
To provide some indication of the baseline complexity

measures for normal subjects compared with those for AD
and FTD subjects, Table V shows comparisons of average
H and EE values in the frontal lobe and hippocampus,
respectively, for the various subject groups analyzed in the
article. Significance values for between-group t-tests are
provided in Table V as well.

DISCUSSION

This article provides two main results: (1) it was shown
that use of structural complexity estimates is effective at
capturing systematic differences on brain MRIs, exhibiting
a variety of effects such as cortical volume loss and thin-
ning, and (2) it was demonstrated that use of structural

complexity estimates can achieve similar classification
results between dementia and controls as well as between
AD and FTD as highly specialized measures of cortical
thinning. It should be noted that complexity estimation
achieved similar group classifications to cortical thickness
estimates using FreeSurfer for the same brain regions (e.g.,
parietal lobe). In selected brain regions (i.e., the hippocam-
pus), complexity estimates achieved even better classifica-
tion than FreeSurfer thickness and volume estimates. The
classification accuracy provided by both methods is in fact
at the limit of the ability to reliably diagnose subjects and
so further comparisons between classification methods will
require improved clinical testing methods, much larger
samples, or some other, more accurate means of classifica-
tion to account for test variability. Nonetheless, the results
suggest that the complexity-based formalism for image
analysis shows promise for classification of neurodegener-
ative diseases.
Similar to conventional image processing, the analysis

involved tissue segmentation and spatial normalization to
a brain atlas. It should be noted, however, that structural
complexity estimation does not in principal require prior
segmentation or spatial normalization of the images. The
appendix provides a description of how continuous inten-
sity images are processed by the complexity estimation
method. The reason for performing the initial FreeSurfer
gray/white/CSF tissue segmentation was to bring the
computational dimensionality to a manageable size by
using a few tissue classes rather than the continuum of
image intensities. In addition, it was felt that decoupling
the segmentation step from the structural complexity esti-
mation by using a method that is widely used for segmen-
tation (FreeSurfer) in thickness and volume studies pro-
vided a better basis for comparison of methods. Although
various segmentation methods could well affect complex-
ity estimation results, the fact that complexity estimation
methods performed well at separating the classes when
using segmented images generated with FreeSurfer sug-
gests that, at least initially, the utility of the complexity
estimation methods can be evaluated independently. But
further exploration of the effects of segmentation algo-
rithms on the complexity estimation methods is an impor-
tant step, both to gain a better understanding of the
interaction, as well as to attempt to improve the sensitivity

TABLE III. Classification accuracy, sensitivity, and

specificity (in percent of total subjects) between AD/CN

groups, FTD/CN groups, and AD/FTD groups for

structural complexity estimation

Sensitivity Specificity Classification Accuracy

AD vs. CN (%) 91 6 0.8 92 6 0.8 92 6 0.8
FTD vs. CN (%) 86 6 0.7 88 6 0.7 87 6 0.7
AD vs. FTD (%) 90 6 0.8 92 6 0.8 91 6 0.8

TABLE IV. Linear discriminant analysis (LDA) results for

application of structural complexity estimation to

separation of AD/FTD/CN groups

Thickness
and volume

LDA prediction
accuracy

Whole brain N/A 0.64
Hippocampus, subiculum,
and precuneus

N/A 0.80

13 regions treated separately 0.90 0.96
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of the complexity estimation methods in the face of neural
abnormalities such as white matter lesions.
Similarly, spatial normalization was used for region-

based comparisons with conventional volume and thick-
ness estimates but global (or arbitrary region) versions of
the structural complexity estimates can be obtained with-
out the step of spatial normalization. This offers the possi-
bility of eliminating the difficult problem of choosing
appropriate group specific atlases for the analysis [Lor-
enzen et al., 2005; Mega et al., 2005].
Despite their simplicity and fully automated application,

the structural complexity estimates provided classification
accuracy similar to that from volume and thickness esti-
mates. As expected, the parietal lobe volume and thickness
estimates already yielded excellent separation between CN
and AD groups. It was difficult to match by structural
complexity estimates, as specific local tissue volume
changes are expected to provide a good image marker for
AD related changes [Laakso et al., 2000] and such prior in-
formation should certainly be taken into account if avail-
able. In contrast, structural complexity estimation yielded

Figure 2.

Results of linear discriminant analysis (LDA) using structural com-

plexity estimates with x and y axes representing projections of

complexity estimates onto the 1st and 2nd linear discriminants.

Complexity analysis results for (a) only the whole brain, (b) the

hippocampus, subiculum, and precuneus, and (c) all 13 regions.

Figure 3.

Results of linear discriminant analysis (LDA) using cortical thick-

ness and volume estimates with x and y axes representing pro-

jections of thickness and volume estimates onto the 1st and 2nd

linear discriminants using a set of regions similar to that used

for Figure 2.
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a better separation between the CN and FTD groups as
well as the AD and FTD groups, especially in regions con-
sidered to be affected by both AD and FTD. Both frontal
and temporal lobe volume and thickness estimates pro-
vided comparable separation of the CN and FTD groups
to structural complexity estimation but did not do as well
at separating the CN and AD groups and showed no sig-
nificant separation between the AD and FTD groups. This
suggests that structural complexity estimation potentially
provides a more robust overall method of separating and
classifying populations in a realistic setting where subjects
generally exhibit a variety of conditions. The general na-
ture of the method allows it to be applied with a mini-
mum of assumptions about the locality of disease specific
effects as well as at which anatomical locations the effects
are expect to appear in the images. Thus, the method
should be particularly effective for simultaneous examina-
tions of spatially scalable effects that may occur across the
wide spectrum of neurodegenerative diseases.
In both AD and FTD effects are expected in a number of

regions and the structural complexity estimation analysis
was effective at distinguishing those situations. However,
discrimination between the three groups based on global
structural complexity estimates was not particularly effec-
tive, as depicted in Figure 2a. The reason for this is that on
the level of the whole brain, CN subjects are reasonably
well separated from those suffering from neurodegenera-
tion but as might be expected for a measure that does not
provide for any regional distinctions, AD and FTD yield
similar values for the structural complexity estimates. That
is, a whole brain analysis ignores the clear regional differ-
ences in neurodegeneration exhibited in AD and FTD
patients; this would also be true of a whole brain cortical
thickness and/or volume analysis. On the other hand if
three regions, known to be strongly affected in one or both
AD and FTD, are considered, i.e., the hippocampus, subic-
ulum, and precuneus, the prediction accuracy is consider-
ably improved, as seen in Table III and Figure 2b. Finally,
including more predetermined regions that are considered
strongly affected by FTD and/or AD achieves an excellent
separation of the three groups, as shown Figures 2c and 3.
Although it is a long-term goal of the authors to estab-

lish baseline estimates of H, SC, and EE for normal
subjects, given the that this work is in its early stages, the

primary goal of this article is to determine useful image
classification methods based on between-group differences.
This must be viewed as a limitation to clinical application
of the complexity estimation methods, but this situation is
similar to other image-based classification methods such as
those based on thickness and volume estimates. Establish-
ing baseline complexity estimates will involve identifying
sources of variability such as changes in normal aging.
Some indication of the differences between H and EE
between baseline values for normal subjects and values for
AD and FTD subjects in regions affected in AD and FTD is
provided by the data in Table V. The measures and
regions used for Table V were chosen for illustration based
on the relatively well-understood clinical effects in those
regions. Hippocampal atrophy (represented as a slower
decay of spatial entropy represented by higher EE) has
been found in MRI studies of both AD and FTD subjects.
Frontal lobe atrophy (represented as lower spatial entropy,
H) has been found in MRI studies of FTD subjects and to a
lesser degree in advanced stage AD subjects.
Although the complexity estimation results were prom-

ising in terms of providing image-based classification of
subjects with AD and FTD, a number of issues remain
before the methods can provide a concrete, interpretable
tool suitable for clinical use. Future work will extend struc-
tural complexity estimation to multimodal imaging, as
demonstrated [Young et al., 2005], to studies of neurodege-
nerative disease. This approach is expected to be particu-
larly effective as it does not depend on spatially confined
effects in the different modalities for its classification
power as is the case for multivariate image analysis
[Worsley et al., 2004]. In addition, it provides a more gen-
eral and interpretable approach to understanding struc-
tural image properties than methods such as fractal
[Zhang et al., 2007] and texture analysis [Freeborough and
Fox, 1988]. In contrast to methods such as that described
by Bocti et al. [2006] which provide accurate classification
via exploratory analysis, the methods described in this ar-
ticle are fully automatic and independent of operator bias.
In conclusion, information theory-based structural com-

plexity estimation shows promise for use in the study and
classification of neurodegenerative disease.
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APPENDIX

In this appendix, a brief mathematical description of the
quantities, H, SC, and EE, and how they are obtained is
provided. This discussion closely follows that contained in
[Young and Schuff, 2008].

Definitions

The components required for defining SC and H are an
index set I representing a set of spatial or space/time coor-
dinates and a feature space F defined over I, representing
some set of variables defined at each index. The feature
space used in this article consists of the values at each
voxel of a set of coregistered images in a standardized
space, in particular, the one-dimensional space of intensity
values from T1 images.
Definition of the complexity measures requires the con-

ditional probability

PðZ ¼ MðFT1ÞjZ0 ¼ MðFT2ÞÞ ¼ PðZ ¼ MðFT1Þ;Z0 ¼ MðFT2ÞÞ
PðZ0 ¼ MðFT2ÞÞ ;

ðA1Þ
defined in terms of the joint empirical distribution over
observed patterns

PðZ¼MðFT1Þ;Z0¼MðFT2 ÞÞ¼ 1

N

X
j

X
i

dðZ¼MðFT1
j Þ;Z0¼MðFT2

i ÞÞ;

ðA2Þ
where the template pair, Tj

1 and Ti
2, are ordered sets of

indices forming distinct but possibly overlapping regions
of voxels, in the underlying index set I, at positions j and
i, respectively. N is the total number of template pairs
observed over the whole image or region. FT

k
is a product

feature space, which is the product space of values in the
image(s) at voxels in the template Tk. The mapping

M:FT
k!Z, maps the set of all patterns observed in the

image or region over the product feature space FT
k
, to the

integers. That is M indexes the observed patterns, assum-
ing that the set of patterns form a discrete set. The sums
are taken over all particular instances, Ti

k, that is, instances
of template k ‘‘located’’ at index i. The functional d(�) is the
indicator ‘‘function,’’ yielding 1 if a particular pair of
patterns is observed, 0 otherwise. Thus PðZ¼MðFT1Þ
jZ0¼MðFT2ÞÞ effectively constitutes a 2D histogram of
counts of feature space patterns observed when parsing
over the index space with the templates Tj

1 and Ti
2.

Further restrictions can be imposed such as requiring that
T1 and T2 be nonoverlapping and/or contiguous. In the
analysis presented in this article, T1 and T2 are linear sets
of contiguous voxels of a given length L. Hence, the analy-
sis effectively studies local correlation structure at scale L.
In the following, we will simplify the notation using the
conversion Z ¼ MðFTkÞ!Z. The marginal distribution is
then defined as follows:

PðZ0Þ ¼ 1

N

X
Z

dðZ;Z0Þ; ðA3Þ

To estimate SC, the set of optimally predictive states
must be determined from the images.

Determination of States

For this article, the states are determined after tissue seg-
mentation of the univariate T1. Better segmentation algo-
rithms provide some benefit in obtaining better complexity
estimates but complexity estimation as a whole, given the
global nature of the analysis, can be viewed as less sensi-
tive to the accuracy of segmentation algorithms than tech-
niques that rely on accurate ‘‘local’’ information such as
cortical thickness estimation.
The next step in the algorithm is to choose templates

and parse the image using those templates. The templates
are moved over the image and the image values over the
templates are recorded as counts in a joint histogram. The
number of joint histogram bins sv1 3 sv2 is determined by
the number of segmentation values, s, in the image and
the number of voxels, v1 and v2, in the templates. sv1 is the
number of possible patterns that can be observed over
template 1 and sv2 is the number of possible patterns that
can be observed over template 2. For this article, the two
template structures are identical, simple linear sequences
of voxels, and sv1 and sv2 are identical.
From the joint histogram, the conditional histograms

defined in Eq. (A1) are obtained. The conditional histo-
grams are then grouped, based on a measure of similarity
for probability distributions; there are a number of choices
for similarity measure between distributions. In this article,
a hard clustering algorithm, PAM [Dimitriadou et al.,
2004], is used with the Euclidean distance between bin
counts as the similarity measure. Note that the grouping
of conditional histograms into states is the step that specifi-
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cally characterizes structure in the image and distinguishes
the complexity-based method from simply estimating entro-
pies from the joint histogram as a co-occurrence matrix
[Young and Schuff, 2008]. This step is also what distin-
guishes SC from the joint entropy though in the special case
where there is a one-to-one correspondence between joint
histograms and states, SC reduces to the joint entropy. This
can occur when there are a small number of joint histo-
grams that are too distinct to be clustered into states.
The ability to specify arbitrary template structures also

distinguishes the complexity estimation methods from
standard co-occurrence analysis. In addition, while the
joint histogram, analogous to a co-occurrence matrix, is a
convenient representation of the results of the image pars-
ing step, the underlying construction is based on a rigor-
ously defined and general set of graph theoretic methods
described in [Crutchfield and Young, 1989].

Statistical Complexity

Given the set of states s, accumulated as just described,
SC can then be defined as follows:

SC ¼ �
X
s

ð
X
Z;Z02s

PðZjZ0ÞÞlog2
X
Z;Z02s

PðZjZ0Þ
 !

; ðA4Þ

This quantifies the information contained in the distribu-
tion of observed patterns, conditioned and summed over
all states, s. Note that as mentioned earlier, via condition-
ing over the states s, SC is distinct from the conditional
entropy of the histogram and measures something quite
different. For example, when the set of N conditional histo-
grams making up the joint histogram are identical, the
joint entropy would equal N times the entropy of one of
the conditional histograms; but SC would equal zero as
there is only a single state.
Although not explicitly represented in Eq. (A4), SC is

dependent on the particular templates T1 and T2 over
which the patterns are observed and implicitly on the scale
of the template patterns. However, as is demonstrated by
the results reported earlier, as long as the choice of tem-
plate patterns is consistently applied, the results can be
used to detect systematic group differences exposed in the
images.

Entropy (H)

The standard measure of the number and distribution of
observed patterns produced by a system is the entropy

H ¼ �
X
Z0 ;Z

PðZ;Z0Þlog2PðZ;Z0Þ; ðA5Þ

where the joint probabilities are defined in Eq. (A2). The
entropy in the current case is over the joint distribution

defined in Eq. (A2), accumulated over the underlying tem-
plate pairs and summed over the indices of the observed
patterns.

Excess Entropy

EE measures the convergence rate of H as a function of
increase in volume. Despite some subtleties in interpreting
EE, discussed in [Feldman and Crutchfield, 2003], it pro-
vides a useful and complimentary measure to H and SC.
EE was defined and initially discussed in [Feldman and
Crutchfield, 2003]. We first define the metric entropy as
the limit of entropy per unit volume as the volume is
taken to infinity, initially without specifying explicitly how
the volume is to be taken to infinity:

hl ¼ lim
V!1

H

V
; ðA6Þ

EE is then defined as

EE ¼
X1
V�0

H

V
� hl

� �
; ðA7Þ

where V is the volume of the templates in index space. De-
spite the subtleties involved with estimating EE in dimen-
sions higher than 1, any particular choice, consistently
applied, results in a useful method for comparing struc-
ture in images. In particular, note that if the entropy per
unit volume converges quickly to hl as a function of scale
then EE is small indicating a lack of large scale structures
in the image.
EE provides an estimate of the scaling properties in

image data that compliments information obtained using
SC and H. Specifically, H provides a measure of the num-
ber and distribution of structures observed at a given tem-
plate scale, SC provides a measure of the complexity of
the spatial correlation of those structures at a given tem-
plate scale, and EE provides a measure of the variation
in the number of observed structures as a function of
template scale.

Implementation

For the particular case of classifying neurodegenerative
disease via T1 MRI, the steps for obtaining sets of states
and calculating SC, H, and EE are as follows:

1. Feature space reduction: For the analysis in this arti-
cle, feature space reduction had already been per-
formed given that the complexity estimation steps
were applied to the segmented T1 image data. That
is, the feature space consists of a single value, the in-
tensity of a T1-weighted MR brain image, and the fea-
ture space reduction corresponds to standard tissue
segmentation of the brain image into 3 classes, gray
matter (GM), white matter (WM), and cerebrospinal
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fluid (CSF) via FreeSurfer.
2. Parsing: The index space is parsed according to the

specified templates. The observed patterns over all
instances of the templates in the index space are then
catalogued via the joint histogram. In this study, pars-
ing is done for the three-dimensional index space in
the cardinal directions (x, y, z), and templates consist
of linear sequences of voxels in those directions.
To obtain the list of distinct states, as described ear-

lier, a robust hard clustering algorithm (PAM [Dimi-
triadou et al., 2004] in the current implementation) is
used to group the conditional distributions. There are
various similarity measures that could be used to
group the conditional histograms into states, but the
use of PAM for clustering based on Euclidean dis-
tance between histogram bin counts proved to be
relatively robust in being transparent to numerical
problems resulting from histogram bins with zero
counts.

3. Complexity estimation: The total probabilities of the
states, that is the normalized sums of the histogram

counts in the conditional histograms in that cluster,
are obtained and used to estimate SC using Eq. (A4).
H is estimated over all histogram bins treated inde-
pendently using Eq. (A5).

The software implementation of the above methods is
an open source package written in Python [van Rossum
and Drake, 2001] and SciPy [Jones et al., 2001], and uses
the Rpy [Moreira, 2004] package to provide access to the
statistical and graphical capabilities of the R statistical lan-
guage [R Development Core Team, 2004] and supplemen-
tal libraries. The cluster and e1071 [Dimitriadou et al.,
2004] R packages were used for clustering and the Ana-
lyzeFMRI [Marchini, 2004] package for MR image process-
ing. Image analysis was performed using this package on
a 46-processor Beowulf cluster using the PyPAR [Nielsen
et al., 2003] Python wrapper for the message passing inter-
face MPI. Complete (fully automated) processing of a sin-
gle subject takes on the order of 40 min on a single 3-GHz
processor.
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