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Purpose: Individual differences in patterns of gene expression account for much of the diversity of ocular phenotypes
and variation in disease risk. We examined the causes of expression differences, and in their linkage to sequence variants,
functional differences, and ocular pathophysiology.
Methods: mRNAs from young adult eyes were hybridized to oligomer microarrays (Affymetrix M430v2). Data were
embedded in GeneNetwork with millions of single nucleotide polymorphisms, custom array annotation, and information
on complementary cellular, functional, and behavioral traits. The data include male and female samples from 28 common
strains, 68 BXD recombinant inbred lines, as well as several mutants and knockouts.
Results: We provide a fully integrated resource to map, graph, analyze, and test causes and correlations of differences in
gene expression in the eye. Covariance in mRNA expression can be used to infer gene function, extract signatures for
different cells or tissues, to define molecular networks, and to map quantitative trait loci that produce expression
differences. These data can also be used to connect disease phenotypes with sequence variants. We demonstrate that
variation in rhodopsin expression efficiently predicts candidate genes for eight uncloned retinal diseases, including WDR17
for the human RP29 locus.
Conclusions: The high level of strain variation in gene expression is a powerful tool that can be used to explore and test
molecular networks underlying variation in structure, function, and disease susceptibility. The integration of these data
into GeneNetwork provides users with a workbench to test linkages between sequence differences and eye structure and
function.

Rapid progress in molecular biology, genomics, and
bioinformatics combined with powerful mouse models have
opened up many ways to study the genetics, development,
function, and pathology of the eye and visual system [1-9].
An inevitable side effect of this relentless progress is that
exploiting and integrating data are challenging. The purpose
of this paper is to introduce a resource that binds together
many data sets related to the genome, transcriptome, eye, and
central visual system. Our goal is to improve the efficiency of
making discoveries related to eye function and disease.

The foundation of this work is a massive gene expression
data set generated using eyes from many of the most widely
used strains of mice that are used in vision research and
experimental genetics. A few examples of these interesting
strains include:

• 129S1/SvImJ, one of a large family of related strains
that have been used to generate almost all embryonic stem

Correspondence to: Dr. Eldon E. Geisert, Hamilton Eye Institute, 930
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cells and knockout (KO) mice. This strain carries a mutation
in the Tyr albino locus and in Gnat2—the achromatopsia gene.

• C3H/HeJ, a strain harboring the original rd1 retinal
degeneration mutation in the Pde6b gene.

• C57BL/6J, the single most widely used inbred strain of
mouse. The genome of this strain has been extraordinarily
well categorized. Many conventional and conditional gene
KO lines are now generated and bred into this strain.

• DBA/2J, one of the oldest inbred strains of mice and a
strain with mutations Tyrp1 and Gpnmb that combine to
produce a severe form of pigment-dispersion glaucoma [10,
11].

• FVB/NJ, a common albino strain that also carries the
Pdeb6-rd1 rod degeneration mutation and that has been used
to make the great majority of transgenic mouse lines.

These and many other strains differ greatly in their
genomes. Any pair of strains will typically differ at 1–3
million known single nucleotide polymorphisms (SNPs),
insertion-deletions-inversions, copy number variants
(CNVs), and microsatellites [12]. A small fraction of these
sequence variants—but still a high number—influence the
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development and function of the eye, and of course,
susceptibility to disease. Animals from each line can be raised
in tightly controlled environments. The combination of
precisely defined genomes and precisely controlled
environments provides an excellent foundation for
experimental studies.

Why study the ocular transcriptome of over a hundred
lines of mice? There are several answers. The first is that this
type of survey makes it possible to define the level of normal
genetic variation in expression [13]. This information is useful
in answering simple, but important questions. For example,
how much variation is there in expression of the three genes
involved in age-related macular degeneration (ARMD)—
complement factor H (Cfh), the retina-specific ATP-binding
cassette transporter (Abca4), and apolipoprotein E (Apoe)?
The answer is that there is greater than twofold variation in all
three of these genes among normal isogenic lines of mice. This
variation can be used as a tool in the same way that one would
study KO and transgenic lines. The second reason is that it
becomes possible to combine expression data across this large
panel of diverse strains with well matched data on ocular and
retinal histology and to generate genetic signatures of cells
and tissue types. It is possible to determine sources of
variation in the three ARMD genes at the cellular and
molecular level. We demonstrate this powerful approach—a
kind of statistical/genetic dissection of the eye—in the second
part of the Results section using variation in rhodopsin
expression to generate new candidate genes for uncloned
human mutations that cause photoreceptor death and
blindness. This powerful process can be extended to virtually
all eye diseases for which there are one or more signature
genes that are already known to contribute to disease onset or
severity, the age-related macular degeneration genes being
good examples.

Finally, the set of strains we have studied includes a large
family of BXD recombinant inbred strains made by crossing
two of the oldest and most widely used lines of mice: C57BL/
6J (B) and DBA/2J (D). The eyes and retinas of this BXD
family have been well studied for more than a decade, and we
now possess extensive cytological and morphometric data on
their eyes and retinas that can be studied with reference to

differences in expression. With this large sample size,
powerful statistical analysis is possible—for example, we can
study correlations between numbers of retinal ganglion cells
[14,15] or photoreceptors and the expression of specific
genes.

The greatest utility of this BXD family is that it can be
used to map the chromosomal positions of sequence variants
that cause differences in gene expression, cell number, eye
structure, and responses to retinal injury [15-17]. It is possible
to advance from correlation to causation. For example,
variation in the expression of over 500 transcripts in the eyes
of BXD strains—many of which are related to the retinal
pigment epithelium and pigmentation—can be traced back
directly to the Tyrp1 pigmentation-associated gene on
chromosome (Chr) 4.

METHODS
Animals: The HEIMED is based on data from 221 microarrays
and 103 types of mice. Our goal was to obtain expression
estimates for independent biologic samples from both sexes
at approximately two months of age (young adult). The great
majority of animals were obtained over a four-year period
from colonies at University of Tennessee Health Science
Center (Memphis, TN), and the Jackson Laboratory (Bar
Harbor, ME). Mice were housed at 20 to 24 °C on a 14/10 h
light/dark cycle in a specific pathogen-free (SPF) facility at
the University of Tennessee. All animals were fed 5% fat
Agway Prolab 3000 (Agway Inc., Syracuse, NY) mouse chow
was provided ad libitum by water bottles. Eyes were obtained
from DeltaGen Inc., (San Mateo, CA) and the KO stock was
obtained from Ted Choi (Predictive Biology, Inc., San Diego,
CA). Rpe65 KO and Nyx mutant eyes were obtained from T.
M. Redmond at the National Eye Institute (Bethesda, MD) and
R. G. Gregg at the University of Louisville (Louisville, KY).
Table 1 and Table 2 in the HEIMED information and metadata
file provide key data on age, sex, and sources of all samples.
Table 2 provides information on array quality and batch
numbers. All experiments complied with the ARVO
Statement for the Use of Animals in Ophthalmic and Vision
Research.
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TABLE 1. KNOCKOUT AND MUTANT LINES

Gene Chr@Mb Expression level QTL status Age (Days) n Affymetrix probe set Allele
Gabra1 11@42 10.0 cisQTL 67–69 3 1421280_at tm1Dgen
Gabbr1 17@37 10.9 none 16–22 5 1455021_at tm1Dgen
Gnb5 9@75 13.0 none 22–25 3 1422208_a_at tm1Dgen
Gpr19 6@135 9.6 cisQTL 68–70 2 1421756_a_at tm1Dgen
Clcn3 8@64 12.4 none 67–69 3 1416610_a_at tm1Dgen
Rpe65 3@160 12.6 cisQTL 57 2 1450197_at tm1Tmr
Nyx X@13 8.3 none 57 2 1446344_at nob

This table lists the lines of mice that have had one gene knocked out. The table includes the gene symbol, its chromosomal
location, QTL status in HEIMED, age of the mice, number of mice Affymetrix Probe set, and allele.

http://www.genenetwork.org/dbdoc/Eye_M2_0908_R.html
http://www.genenetwork.org/dbdoc/Eye_M2_0908_R.html
http://www.molvis.org/molvis/v15/a185
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Inbred strains: Twenty-six lines were part of a mouse
diversity panel (MDP) available from the Jackson Laboratory:
129S1/SvImJ, A/J, BALB/cJ, BALB/cByJ, BXSB/MpJ,
C3H/HeJ, C57BL/6J, C57BLKS/J, CAST/EiJ, CBA/CaJ,
CZECHII/EiJ, DBA/2J, FVB/NJ, KK/HlJ, LG/J, LP/J,
MOLF/EiJ, NOD/LtJ, NZB/BlNJ, NZO/HlLtJ, NZW/LacJ,
PANCEVO/EiJ, PWD/PhJ, PWK/PhJ, SJL/J, and WSB/EiJ.
Of this set of strains, the most complete sequence data are
available for C57BL/6J—about a 5X whole-genome shotgun
sequence produced by the Mouse Genome Sequencing
Consortium (2002) [18]. Three additional strains included in
the MDP—129S1/SvImJ, A/J, and DBA/2J—were sequenced
by Celera Genomics (Alameda, CA) with cumulative
coverage of about 5X [18]. Fourteen strains were partially
resequenced by Perlegen (Mountain View, CA) [19] using
tiling arrays (129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/
HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ,
NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ). A key
product of this first phase of sequencing is a set of 8.5 million
common murine SNPs. All of these have been incorporated
into a SNP Brower and are accessible with all HEIMED data
in GeneNetwork. Any user can easily determine if there are
known coding or noncoding sequence differences among
common strains of mice for most genes of interest.

The MDP includes representatives of several different
subspecies of Mus musculus, including M. m. domesticus
(WSB/EiJ), M. m. musculus (CZECHII/EiJ), M. m. castaneus
(CAST/EiJ), and M. m. molossinus (MOLF/EiJ). One strain
belongs to a different species of Mus: M. hortulanus
(PANCEVO/EiJ). The MDP also includes all eight parents of
the Collaborative Cross [20-22] (129S1/SvImJ, A/J, C57BL/
6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/
EiJ).

In addition to fully inbred strains, we have included a pair
of reciprocal F1 hybrids made by crossing C57BL/6J and
DBA/2J. These F1 hybrids—(C57BL/6J × DBA/2J)F1 and
(DBA/2J × C57BL/6J)F1—are listed in the database using the
common abbreviations B6D2F1 and D2B6F1, following the
convention “strain of dam” × “strain of sire.” These F1 hybrids
usually have expression levels intermediate between parents,
but in principle, F1 hybrids can also be used to detect
dominance and overdominance effects. Reciprocal F1 pairs
can also be used to detect effects of imprinting on gene
expression (e.g., Gtl2, probe set 1436713_s_at, and Rian,
probe set 1427580_a_at).
Knockout and mutant lines: We profiled whole eyes of five
KO lines from Ted Choi that were generated by DeltaGen
Inc. (San Mateo, CA; Table 1). Unlike all other lines in the
HEIMED, these homozygous DeltaGen KOs are not isogenic,
but are first generation backcross progeny (N1 progeny) of an
F2 intercross between C57BL/6 and 129P2 (B6129P2F2N1).
For this reason, we did not pool samples from these KO mice.
Two of these KOs were in the GABA receptor family: the

ionotropic alpha 1 receptor subunit, Gabra1, and the
metabotropic beta 1 receptor subunit, Gabbr1. We profiled a
DeltaGen Clcn3 KO, a gene known to be associated with rod
and cone photoreceptor degeneration [23]. The remaining two
DeltaGen KOs inactivate Gnb5 (Gbeta5), a gene essential in
transducin deactivation [24], and Gpr19, a G protein-coupled
receptor. We also studied an Rpe65 KO line [25] on a (129X1/
SvJ x 129S1/Sv)F1-Kitl+ genetic background and a BALB/
cByJ strain with the spontaneous nob mutation in nyctalopin
(Nyx) [26,27].
BXD recombinant inbred strains: We studied 68 BXD
recombinant inbred strains that segregate for three common
coat and eye color mutations—dilute at Myo5a, brown at
Tyrp1, and non-agouti at Asip. BXD1 through BXD32 were
bred by Benjamin Taylor, Jackson Laboratory, Bar Harbor,
ME starting in the 1970s [28], whereas BXD33 through
BXD42 were bred by Taylor in the early 1990s [29]. BXD43
and higher were bred by L. Lu, J. Peirce, L. M. Silver, and R.
W. Williams in the late 1990s and early 2000s using advanced
intercross progeny [30]. All BXD strains are available from
the Jackson Laboratory.
Photoreceptor degeneration in inbred mice: Six strains of
mice—C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J, BXD24, and
the Clcn3 KO—have mutations that lead to rapid and early
loss of rod photoreceptors. This loss of rods is nearly complete
by one month of age and is often caused by the retinal
degeneration 1 (rd1) allele in the rod cyclic-GMP
phosphodiesterase 6-beta subunit gene, Pde6b. There is
usually considerable “bystander” loss of cones in rod
degeneration mutants, with half of all cones lost in the first
month [31]. As expected from previous work [23], the loss of
a functional Clcn3 gene (chloride ion channel 3) also leads to
rod and cone photoreceptor loss. BXD24/TyJ is the only BXD
strain with retinal degeneration; it is caused by a spontaneous
mutation that occurred between 1988 and 1992. (What we call
BXD24 is JAX stock #000031, and is now referred to as
BXD24b/TyJ.)
Tissue and sample processing: Animals were killed by rapid
cervical dislocation and the eyes were removed immediately.
Optic nerves were trimmed at the orbit and most extraocular
muscle was removed. Cleaned eyes were placed in RNA Later
(Applied Biosystems/Ambion Foster City, CA) at room
temperature. Both eyes from two to four animals of the same
sex, age, and strain were stored in a single vial (four to eight
eyes per pool). RNA STAT-60 Tel-Test Inc. (Friendswood,
TX) was used to extract RNA from pooled eyes. All RNA
samples were processed by one author (Y.J.). RNA was
purified using procedures recommended by Affymetrix
(Santa Clara, CA; sodium acetate in alcohol extraction), and
18S and 28S bands were examined on a 1% agarose gel. Only
samples with a 260/280 ratio greater than 1.7 were accepted
for further processing. We typically used a total of 8 µg of
RNA for cDNA synthesis using a standard Eberwine T7

Molecular Vision 2009; 15:1730-1763 <http://www.molvis.org/molvis/v15/a185> © 2009 Molecular Vision

1734

http://www.genenetwork.org/dbdoc/Eye_M2_0908_R.html
http://www.genenetwork.org/webqtl/snpBrowser.py
http://www.deltagen.com
http://www.deltagen.com
http://www.genenetwork.org/dbdoc/Eye_M2_0908_R.html
http://www.molvis.org/molvis/v15/a185


polymerase method [32] (Superscript II RT, Invitrogen/Life
Technologies, Inc., Carlsbad, CA). The Affymetrix IVT
labeling kit was used to generate labeled cRNA.
Replication and sex balance: The samples were reasonably
well balanced in terms of sample size and sex. Ninety-nine of
103 lines are represented by two or more pools of eyes, usually
six eyes per pool-one male and one female pool. Sex
differences in gene expression in the eye were minor (see
Results), and data from males and females were combined to
compute strain means and standard errors. Standard errors
were corrected using the adjustment advocated by Gurland
and Tripathi [33]. Two inbred strains were represented by a
single male pool (BXD29 and A/J) or a single female pool
(BXD69). Five KO and mutant lines (Gpr19, Gabra1, Clcn3,
Gabbr1, Nyx) were represented by male samples only. Eyes
from both sexes of SJL/J were inadvertently combined before
hybridizing to the array.
Affymetrix mouse genome 430 2.0 arrays and annotation: The
M420 2.0 array consisted of roughly 1 million 25-nucleotide
probes, grouped into 22 probes per probe set (11 match and
11 mismatch probes) that estimated the expression of
approximately 39,000 transcripts and 19,459 genes (unique
NCBI Entrez Gene IDs). The probe set sequences were
selected late in 2002 using the Unigene Build 107 EST clusters
[34]. We downloaded the latest annotation from the vendor
(Mouse430_2.na28.annot.cvs) that was produced March 2,
2009. However, as will be described, we extensively
reannotated the array content manually. The great majority of
probes intentionally targeted the last coding exons and the 3′
end of transcripts—a part of the mRNA typically within 500
nt of the poly(A) tail. Many genes generated mRNAs with 3′
UTR length variants, and a large number of probe sets were
designed by Affymetrix to specifically target both long and
short 3′ UTR variants. Probe sets that targeted a region close
to the primary polyadenylation site usually had higher signals
than those probe sets that targeted secondary polyadenylation
sites or regions of the transcript that were located in 5′ coding
exons. The processing of the mRNA’s 3′ UTR was complex
and different probe sets targeting different parts of the 3′ UTRs
often gave very different estimates of expression. In general,
probe sets that overlapped the last coding exon and the
proximal part of the 3′ UTR provided the most representative
signal that would match expectations of in situ hybridization
results.
Normalization: Affymetrix CEL files were processed using
the Robust Multichip Array (RMA) protocol [35] with default
settings. We then logged RMA values, computed Z scores for
these RMA values for each array, multiplied Z scores by 2,
and added an offset of 8 units to each value. The goal of this
transformation was to produce a set of Z-like scores for each
array that had a mean of 8, a variance of 4, and a standard
deviation of 2. The advantage of this modified Z score was
that a twofold difference in expression corresponded

approximately to 1 unit. Finally, we computed the arithmetic
mean of the values for the set of microarrays for each strain
—usually two arrays and two pools of eyes per strain. (A
single pair of technical replicates for strain NZW/LacJ were
averaged before computing means of the two independent
biologic samples.) Array data quality was evaluated using
DataDesk 6.2 (DataDescription Inc., Ithaca, NY). Outlier
array data sets were flagged by visual inspection in DataDesk,
usually by means of an analysis of scatter plots, and more
quantitatively by generating the correlation matrix of all
arrays. In some cases, outliers were expected–for example,
samples with retinal degeneration and samples from wild
subspecies. However, when an array differed significantly
from many other arrays and from its strain-matched
companion, it was excluded from the study. We discarded
approximately 10% of all arrays.
Calibration: We calibrated expression using the Affymetrix
spike-in controls. These 18 control probe sets targeted
bacterial mRNAs that were added during sample preparation
at four concentrations: 1.5, 5, 25, and 100 pM. (To find these
probe sets, search the ALL search field in GeneNetwork using
the string “AFFX pM.”) On the log2 scale, a value of 6 was
equivalent to an mRNA concentration of approximately 0.4
pM, a value of 8 was equivalent to approximately 1.5 pM, 9.5
was equivalent to approximately 5 pM, 11.5 was equivalent
to approximately 25 pM, 13.5 was equivalent to
approximately 100 pM, and 15.5 was equivalent to an mRNA
concentration of 400 pM or greater. This range can be
converted to average numbers of mRNAs per cell in whole
eye assuming that a value of 8–9 was equivalent to about 1–
2 mRNA copy per cell [36]. For example, the expression of
rhodopsin mRNA was 15 units in wild-type strains, equivalent
to an average of 27 to 28 Rho mRNAs per cell. This is an
underestimate of mRNAs per rod by a factor of about two.
There were therefore likely to be about 500 Rho mRNAs per
rod responsible for the replenishment of 80 rhodopsin proteins
per second (70 million RHO proteins per rod with a molecular
life span of 10 days [37].
Batch structure: Arrays were processed in four batches. The
complex and sequential normalization procedures used to
combine batches are described in the GeneNetwork HEIMED
metadata information file. The metadata standards available
in this file are equivalent to Minimum Information About a
Microarray Experiment (MIAME) and Gene Expression
Omnibus (GEO) standards are presented in a conventional
text format.
Heritability index: We estimated the approximate fraction of
variance in gene expression data due to genetic factors—a
heritability index—using the simple equation of Hegmann
and Poissedente [38]:

h 2 = 0.5Va / (0.5Va + Ve)
where Va was the additive genetic variance and Ve was the
average environmental variance. The factor of 0.5 in this ratio
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was applied to adjust for the twofold increase of additive
genetic variance among inbred strains relative to outbred
populations. This decreased heritability estimates. However,
this was counterbalanced to some extent because arrays were
hybridized with sets of eyes from two to four cases, decreasing
the environmental variance, Ve. For these and other reasons,
the heritability index should be used as an informal index of
the strength of genetic control rather than as a firm
determination. It is possible to determine the relation between
the heritability index and the likelihood that gene loci can be
mapped. Transcripts with heritability above 0.33 are often
associated with one or more significant loci (e.g., Polr1b, see
Results, Part 1).
Data file availability: The final normalized HEIMED data set
used in this paper and in GeneNetwork is available as strain
means with error terms (data for 103 types of mice) and as a
set of 221 individual arrays under the accession number
GN207. The file names are as follows:

1. Geisert_EyeM430v2Sept08RMA103withSEM.txt
(strain means and error of the mean)

2. Geisert_EyeM430v2Sept08RMA221cases.txt
(individual pooled cases, male or female)

Due to the complex normalization procedure required to
correct for batch effects we do not recommend using raw CEL
files.
Array annotation file availability: The custom annotation of
the Affymetrix M430 2.0 array that is part of GeneNetwork is
available by selecting “Mouse” as the species, and by
selecting “Affy Mouse Genome 430 2.0 (GPL1261)” as the
platform.

Complementary web resources: Several complementary
resources provide data on expression patterns in different
tissues of the mouse, rat, and human eye using a variety of
technologies and approaches. These sites can help define
molecular signatures of different tissues in eye and the
regulation of gene expression.

• The National Eye Institute Bank project [39] site
provides a summary of expression data from multiple species
with links back to GeneNetwork.

• 2. The Serial Analysis of Gene Expression (SAGE)
database provides data on gene expression in the embryonic
and postnatal mouse retina.

• 3. Differential gene expression in anatomic
compartments of the human eye provides lists of transcripts
with high expression in six ocular tissues.

• 4. The Retina Developmental Gene Expression site
provides expression data for mouse retina at eight postnatal
stages.

• 5. GeneNetwork contains data from a large eye
transcriptome study of the adult rat based on 120 F2 intercross
progeny using the Affymetrix RAE 230 v2.0 array [40]. All
data are available by selecting Species=rat, Group=UIOWA
SRxSHRSP F2, Type=Eye mRNA, and Database=UIOWA
Eye mRNA RAE230v2 (Sep06) RMA.

• 6. RetNet, the Retinal Information Network, provides a
summary of genes and loci causing inherited retinal diseases
in humans.

RESULTS AND DISCUSSION
Overview: This section is divided into four parts. In the first
part, we explain how gene expression was measured and

Figure 1. Extracting Data from the HEIMED. Step 1. Open the main website, GeneNetwork. Set up the Find Records pull-down menu fields
to read: Choose Species=Mouse, Group=BXD, Type=Eye mRNA, Database=Eye M430v2 (Sep08) RMA. Step 2. Make these setting your default
by clicking on the 'Set to Default' button (bottom right of the window). Step 3. Enter the search term “rhodopsin” (quotes are not needed) in
the ANY field and click on the 'Basic Search' button. (Alternatively enter the search term “rhodopsin, rho” in the ALL field). Step 4. A Search
Results window will open with a list of seven probe sets, four of which target different parts of the rhodopsin transcript. By default the probe
sets are listed by their positional order from proximal Chr 1 to distal Chr Y. You can use the Sort By pull-down menu to reorder probe sets
by average gene expression level, symbols, or by identifier numbers. Step 5. Click anywhere on the red text to generate a new window called
the Trait Data and Analysis Form. The top of this window provides summary information on rhodopsin and this probe set; the middle section
provides Analysis Tools; and the bottom section provides a set of editable boxes that contain the gene expression averages and error terms
for all lines of mice starting with the B6D2F1 hybrids at the top and ending with the WSB/EiJ Mus musculus domesticus strain at the bottom
(scroll to the bottom to see all of the common strains of mice).
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scaled, the level of variation in expression, and its heritability.
We briefly review our custom annotation of the Affymetrix
M430 2.0 microarray that makes data more useful to
neuroscientists and vision researchers.

In part 2, we describe methods that take advantage of
covariation and coexpression of transcripts to assemble
networks. While the mRNA data are averages across many
tissue types, the data set is sufficiently large that it is possible
to statistically dissect sets of genes expressed in specific cells
and tissue types. We show how to use expression signatures
to build networks related to eye disease and generate a set of
candidate genes for seven uncloned human retinitis
pigmentosa loci.

In part 3, we introduce gene and quantitative trait locus
(QTL) mapping methods. QTL mapping makes it possible to
determine the directionality and causality of interactions
among genes, their transcripts, and downstream targets [40,
41].

In part 4, we describe methods to analyze networks of
transcripts in combination with gene mapping. We provide an
example of how sequence differences in the tyrosinase related
protein 1 (Tyrp1, the brown locus) on chromosome (Chr) 4
controls the expression of large numbers of transcripts in the
eyes of BXD strains.

Our intent in each of these four parts is to provide readers
with enough information to carry out their own work and
generate their own analyses. Figure legends include detailed
instructions on how to exploit the data in combination with
tools and resources that are part of GeneNetwork.

To provide coherence across sections, many examples
involve a common set of genes and their transcripts:

1. Rhodopsin, Rho (Affymetrix probe set 1425172_at;
Figure 1), a marker for rod photoreceptors

2. Alpha 6 nicotinic receptor, Chrna6 (1450426_at), a
gene with high expression in retinal ganglion cells [42]

3. Choline acetyltransferase, Chat (1446681_at), a
marker for a subset of amacrine cells

4. Glycoprotein nonmetastatic melanoma B, Gpnmb
(1448303_at), a gene that contributes to glaucoma in DBA/2J

5. Tyrosinase-related protein 1, Tyrp1 (1415862_at), a
marker for the pigmented ocular tissues

6. Aldehyde dehydrogenase 3 alpha 1, Aldh3a1
(1418752_at), a corneal marker gene
Part 1: Measurement scale, variation, heritability, and probe
annotation:

Measurement scale: The average expression of all
transcripts was 8 units with a standard deviation of 2. These
measurements were on a log2 scale and each unit represented
a twofold difference in mRNA concentration in the whole eye.
Expression ranged from a low of 4.8 units (Tcf15, probe set
1420281_at) to a high of 15.5 (crystallin gamma C, Crygc,
probe set 1422674_s_at). This range corresponded to a 1,660

fold difference (210.7). However, the effective dynamic range
was roughly half this value, on the order of 1 to 800.
Expression of the six marker genes ranged from high values
for those expressed in large populations of cells (15 units for
Rho, 14 for Aldh3a1, 13 for Tyrp1, and 12 for Gpnmb) to
intermediate values for genes expressed in smaller cell
populations such as retinal ganglion cells and starburst
amacrine cells (9.5 for Chrna6 and 8 units for Chat).
Low expression values: Many transcriptome studies exclude
probe sets with low expression that are classified as absent or
marginal [36]. Almost all would fall below 7 units on the log2
scale we have used. In contrast, we have included all probe
sets and all values, even Affymetrix controls. Many probe sets
with low values detect and reliably measure expression of the
correct transcript. For example, expression of the calcium ion
channel Cacna2d1 (1440397_at) varies more than twofold
among strains—from 5.1 and 6.3 units (Figure 2D). This is
well under the conventional detection threshold of the array
and even below the background noise level of several genes
that have been knocked out. However, by using gene mapping
methods described in Part 3 it is possible to show that at least
70% of the variability in Cacna2d1 expression is generated
by polymorphisms that map precisely to the location of the
Cacna2d1 gene itself. This demonstrates that the arrays can
achieve a reasonable signal-to-noise ratio even for some
transcripts that are nominally declared to be absent.

Effects of mRNA dilution in complex tissues: While the overall
concentration of mRNAs in the eye may be low, often
averaging less than one mRNA per cell, concentrations within
single cell types will often be much higher. In many array
studies, dilution of message hampers analysis, but the
HEIMED is sufficiently large that even modest signals can
often be detected reliably. For example, Chat is only
expressed in a small population of about 35,000 starburst
amacrine cells [43]: 0.3% of the total retinal cell population.
Nonetheless, expression of Chat in the whole eye is
reasonably high and varies 2.2-fold from 7.6 to 8.7 (probe set
1446681_at). Chat expression covaries with other transcripts
known to be expressed selectively in starburst amacrine cells,
including Kcnc2 (r=0.69), [44] and Slc2a3 (Glut3, r=0.69),
[45].
Variation in array signal across strains: There is substantial
variation in gene expression among strains of mice (Figure
2C, Figure 3). Nearly half of all probe sets have more than a
twofold range; 12% have more than a fourfold range; and 4%
have more than a eightfold range. Rhodopsin is an example
of a transcript with an extreme 300-fold difference (Figure 1),
for the simple reason that several strains have no
photoreceptors. Eliminating those strains with photoreceptor
mutations reduces the range to 1.7-fold. The interquartile
range—the difference in expression between strains at the
25% and 75% levels—is a conservative and robust way to
estimate variation that is unaffected by outliers. For example,
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even with the retention of the six-outlier rd strains, the
interquartile range for rhodopsin is only 1.16-fold.

Expression differences need to be interpreted cautiously.
Sequence variants among strains often produce variation in

Figure 2. Advanced searching capabilities. Groups of genes, transcripts, and probe sets can be extracted from GeneNetwork using special
query commands. To review the list of commands and their syntax, click on the 'Advanced Search' button in GN, in the frame on the right
side of the page. The search terms in the top panel A “rif=cone rif=bipolar,” when placed into the ALL field of GeneNetwork, will retrieve
genes associated with cone bipolar cells, including Atp2b1, Bsn, Gnao1, Gnb3, Gnb4, Gnb13, Grm7, Hcn1, Hcn2, Irx5, Kcnip3, and Vsx1.
This query exploits the constantly updated NCBI GeneRIF database that is integrated into GeneNetwork. The search terms in B will retrieve
all probe sets that have been annotated by any user in the GeneWiki with either the word “iris” or the author’s name “geisert.” Panel C illustrates
the use of the “range” command. This command is used to find transcripts that have different levels of variation across strains of mice. For
example, the search string “range=(128 512)” will return mRNAs assays with greater than a 128 fold and less than 512 fold difference in
expression across all 103 lines of mice. This is equivalent to a difference of 7 to 9 units (27 and 29). This search will return a list that includes
Cnga1 (cyclic nucleotide gated channel alpha 1), Gnat1 (rod alpha transducin), Gsn (gelsolin), Mela (melanoma antigen), Nrl (neural retina
leucine zipper), Pdc (phosducin), Pde6a, Pde6b, Pde6g (three phosphodiesterases), Rho (rhodopsin), Rp1 (retinitis pigmentosa 1), and Sag
(S-antigen). Expression of Sag, for example, ranges from a low of 7.9 in the Clcn3 knockout to a high of 15.4 in PANCEVO/EiJ, the colonial
mound-building mouse species. Panel D illustrates a complex search that can be used to find probe sets with low expression but high genetic
signal. This query finds all transcripts with expression levels between 4.5 and 7.5 that are also associated with strong evidence of a linkage
peak (an LRS linkage scores >9.2 and <500) within 5 Mb of the parent gene, and where cisLRS is a shorthand to indicate that the quantitative
trait locus (QTL) is near the location of the gene and has an LRS in a defined range. The cisLRS buffer parameter of 6 Mb in this query is
equivalent to 0.5% of the mouse genome. Over 2,019 probe sets match these criteria, but there is a limit of 2,000 probe sets to view the complete
results. In comparison, a total of 6375 probe sets—15% of the content of the array—match the query “mean=(4.5 7.5) LRS=(13.8 500).” These
criteria are less restrictive and do not require transcripts to be controlled by their own gene locus (LRS versus cisLRS). However, they do
require a higher LRS threshold equivalent to a LOD score of 3 (-logP=3, or p is approximately 0.001, where 1.0 LOD is roughly 4.6 LRS).
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hybridization efficiency that can mimic a true expression
difference. Strain variation in the length of mRNAs, in
particular, longer and shorter 3′ untranslated regions (UTR)
can also change signal intensity. Bioinformatic methods can
test the likelihood that differences are authentic, but the best
test is quantitative PCR with primers that amplify constitutive
coding exons.
Sex differences in gene expression in the eye: Sex differences
in gene expression in the eye are modest. Only 141 probe sets
(0.3%) are differentially expressed at a false discovery rate of

0.05 using a powerful paired t-test with 93 male–female
contrasts (Table 1, Appendix 1). Not surprisingly, transcripts
with the largest sex differences are located on the X and Y
chromosomes. These differences are generic dosage effects
that can be detected in almost all tissues. Examples include
Ddx3Y, Jarid1d, and Eif2s3y on the Y chromosome and Xist,
Jarid1c, and Utx on the X chromosome. The imprinted gene
H19 on Chr 7 is the most differentially expressed autosomal
gene (50% higher in females, 9.79±0.04 versus 9.21±0.06).
Genes with sex differences and high expression in the eye

Figure 3. Variation in gene expression. These bar charts summarize data for Gpnmb and Chf across 103 strains, with strain names or numbers
along the x-axis (BXD1 is abbreviated 01). The y-axis indicates expression on a log2 scale. Bars are standard errors of the mean. A: Variation
in gene expression of the glaucoma gene Gpnmb (probe set 1448303_at) indicates that fifteen BXD strains have low expression and can be
used as models for glaucoma, retinal ganglion cells degeneration, and defects of innate immunity [80]. The 25-fold decrease in expression of
Gpnmb in DBA/2J and 15 of the new BXD strains (left side) is caused by a mutation that introduces a premature stop codon in the middle of
exon 4 (R150X, CGA to TGA, Chr 6 nucleotide 48.974971 Mb) [10,80]. This mutation eliminates the target region of the transcript and
enhances nonsense-mediated RNA decay of the truncated transcript. This variation in expression maps as a strong cis QTL. B: There is a 2.6
fold range of expression of complement factor H (Cfh), probe set 1423153_x_at) this is determined by generating bar charts of strain variation
in gene expression. How to generate bar charts of strain variation in gene expression. Step 1. Work through the steps described in Figure 1 using
Gpnmb as the search term in Step 1. Step 2. Once you have opened the Trait Data and Analysis Form shown in Figure 4 below, select
the 'Basic Statistics' button.
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include parvalbumin (Pvalb, 24% higher in males), a gene
regarded as a marker of AII amacrine cells [46] and
glutathione peroxidase 3 (Gpx3, 20% higher in males), a gene
associated with macular degeneration. In general, however,
sex differences were so small that we treated male and female
pools as strain replicates without a correction for sex. This
allowed us to provide error terms for expression estimate for
the great majority of strains and to estimate the approximate
heritability of expression variation.
Heritability of variation in expression: Heritability is the
fraction of variation caused by genetic effects. In our data set
the variation in expression was due to genetic differences
between the strain means, environmental effects, and
technical error. We computed an index of heritability using
data from the BXD family and their parental strains, C57BL/
6J and DBA/2J. This method provided better insight into the
likelihood that mapping QTLs that influence gene expression
will be successful. The values ranged from a high of about
0.75 (the majority of variance associated with strain
differences) to a low of about 0.05. These values should be
used as an index of heritability rather than as true estimates
because we used pooled samples to maximize genetic effects
and minimize environmental variance. However, to provide a
somewhat more realistic estimate of heritability, as would be
calculated using individuals from an F2 population, we
applied the correction of Hegmann and Possidente [38]. The
adjusted mean heritability for all probe sets was 0.24±0.07
(±standard deviation). These adjusted values are listed in each
of the basic statistics pages for Affymetrix probe sets. For
example, the heritability index of Tyrp1 is 0.44, that of Rho
and Chrna6 are 0.28–0.30, whereas those of Chat and
Aldh3a1 are about 0.25. If transcripts have values of 0.33 to
0.34, it will be possible to map one or more QTLs that
modulate expression in about 25% of cases. For example, the
heritability index for Gpnmb shown in Figure 3 and Figure 4
is 0.48, and is associated with a strong QTL. Similarly, Tryp1,
with a heritability index of 0.44 using probe set 1415862_at,
is associated with a QTL superimposed over the gene itself.
In contrast, Rho, Chat, and Aldh3a1, with values under 0.33,
are not associated with strong QTLs. However, Chrna6 is
somewhat exceptional; although it has a heritability of only
0.28, expression of this transcript is modulated by a strong
QTL on proximal Chr 8 with an LRS score of 25.2, equivalent
to a LOD score of 5.5. We expected to find a strong correlation
between heritability and expression level (Figure 5), but we
observed transcripts with the highest heritabilities (>0.6) and
strongest QTL mapping results tended to have low to
moderate expression.

Custom array annotation: The value of microarray data sets
is a direct function of the quality of the array annotation.
Unfortunately, annotation for the Affymetrix M430 2.0 array
(version 28 of March 2009) is still incomplete, sometimes
incorrect, and does not provide information to select among

multiple probe sets targeting the same transcript. This is
critical because over 15% of probe sets target introns, rare
EST, or antisense sequence. These probe sets should generally
not be used to measure expression of protein-coding mRNAs.
The standard annotation for families of genes is also
particularly problematic. For example, 4 of 31 probe sets that
target crucial crystallin transcripts, incorrectly target introns
and one targets an antisense sequence.

As part of the development of the HEIMED, we manually
annotated probe sets by BLAT sequence alignment to the
mouse genome and transcriptome. Approximately 14,000
probe sets that had comparatively high expression in eye and
central nervous system (CNS) had been curated by one of the
authors (R.W.W.) and often had information on regions of
transcripts that were targeted by probe sets (Figure 1). For
other probe sets we generated closely matched data with
somewhat less precision using computational methods
(BLAT analysis combined with annotated genome sequence).
We also occasionally added short descriptive tags to genes
associated with eye disease and vision to make it easier to
navigate the data set. For example, the annotation for Cerkl
read, “neuronal survival and apoptosis-related, retinal
ganglion cell expressed, retinitis pigmentosa 26.”
How to choose among alternative probe sets: Annotation is
critical in deciding which of several probe sets will give better
estimates of expression. In general, we recommend those
probe sets with high expression that target the last coding
exons or the proximal part of the 3′ UTR. As shown in Figure
1, we added information of this type for most probe sets and
transcripts. In the case of the four rhodopsin probe sets, the
first one targeted the last two coding exons, whereas the other
probe sets targeted the mid, distal, and far distal parts of the
3′ UTR. These four probe sets can be sorted by their average
expression level using the Sort By function described in the
legend to Figure 4. In the case of Rho, the probe set that
targeted the last two coding exons and the proximal 3′ UTR
had the highest expression and was an optimal choice for an
analysis of variation in rhodopsin expression (Figure 1, red
font). In general, the Affymetrix M430 2.0 probe sets
intentionally target the 3′ end of transcripts and provided an
averaged estimate across multiple isoforms. In other words,
this is not a suitable platform to study expression of specific
splice variants. To do this would require data generated either
using an exon array (Affymetrix Exon 1.0 ST) or deep
sequencing of mRNA-derived libraries [47].
Part 2: Correlations among transcripts and traits: In this
section, we summarize sources of covariation among
transcripts and phenotypes such as cell number in the eye. We
also provide two relatively complete examples of how
signature genes and their covariates can be exploited to define
molecular and phenotype networks. In the first case, we use a
single gene, rhodopsin, as starting material. In the second case,
we use a set of three genes that have been used as markers of
retinal ganglion cells.
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While HEIMED data can be used to compare pairs of
strains or sets of genotypes, it is usually more useful to
compute correlations across the complete data set of 103
strains. With just over 45,000 probe sets this can produce a
matrix of up to 1.017 billion correlations, each computed
using data across the full panel of strains. The strength and
polarity of correlations can be used to test specific hypotheses,

to assemble large interaction networks, or for exploratory
analysis.
Strain genetic correlations: We refer to correlations
computed using strain means as genetic correlations although
they are actually produced by a mixture of several sources of
variation, including genetic factors, technical error and noise,
and uncontrolled environmental variation. Each correlation

Figure 4. Analysis tools available from the Trait Data and Analysis Form. These functions are used to study data on variation and covariation
of gene expression. The 11 function buttons do the following: 1. 'SNP Browser' lists known single nucleotide polymorphisms (SNPs) in Gpnmb
among all strains for which data are available. 2. 'GeneWiki' provides a tool for any user to annotate any gene and leave references and notes
on their expression. 3. Verify Location function is used to retrieve the precise genomic location of probe from the UCSC Genome Browser.
4. The 'Info' button explains the Verify Locations function above. 5. The 'Basic Statistics' function generates simple univariate statistics,
including the heritability index. Selecting this function generated the bar charts reproduced in Figure 3. 6.The 'Similar Traits' function finds
expression data for Gpnmb in other tissues such as the cerebellum, striatum, hippocampus, neocortex, kidney, and liver. 7. The 'Probe
Tool' provides access to the low level probe data (CEL file level data). 8. 'Add to Collection' moves Gpnmb expression data for the 71 BXD
family members into a BXD Trait Collection window (similar to a shopping cart) that can include over 100 other expression or trait data for
these particular strains. 9. The 'Reset' function resets all values to their original values and settings (values in the Trait Data and Analysis form
can be edited by the user during an analysis). 10. The 'Trait Correlation' function finds the top data sets with matched expression patterns
using complementary methods shown in the pull-down menu: Genetic Correlations (strain correlations generated using the HEIMED data
itself), Semantic Gene Organizer (SGO) Literature Correlations, and Tissue Correlations. By default this function will return the top 500
covariates, but this can be changed from the top 100 to the top 2000. 11. Interval Mapping tests whether the variation in expression of a
transcript in the BXD strains is strongly linked to sequence differences in a particular part of the genome. Using this function for Gpnmb
generates a map that shows a strong QTL (LRS of 33.1) on Chr 6 at the precise location of the Gpnmb gene itself.
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was linked with a scatterplot, such as that between two
transcripts associated with retinal ganglion cells: Thy1 and
Kif3c (Figure 6). By default these scatter plots were generated
using data for all 103 lines (Figure 6B), but scatter plots can
also be computed for just the BXD family of 72 strains (Figure
6A) or just for the diversity panel consisting of 35 strains. Each
point represented a single strain mean. In some cases, it helps
to remove outliers, such as PANCEVO/EiJ in Figure 6B. This
can be done in any Trait Data and Analysis page in
GeneNetwork by manually deleting individual strain data. In
the case of Thy1, this involved replacing the value of 10.728
for PANCEVO/EiJ with the value “x” in the Trait Data and
Analysis data field and recomputing the list of top 500
covariates.

Correlations help define functional units within cell types
or across cell types and tissue boundaries. At some level of
measurement, the balance and stoichiometry of molecular
interactions are important and provide insight into functional
modules. A tight correlation between transcripts with high
expression and high heritability across a large number of
different strains will have a biologic cause. The strong
molecular footprint left by rod photoreceptors on the
expression of Rho and hundreds of other transcripts is a good
example. A subtle example is the tight correlation between
pairs of photoreceptor and bipolar cell transcripts. The ON-
bipolar cell signature gene, Gnao1 [48,49] (probe set

1421152_a_at), covaries with Sv2a, a key presynaptic gene
expressed in cones [50]. The ganglion cell maker, Chrna6
covaries well with the AII amacrine maker Gria4. In this case,
correlations are equal to or greater than 0.8 using either
Pearson’s r or Spearman rho. These types of correlations
across cell types and tissues can provide important functional
insight that can only be detected when expression of groups
of cells are studied together.
Triangulating gene function using literature and tissue
correlations: Two independent types of correlations—
literature correlations and tissue correlations—complement
the genetic correlations (Figure 6). Literature correlations
were generated using the Semantic Gene Organizer [51].
These values are based on the similarity of sets of terms
associated with pairs of genes [52]. Roughly 5% of literature
correlations have values above 0.6. In the case of Thy1 and
Kif3c, the literature correlation is 0.56.

Tissue correlations provide a third independent method
of computing correlations. These values estimate
coexpression of genes across 25 different tissues and organs
(e.g., lung, spleen, liver, brain, testis, eye). Tissue correlations
and associated scatter plots of expression variation between
two genes are useful in evaluating the specificity of expression
in eye or other tissues. As expected, Thy1 has its highest
expression in the thymus, whereas Kif3c has its highest
expression in CNS and muscle. Correlations of expression of

Figure 5. Heritability and gene
expression level. There is a trend among
transcripts with the highest heritability
(>0.35) to have intermediate expression
(seven to 11 units). Transcripts with low
heritability and high expression tend to
be housekeeping genes, including probe
sets for ribosomal transcripts (lower
right corner, e.g., Rpl23a, Rps21, Rpl9)
and many of the crystallin transcripts
(Cryab, Crygc, and Crygd). Despite the
exclusion of all strains with retinal
degeneration, including BXD24, a large
number of retinal and RPE transcripts
(Rho, Pde6b, Opn1sw, Cnga1, Rtbnd,
Prom1, Pde6c, Dp1l1, Reep1, Clu, and
Tyrp1) have comparatively high
heritability (>0.33). The low heritability
of transcripts such as Xist and Eif2s3y
(bottom middle) is due to the study
design that does not account for within-
strain differences in a small number of
genes on the X and Y chromosomes with
strong sex-specific expression (see
section on sex differences).
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Figure 6. Correlation scatter plots for
retinal ganglion cell markers. Pearson
and Spearman correlations are listed in
the top right corner, along with p values.
A provides the correlation using only the
BXD family strains (n=72), whereas B
provides data for the full set of 103 types
of mice. How to compute correlations
between two genes, such as Thy1 and
Kif3c: Step 1. Link to GeneNetwork and
search for probe sets 1423135_at and
1434947_at in the ANY field (or search
for Thy1 and Kif3c rather than the
specific probe set). Step 2. Click the
check boxes to the left of each entry and
click the 'Add to Collection' button.
GeneNetwork will place probe sets in a
BXD Trait Collection window. You can
add many of other traits to this window,
but they must all be traits associated
with the BXD group of mouse strains.
Step 3. Select the check boxes again in
the BXD Trait Collection window, and
then click the 'Correlation
Matrix' button. This computes both
Pearson and Spearman correlations and
places them in a 2×2 correlation matrix.
(You can make a correlation matrix with
up to 100 entries.) All of the values in
this 2×2 matrix are linked to scatter
plots. Step 4. Click on the lower-left
square (it should read 0.718 n=72). This
will open a scatter plot of the
coexpression of the two probe sets,
panel A. A simple alternative method
will give you the plot shown in panel
B. Search for the Thy1 as in step 1, then
click on the entry text itself rather than
the check box. This will open the Trait
Data and Analysis Form for Thy1 (see
the Gpnmb example in Figure 4). Find
the button labeled 'Trait
Correlations' and select it, leaving the
other settings (Choose Database,
Calculate, Case, and Return) in their
default settings. A Correlation Table
will automatically open with a list of the
top 500 correlates of Thy1 based on the
variation across all 103 types of mice.
Item 9 on this list of 500 transcripts is the
Kif3c probe set 1434947_at. Finally,
click on the blue correlation value in the
Kif3c row (row 9) to regenerate panel
B. Review each column of data and note
that the list of 500 can be resorted using
the small up and down arrowheads at the
top of each column.
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these two genes across 25 tissues are approximately 0.64 using
both Spearman and Pearson methods.

These three types of gene-gene correlations—genetic,
literature, and tissue—can be used to obtain complementary
perspectives on network membership. This is particularly
useful when a gene has not been well studied. The methods
can sometimes be used to triangulate gene function in the same
way that peptide sequence is often used to predict protein
function and location.

Correlations with classic phenotypes: Correlations can be
extended to a wide variety of other types of traits measured in
many of the same strains. We have assembled a database with
hundreds of phenotypes for the BXD strains, including data
on eye and lens weight, retinal area [16,53,54], photoreceptor
and retinal ganglion cell number [15,55], cell populations in
the dorsal lateral geniculate nucleus [17], and even data on
plasticity in visual cortex of BXD strains following monocular
deprivation [9]. Any of these traits can be correlated with eye
expression data. For example, difference in the number of
retinal ganglion cells covaries with Fbxl20,Med1, and
Cacs3. These genes are located in a region of Chr 11 that is
known to control the proliferation of this cell population. By
combining the correlation with other published BXD data sets
[14,15], we can show that the correlation with Fbxl20 is a
genetic and developmental imprint rather than the result of
adult function of this gene in ganglion cells, a topic to which
we return at the end of this section.

Molecular signatures of tissues and cells: Shared patterns of
expression can help define genes with specialized roles in
specific cell, tissue types, or even heterogeneous systems that
involve multiple tissues such as ocular innate immunity,
neuromodulation, or intraocular pressure control. To help
parse the expression data we compiled an extensive table of
several known signature genes and matched probe sets for
many different cell and tissue types, and a few examples of
systems that involve multiple cell types. These signatures can
be used for exploratory analysis of other transcripts that may
be expressed in, or associated with, the same types of cells or
systems (Table 2).

These lists in Table 2 should be considered provisional
for several reasons. First and foremost is the issue of
specificity. Many genes reported to be signatures for specific
cell types actually have widespread expression in the eye. For
example, calbindin-28 kDa (Calb2) is a marker for both
horizontal cells and a subpopulation of retinal ganglion cells
(e.g., [56]). Second, even with a large sample size, correlations
are relatively noisy, and given the huge number of correlations
that can be screened in GeneNetwork, the false discovery rate
will be high with r values of less than 0.5.

There are several good ways to empirically evaluate a list
of gene covariates. The easiest way is to compare the three
different types of correlations—genetic, literature, and tissue

—and look for moderate to high values (r or rho > 0.4) in all
three (Figure 6).
Gene ontology analysis: The second method to evaluate the
biologic significance of sets of correlations is to perform a
gene ontology (GO) analysis of the covariates using
WebGestalt [57]. WebGesalt is a powerful online GO analysis
resource that includes a custom interface with GeneNetwork
that makes it particularly easy to carry out an analysis. The
steps required to generate a GO analysis starting with a list of
from 100 to 2,000 genes or transcripts is described more fully
in Figure 7.

The first cause—cell population variation—contributes
to the strong correlations between rhodopsin and many other
photoreceptor-associated transcripts. These correlations are
produced mainly by the extreme differences between the
retinal degeneration rd mutants and the rd wildtype lines. It
would normally be difficult to determine if population
structure had a role in covariation, but in the case of
photoreceptors and retinal ganglion cells, we have good
estimates of numbers of cells in many strains [15,55]. It is
therefore possible to correlate cell population with expression
levels as outlined in Figures 6 and Figure 8, but starting with
the BXD phenotype database in GeneNetwork and searching
for either the term “photoreceptor” or “retinal ganglion cell”
in the ALL field.

Genetic covariance of to define new candidate RP genes:
Strain differences in rhodopsin expression (Figure 1, probe set
1425172_at) were used to extract the top 100 covariates based
on both Pearson and Spearman correlations (Figure 4, Step
10). Approximately 20 of the top 50 covariates in these two
lists were already known to be associated with blinding
diseases in humans, including Aipl1, Cabp4, Cnga1, Crx,
Gnat1, Gngt1, Guca1a, Guca1b, Kcnv2, Nr2e3, Nrl, Pcdh21,
Ped6b, Prcd1, Rcvrn, Rdh12, Rgs9bp, Rom1, Rp1, and Rs1.
For example, Rdh12 (r=0.97 with Rho) has a well
characterized association with a Leber congenital amaurosis
(LCA3). The remaining members in this list of top 100 are
even more interesting and are all highly expressed in the eye,
but are not yet known to be associated with retinal disease.
This set of disease candidates includes Ankrd33, C2orf71,
Slc24a1, Mcf2l2, Reep6, Mak, C11orf48, and Wdr17.
Candidates for photoreceptor disease: By combining the list
of transcripts that covary with rhodopsin with data on human
retinal disease in RetNet, we generated candidates for seven
uncloned human retinal diseases (Table 3). This was done by
aligning Rho gene covariates such as Wdr17 with
corresponding genes and chromosomal locations in humans.
For example, in mice Wdr17 is located on Chr 8. In humans,
the orthologous gene is on Chr 4q34, a region in which
Hameed et al. mapped the retinitis pigmentosa 29 locus
(RP29; [58]). The correspondence suggests that Wdr17 is a
strong candidate for the still uncloned RP29 gene. Using this
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same process we nominated genes for six other uncloned
human retinal diseases and mutations (Table 3).

Analysis of differences in expression across tissue types
has previously been used to generate candidate genes for
retinal disease. Lord-Grignon and colleagues used expressed
sequence tag (EST) libraries to link FAM57B (their EST
AW964851) to retinitis pigmentosa 22 (RP22) [59]. Data in
HEIMED amplified the association between FAM57B and
RP22. The mouse ortholog of FAM57B, 1500016O10Rik, is
highly expressed in eye and covaries tightly with other
photoreceptor genes such as Imphd1, Unc119, Camta2,
Pitpnm1, Tulp1, and Rho (rank correlation between 0.84 and
0.75, in that order).
Genetic covariance of retinal ganglion cell transcripts: We
end this section by providing a more complex example that
relies on a set of three signature genes associated with retinal
ganglion cells taken from Table 2. The analysis that follows
can be applied to most of the short lists of primary signature
genes in this table for a wide variety of cell types—from
corneal squamous epithelium to vitreal hyalocytes.

1. Thy1: Thymus antigen 1, probe set 1423135_at, has a
2.7-fold strain variation and a mean expression of 11.1 units
in the whole eye. Thy1 is a classic ganglion cell maker [60,
61] that maps to Chr 9 at about 44 Mb.

2. Gap43: Growth-associated protein 43 kDa, probe set
1423537_at, has a 4.0-fold strain variation and a mean
expression of 9.0 units. Gap43 is probably only expressed in
a subset of retinal ganglion cells. The study by Ivanov and
colleagues [61] demonstrated high relative enrichment of

Gap43 mRNA in ganglion cells. The gene maps to Chr 16 at
42 Mb.

3. Nrn1: Neuritin 1, probe set 1428393_at, has a 2.0-fold
strain variation and a mean expression of 10.6 units. Neuritin
1 has been shown to be a ganglion cell marker in microarray
studies of human and mouse retinas [61,62]. This activity-
dependent gene has also been linked with hypoxia [63] and
glaucoma [64]. It maps to Chr 13 at 37 Mb.

These three signature genes covary well with each other,
as well as with Chrna6. One reason to select a set of genes is
to ensure that results are less sensitive to microarray
measurement error and variation in expression of the signature
genes and among cell subtypes.

We can use these three signature transcripts to generate
a synthetic ganglion cell trait (a principal component
projection) that represents their common or consensus
variability. This synthetic trait can be used as bait to extract
other transcripts that covary (Figure 8). As expected, the genes
used to assemble the synthetic trait appear in this list (rows 1,
3, and 18). What is more interesting are the other top
covariates, including Cplx1, Nsg1, Snca, Nptxr, Kif5a, Stmn2,
Atp2b2, Chst1, Psck2, Rab33a, Syn2, Nef3, Nrip3, and Nsg2.
Three of these genes are already known to be expressed
relatively selectively in retinal ganglion cells (Cplx1, Nef3,
and Stmn2 [61,65]). The others are either candidate markers
for retinal ganglion cells or are genes expressed in other cell
types that covary with ganglion cells.
Correlations between expression and cell number: The
correlation between numbers of ganglion cells and the

Figure 7. Gene ontology for innate
immunity. These data reveal that
correlates of Ptprc (1422124_a_at) are
related to the biology of innate
immunity. How to generate
WebGestalt’s Geneset Ontologies
through GeneNetwork. For the purpose
of identifying the Geneset Ontology of
the Innate Immunity signature network,
a correlation of Ptprc (1422124_a_at), a
leukocyte, microglial marker gene was
used. As shown in Figure 4, a Trait
Correlation was run and set to return the
top 100 genes. At the top of the resulting
Correlation Table, the 'Gene
Ontology' button was selected which
sends the 100 transcripts in this
Correlation Table to WebGestalt for
GOTree analysis. When complete, there
are three options: Directed Acyclic
Graph (DAG), Export TSV, or Export
DAG. For this figure the DAG was
chosen and the biological_process and
molecular_function listings were
displayed.
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synthetic expression trait is 0.41 (n=27, p=0.04, trait 10650).
While this number is significant, it indicates that 80% of the
variability in gene expression is unrelated to total numbers of
these neurons. The correlations between individual transcripts
listed in Figure 8 and numbers of retinal ganglion cells (trait
10650) range from a low of 0.16 for Nef3 to a high of 0.53 for
Chst1. For example, Chrna6 has a very weak correlation of
0.18. Natural variation in Chrna6 levels among strains could
be influenced by gene expression in amacrine cells. This could
contribute to the high correlation of Chrna6 with Gria4, the
GLUR4 AMPA receptor that is expressed heavily in AII
amacrine cells.

Can we discover better markers that are more tightly
linked to ganglion cell number? One approach is to reverse
the process and start with the number of cells. As mentioned
previously, Fbxl20 is one of several genes that covaries tightly
with ganglion cell number (r>0.70), and this gene maps to Chr
11 at 98 Mb, the location of the Nnc1 locus that is known to
control variation in retinal ganglion cell numbers in the BXD
strains [15]. While the statistics are compelling, Fbxl20 has
comparatively low expression in the adult eye. Furthermore,
its expression is also low throughout retinal development
[66]; see also Mouse Retina SAGE Library database. Fbxl20
is closely linked with several strong Nnc1 candidate genes

Figure 8. A list of genes associated with retinal ganglion cells. Rows 1, 3, and 18 list three ganglion cell signature genes used as bait with
which to trap new candidate genes. How to generate a synthetic trait from three or more transcripts: Step 1. Select a set of transcripts or other
traits (even classic phenotype will work) and add them to the Trait Collection as described in the legend to Figure 6, steps 1 and 2. For example,
add the transcripts for Thy1, Nrn1, and Gap43 (probe sets 1423135_at, 1428393_at, 1423537_at). Step 2. Select the check boxes of the probe
sets in the Trait Collection window and then click the 'Correlation Matrix' button. A new window will open. Scroll down to the section
labeled PCA Traits. One or more synthetic traits will be listed here. PC01 is the synthetic trait that shares the most in common with the set of
traits that you submitted for analysis. Step 3. Click on the blue text of PCA Trait PC01. This will open a Trait Data and Analysis page that
can now be used for various functions, including mapping and correlation analysis. Step 4: To find other transcripts that share features with
the PC01 trait constructed using Thy1, Nrn1, and Gap43, scroll to the 'Traits Correlations' section of the Trait Data and Analysis page. Before
clicking the Trait Correlation button change the Choose Database pull-down menu to read Eye M430v2 (Sep08) RMA data.
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including Crkrs (1438831_at), Casc3 (1441274_at), and Thra
[15]. These candidates have higher expression and also covary
with ganglion cell number. We conclude that Fbxl20 is likely
to be a genetic marker for ganglion cell number due to its
chromosomal linkage to Nnc1, not because of a functional or
developmental connection (for more details on linkage
disequilibrium and their analysis using partial correlations,
see [41].
Constructing coexpression networks: A list of transcripts such
as that in Figure 8 is generated by comparison to a single trait
(Figure 9), but there are good reasons for examining larger
networks. For example, in Figure 10 we have generated a
matrix of correlations among genes with high coexpression
with Aldh3a1 and other transcripts with comparatively high
expression and selectively expressed in the cornea.
Connections between transcripts are defined by genetic
correlations computed using strain means. The correlation
structure among members of this network is caused almost
entirely by a set of sequence differences among strains that
generate consistent differences in steady-state mRNA levels
among adult strains of mice in the eye and cornea. One of the
advantages of using the BXD family is that we can track down
these variants. For example, this corneal coexpression
network is influenced strongly by loci on several
chromosomes.
Pros and cons of mRNA analysis of a complex tissue such as
the whole eye: A criticism of data sets generated using a tissue
as complex as the whole eye is that cellular heterogeneity
makes it difficult to correctly interpret and exploit differences
in expression. Variation will often be due to both differences
in ratios of cell types and to intrinsic differences in expression
within single cell types. As we have demonstrated, there are
powerful analytic, genetic, and statistical ways to dissect
signals originating from tissues and even single cell types.
Only a global expression analysis of the whole eye leaves
networks intact in an essentially natural state. These data also
provide a normative framework for more refined analysis of
single tissues and cell types. Rhodopsin is a classic example,

but the lists of signatures for cells and molecular systems in
Table 2 can be used to begin studies of networks that can
extend from correlation to causation using the QTL mapping
methods described in Parts 3 and 4.
Part 3: Genetic analysis and QTL mapping: Heritable
variation in mRNA level among BXD strains (Part 1) can be
exploited to map well delimited chromosomal regions, or
QTLs, that are responsible for differences in gene expression
(Figure 11) [40,41,67-69]. The techniques needed to find
these QTLs are an integral part of GeneNetwork, and rely on
the same software that has been used to map genes that control
variation in eye weight, ganglion cell number, lateral
geniculate nucleus volume, and differences in ocular
dominance plasticity among BXD strains [9,15-17]. The
twofold increase in the number of strains relative to almost all
previous work using the BXDs (n=68 strains) significantly
improves the resolution of QTL maps. The highest possible
resolution is about 500 Kb [41], a region that will contain an
average of five protein-coding genes, assuming a total of
26,000 genes and a 2,600 Mb genome. A typical QTL mapped
using the HEIMED set of 68 BXD strains will often have a
confidence interval of 5 Mb and include approximately 50
genes.
Variation in mRNAs expression as a micro-trait: The main
conceptual difference between mapping standard phenotypes,
such as retinal ganglion cell number and mapping mRNA
microphenotypes, is that mRNA molecules are directly
associated with single genes that have precisely defined single
chromosomal locations (see orange triangles along the x-axis
in Figure 11A). This makes it possible to break the mapping
procedure into two procedures that test two independent
hypotheses. The first hypothesis asks whether strain
differences in the expression of a gene are controlled by
sequence differences in that gene itself (Figure 11A). In other
words, is there evidence of genetic self-control? This specific
question does not involve screening the entire genome. To
answer the question we only need to estimate the statistical
linkage between expression of the gene (high, low, or
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TABLE 3. SEVEN NEW CANDIDATE GENES FOR MAPPED, BUT UNCLONED HUMAN DISEASE LOCI

New candidate gene Disease
Mapping
reference

Gnb1 Severe retinitis pigmentosa AR RP32 1p34.3-p13.3 4 @ 154.13 [81]
Adipor1 Retinitis pigmentosa AR AXPC1 1q31-q32 1 @ 134.28 [82]
Wdr17 Retinitis pigmentosa AR RP29 4q32-q34 8 @ 56.186 [58]
Egflam Macular dystrophy AD MCDR3 5p15.33-p13.1 15 @ 6.994 [83]

LOC77938 Age-related macular degeneration ARMS2 10q26.13 7 @ 132.59 [84]
MGC31549 Retinitis pigmentosa AR RP22 16p12.3-p12.1 7 @ 125.65 [85]

2810049P21Rik Central areolar choroidal dystrophy AD CACD 17p13 11 @ 68.79 [86]

When we examined the top 100 genes that correlate with the expression of Rhodopsin, 7 transcripts were identified that mapped
to loci associated with human retinal diseases. For all 7 of these diseases the loci responsible for the disease were mapped but
the genes were not identified (see selected loci on the RetNet Database, see Below). The 7 mouse genes and the diseases
associated with the human loci are listed in this table.

Human locus Mouse locus Chr @ Mb
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intermediate) and the genotypes of a SNP or microsatellite
that is located close to the parent gene. For example, the map
of variation in Tyrp1 expression in Figure 11A has a peak that
is aligned precisely with a marker that is located very near to
the gene itself. An LRS linkage score of 57 is equivalent to a
point-wise (single test) p value of about 4.0×10−13, and
demonstrates that a genetic polymorphism in or very close to
Tyrp1 influences the level of Tyrp1 message. A polymorphism
in the promoter, enhancer, or a missense mutation that affects
RNA stability is a reasonable candidate.

The second hypothesis asks whether variation in the
expression of a gene is controlled by sequence differences
anywhere else in the genome. The search space now
encompasses all regions of all chromosomes. Mapping can
only be accomplished by using a set of thousands of markers
that have been typed in the BXD strains. For example, the map
of Tyr expression in Figure 11B has a strong peak, but not on
the same chromosome as the Tyr gene itself. The peak is on
Chr 4 and is actually close to the location of Tyrp1.

These two mechanisms are associated with two types of
QTLs that are unique to gene expression studies. QTL peaks
that overlap the immediate neighborhood of the parent gene
are called cis-acting expression QTLs, or cis QTLs for short.
Tyrp1 in Figure 11A is a good example. In contrast, transcripts

and their probe sets, such as Tyr in Figure 11B, have QTLs
that map far from the parent gene itself—usually on a different
chromosome. These QTLs are called trans-acting expression
QTLs, or trans QTLs. A single transcript can have only one
correct cis QTL. In contrast, a single transcript can have
several trans QTLs—in some cases three or more. A single
gene can produce multiple transcripts and sequence
fragments, and each of these can be associated with its own
pattern of cis and trans QTLs. For example, the multiple probe
sets of Tyr detect both cis and trans effects, a finding that
emphasizes the complexity of mRNA processing and the
critical need for high quality annotation of probe sets [70].

Cis QTLs: Well over 10% of probe sets in the eye data set are
associated with statistically significant cis QTLs with LRS
scores greater than 15 (LOD>3.3; see Figure 2D for a typical
search string used to find cis QTLs). This confirms the
reasonable expectation that genes will often harbor internal
sequence variants that modulate their own expression. The
false discovery rate among cis QTLs with LRS>15 is low—
well under 0.01 [71,72] for the simple reason that mapping a
cis QTL involves a single test of linkage between variation in
expression and a marker close to the parent gene (usually
within 2 Mb). No statistical adjustment is needed for multiple
tests. As a result a standard p<0.05, corresponding to an LRS

Figure 9. Retinal ganglion cells
correlation with Fbxl20. x-axis units are
in 1000s relative to the mean value of
about 58,000 cells. y-axis units are log2
signal intensity. Fbxl20 is physically
linked to the Nnc1 locus on Chr 11.
Despite the strong genetic and statistical
association, this gene is unlikely to
cause variation in cell number (see text).
The effect is likely to be due to linkage
disequilibrium. How to generate a
correlation graph between a probe set
and a phenotype: Step 1. With the
descriptors set as “Choose
Species=Mouse, Group=BXD,
Type=Eye mRNA, Database=Eye
M430v2 (Sep08) RMA,” search the
ANY search box for the gene Fbxl20
(1445575_at). Place a check in the box
by the 1445575_at probe and click the
Add to Collection button. Step 2. Return
to the search page and change “Type” to
Phenotypes, and “Database” to BXD
Published Phenotypes. In the ANY box,
search “Retinal Ganglion Cell Number”
or 10650. Place a check in the box next
to “recordID/10650 – Retinal Ganglion
cell number” and click 'Add to
Collection' button. Step 3. Follow the
instructions from Figure 6 to arrive at
the correlation scatter plot shown.
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of 6 and a LOD of merely 1.3, is sufficient. Of the six signature
genes that we introduced in Part 1 (Rho, Chrna6, Chat,
Gpnmb, Tyrp1, and Aldh3a1), three have cis QTLs (Tyrp1,
Gpnmb, and Chrna6). Tyrp1 has a strong cis QTL with an LRS
score of 56, whereas Chrna6 has a more modest cis QTL with
an LRS score of 10.2. The higher the score, the more precise
the QTL position will be. For example, the Tyrp1 gene is
located on Chr 4 at 80.3 Mb, and its position coincides
perfectly with the LRS peak between 78.5 and 80.8 Mb
(Figure 11A). At the other extreme, the weak cis QTL for
Chrna6 is much broader and extends from 15 to 45 Mb,
centered around the gene’s position at 29 Mb. When a cis QTL
is this broad, the likelihood that the sequence variant is within
the gene itself is somewhat lower and the distinction between
cis and trans begins to be blurred.

Trans QTLs: Trans QTLs are also extremely common in the
HEIMED. Over 7,000 probe sets are associated with trans
QTLs with LRS values greater than 15. One remarkable
feature of these QTLs in the eye data set is that 50% map to a
single region of the middle of Chr 4 (60 to 90 Mb). For
example, the tyrosinase gene (Tyr, probe set 1417717_a_at,
also known as the albino or c locus) is located on Chr 7, but
its expression is modulated strongly by a QTL on Chr 4 at 80
Mb (Figure 11B, Table 4).

Low-hanging fruit: Cis-Trans QTLs pairs: Genes associated
with cis QTLs control their own expression. They may also
control the expression of other genes that are part of the same
molecular networks, particularly those with significant trans
QTLs. There are numerous examples of genes with trans
QTLs that can be linked to a small number of candidate genes
with strong cis QTLs (Table 4). The Tyr (albino locus) and
Tyrp1 (the brown locus) are perhaps the best example of such
a pairing. The Tyrp1 gene of DBA/2J contains two missense
mutations that contribute to the brown pigmentation
phenotype (Cys110Tyr and Cys326Tyr) [73]. In addition to
these two mutations, Typr1 expression is associated with a
massive cis QTL in which the D haplotype has 25% higher
mRNA expression than the B haplotype (Figure 11A). Thus,
sequence variants in and around Tyrp1 of the two parental
strains and all of the BXD strains affect mRNA levels for a
wide variety of transcripts.

There are numerous other revealing examples of cis-trans
QTL pairs. Expression of the lens epithelial protein (Lenep)
is strongly affected by a trans QTL on Chr 5 between 111 and
114 Mb. Cryba4 is the most compelling candidate gene in this
interval and is itself associated with a large cis QTL. We have
assembled a table that includes 24 other intriguing and
possibly functional cis-trans pairs (Table 4). In each case, the
general model is similar to that in Figure 12, with a candidate

Figure 10. Expression network for
cornea. All transcripts connected by red
and orange lines covary with each other
with positive genetic correlations above
0.7 and between 0.5 and 0.7,
respectively. Blue and green lines are
the corresponding negative correlations.
How to generate this figure: Step 1.
Follow the steps in the legend to Figure
8 to generate a correlation of transcripts,
in this case using signatures from Table
2 such as Aldh3a1. Step 2. Select no
more than 100 of these transcripts using
the check boxes to the left of each
transcript or trait and use the 'Add to
Collection' button to move the selected
traits into your Trait Collection window.
Step 3. Click on the 'Network Graph'
button. Step 4. Adjust the control
parameters of the graph.
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gene shown to the right of Table 2 and the target transcript
with its trans QTL shown to the left. In many cases, a trans
QTL will not be associated with a known cis QTL. Sequence
variants that affect expression may instead alter protein
sequence. We have included two examples of this type in
Table 4. Myocilin and ninjurin both have strong candidate

genes—gelsolin (Gsn) and crystallin alpha A (Cryaa),
respectively, and neither has a cis QTL.

For each of the QTL intervals, there are often three or
more candidate genes (e.g., Cyrba4, genes labeled gene X and
gene Y in Figure 12). It is therefore necessary to evaluate the
relative merits of candidates. Important factors include the
following:

Figure 11. Genetic linkage maps of Tyrp1 and Tyr. A: Tyrp1 expression is controlled by a cis QTL located on Chr 4 at 80 Mb. This location
corresponds to the location of the Tyrp1 itself (triangle on x-axis and the LRS of 57) on Chr 4 at 80 Mb. B: A similar map for Tyr, a gene that
is located on Chr 7 but that has a strong trans-acting QTL. The numbers along the top of each plot represent chromosomes. The y-axis and
the bold blue function provides the likelihood ratio statistic (LRS=4.6 x LOD). The two horizontal lines across these plots mark genome
significance thresholds at p<0.05 (genome-wide significant, red line) and suggestive threshold (p<0.63, gray line). The thin red and green
functions summarize the average additive effects of D and B alleles among all BXD strains at particular markers. If BXD strains with a D
allele have higher values than those with a B allele at a particular marker then the line is colored green. In contrast, if strains with the B allele
have higher mean values, the line is colored red. This additive effect size is measure in log2 units per allele. In other words, an additive effect
of 0.5 signifies a twofold difference in expression level between strains with BB and DD genotypes at a marker (log 2 raised to the power of
2×0.5). How to generate QTL maps: Step 1. Link to expression data for a gene of interest using steps in Figure 1. For example, enter the search
term “Tyrp1” in the ANY field and click the 'Search' button. Step 2. Click on Tyrp1 in the Search Results (probe set 1415862_at) to generate
the Trait Data and Analysis Form (Figure 4). Step 3. Select the 'Interval Mapping' button in this form (Figure 4). This will initiate the analysis
and display the whole-genome interval map for Tyrp1. The steps can be repeated with Tyr (1417717_a_at) to generate (panel B). You can
now zoom in on a single chromosome (e.g., Chr 4) by clicking on the chromosome numbers along at the top of the plot. You can also customize
the scale and features of the plot by entering appropriate parameters in the control box.
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1. The locations of candidate genes relative to the peak
QTL linkage score

2. Locations of candidate genes relative to the density of
sequence variants that are effective (segregating) in the BXD
family

3. Expression levels of candidate genes in the adult eye
4. The strength of cis QTLs and the functional

significance of coding variants in candidate genes
5. Genetic correlations between the expression of

candidate genes and the target transcript (the gene being
mapped)

6. Known functions, interactions, and molecular
pathways of candidate genes relative to the target gene

7. Correlations of expression between candidate genes
and the target gene across multiple tissue types (tissue
correlations)

These factors can be used as part of a protocol to rank
candidates for in-depth molecular and functional assays. For
example, Ldhb expression (row 15 in Table 4) may be affected
either by Arhgef10, a Rho guanine nucleotide exchange factor,
or by Dlgap2, also known as postsynaptic PSD-95/SAP90-
binding protein 2. Dlgap2 is favored because its expression is
highly correlated with that of other ganglion cell genes. This
gene is listed as a candidate in Table 4. However, Arhgef20 is
favored because it has a twofold higher expression in eye and
is associated with a stronger cis QTL.

Variability among probe sets for single genes: Genes often
give rise to multiple transcripts. The expression patterns of
these isoforms and differences in their processing will often
vary among strains and among cell types. As a result, different
probe sets for single genes can have different sets of QTLs.
For example, the expression level of tyrosinase mRNA is
estimated by three probe sets that target progressively more
distal regions of the transcript. Expression estimates generated
using the most proximal 5′ probe set (1417717_a_at) indicate
that the mRNA is modulated by a trans QTL on Chr 4. In
contrast, the most distal probe set (1456095_at) is modulated
strongly by a cis QTL with an LRS of 50.4. A probe set with
an intermediate position (1448821_at) is modulated by both
trans and cis QTLs. This emphasizes that expression of
different exons, splice variants, and parts of the 3′ UTR can
be controlled by different sets of QTLs. MicroRNAs are one
interesting source of these differences. They typically target
motifs in the 3′ UTR and modulate translational efficiency and
mRNA catabolism [74]. Strain-specific sequence variants in
the 3′ UTR sequence will also have important effects on the
final position of the poly-A tail and on rate of message
degradation.
Part 4: Genomic networks and complex analysis of
expression:

Whole    eye    genetic    transcriptome    analysis: The
analysis of cis and trans QTLs can be scaled up to the level of
the entire transcriptome. One way to display global genetic
control of transcription is to plot chromosomal positions

Figure 12. Model of gene expression.
Data in this figure are taken from Table
4. Cryba4 is the most compelling of
several candidates on Chr 5. Exp: mean
expression level. Positions of genes are
abbreviated C3@89Mb=chromosome 3
at 89 Mb. The correlation between
expression of transcripts is indicated by
the curved arrow (r=0.71). The large
vertical arrow between Cryba4 and
Lenep mRNAs is a causal hypothesis
that requires testing. It is also possible
that this arrow originates from one of the
other candidate genes.
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associated with the highest LRS scores for transcripts against
the locations of their parent genes. Transcripts that are
controlled by local sequence variants—cis QTLs—will map
along a diagonal (Figure 13). In contrast, trans QTLs, such as
those listed in Table 4, map as vertical clusters. A prominent
feature of these graphs is the presence of a small number of
chromosomal hot spots, or QTL hubs, that modulate
expression of large numbers of transcripts distributed across
the entire genome [41,75,76]. A QTL hub will influence the
expression of many more genes than expected from the known
distribution of genes across the genome. For example,
sequence variants on distal chromosome 1, probably
associated with formin 2 (Fmn2), modulate many of the
amino-acid tRNA synthetase genes that are critical in protein

translation in neurons [41]. By far the most impressive single
source of variation in gene expression in the eyes of BXD
strains is generated by a major QTL hub on Chr 4 centered on
Tyrp1 (Figure 13, Figure 14).
Chromosome 4 and Tyrp1: In the entire transcriptome data
set, a total of 7109 probe sets have a trans QTL with an LRS
score above 15. Nearly 10% of these are controlled by a QTL
between 77 and 83 Mb on Chr 4 (n=605, using this search text
in the ALL field: “transLRS=(15 30000 10) LRS=(15 30000
Chr4 77 83)”). This is a remarkable enrichment considering
that this 6 Mb interval makes up only 0.23% of the genome
and contains only 16 protein-coding genes. Six genes in this
region have transcripts with cis QTLs above 15, including
Tyrp1, C9orf150, Nfib, Ttc39b, Snapc3, and

Figure 13. Genome-wide distribution of QTLs. Each point represents a single probe set. The x-axis gives the position of the QTLs (the single
best QTL for those probe sets at a false discovery rate of 0.2), whereas the y-axis gives the position of the gene or probe set target itself.
Positions are measured in genome-wide Mb (GMb) from Chr 1 through to the Chr Y (2600 GMb). The gray lines mark chromosome boundaries,
and the significance level of individual QTLs are color-coded. High LRS values (low genome-wide P values) are represented by red,
intermediate LRS values by green, and low values by blue. A large number of highly significant cis QTLs form a diagonal (red) line. Vertical
bands such as that at 610 GMb (Chr 4 at 80 Mb) represent groups of transcripts that have trans QTLs at the same location. The major trans-
acting band at 610 GMb corresponds to the Tyrp1 locus. How to perform a genome-wide scan by examining all of the QTLs in the
HEIMED: Step 1. Link to GeneNetwork and select GenomeGraph from the “Search” pull-down menu at the top left of the page. Step 2.
Configure the pull-down menus to read “Choose Species=Mouse, Group=BXD, Type=Eye mRNA, Database=Eye M430v2 (Sep08) RMA.”
Step 3. Select the 'Mapping' button. This will generate the Whole Transcriptome Mapping page. You may adjust the false discovery rate
(FDR). In our studies, we chose an FDR of 0.2. The entire data set of values used to construct this type of graph can be downloaded at
GeneNetwork.
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4930473A06Rik. All of these are positional candidates, but
only Tyrp1 is a compelling biologic candidate. Tyrp1 is
mutated in DBA/2J and in BXD strains with the D haplotype.
The Tyrp1 brown mutation is one of two mutations that
contributes significantly to pigment dispersion glaucoma in
DBA/2J [77]. As expected for an eye-specific pigmentation
effect, the Chr 4 QTL hub is not present in other tissues that
have been studied in BXD strain, such as brain, liver, or
hematopoietic stem cells.

A list of the top correlates of Tyrp1 include many well
known pigment-associated genes, such as Dct, Slc45a2,
Slc26a7, Tyr, Usp9x, and Abca1. Transcripts of most of these
genes map to Chr 4 close to the location of Tyrp1. It is highly
likely that either the well known coding mutations in Tyrp1
[73] or significant strain variation in the expression of this
gene generate widespread direct and indirect effect on the

expression of hundreds of genes across the genome (Figure
15).

The modulation of genomic signatures: In part 3, we
illustrated how pairs of genes controlled by cis and trans-
acting QTLs (Table 4) can be used to assemble models of
gene-gene interactions such as those highlighted in Figure 13.
This kind of analysis can be extended to large sets of
transcripts and groups of QTLs using unique tools that are
built into GeneNetwork.

The expression profiles of a cell or tissue type are the
result of unique sets of regulatory elements in those cells or
tissues. Loci modulating expression in tissues and cells can be
identified using signatures transcripts (Table 2). Probe sets
that covary well with signature transcripts can be loaded into
the QTL Heat Map function as shown in Figure 16. Heat maps
of this type display QTLs for large numbers of transcripts (up
to 100, listed to the left) across the entire genome. In Figure

Figure 14. QTL cluster map for coat color in the BXD RI strains. Chromosomes are listed along the bottom of the figure from 1 to X. Each
row corresponds to a QTL map for a single transcript. The intense red and blue bands on Chr 4 correspond to significant QTLs on Chr 4
centered at approximately 80 Mb—the location of Tyrp1. The lower blue section of this Chr 4 band corresponds to transcripts whose expression
is higher in strains with a B haplotype on Chr 4, whereas the upper red section corresponds to transcripts whose expression is higher in strains
with the mutant D haplotype. In addition, there are distinct but less intense bands on Chrs 6, 9, 15, and 18. How to extract data based upon
phenotype using “Coat Color” to determine the possibility that the Chr 4 trans-acting band is related to pigmentation: Step 1. Open either the
main website GeneNetwork. Step 2. Set up the Find Records field to read “Choose Species=Mouse, Group=BXD, Type=Phenotypes,
Database=BXD Published Phenotypes. Step 3. Enter the search term “Coat Color” in the ANY field and click on the 'Search' button. Step 4.
Select RecordID/11280-Coat Color to generate the Trait Data and Analysis page. Step 6. In the Analysis Tools section, locate the options for
Trait Correlations. There are several options in this area: Choose Database, Calculate, and Return. Under Choose Database select the Eye
M430V2 (Sep 08) RMA database, under Return select top 200, and finally select 'Trait Correlations'. The Correlation Table is constructed
listing the top 200 correlates that are associated with the eye and coat color. Step 7. Click on a limit of 100 of the highest correlates, making
sure that you include genes that are known to be associated with coat color and the eye. After 100 probe sets are chosen, select the 'QTL Heat
Map' function.
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16 we illustrated examples of QTL maps for five different
ocular signatures: Aebp1 (sclera), Aldh3a1 (cornea), Cd68
(macrophages), Chrna6 (retinal ganglion cells), and Chat

(starburst amacrine cells). The intensity of colors indicates the
strength of the QTLs.

Figure 15. Network graph makes highlights transcripts associated with Tyrp1 and Tyr. The 18 transcripts (nodes) in the graph are connected
by Pearson correlation coefficients greater than 0.7 (red lines). How to define genetic networks in the eye: Step 1. Open either the main website
GeneNetwork. Step 2. Set up the Find Records field to read “Choose Species=Mouse, Group=BXD, Type=Eye mRNA, Database=Eye M430v2
(Sep08) RMA. Step 3. Enter the search term “Tyrp1” in the ANY field and click on the 'Search' button. Step 4. Select ProbeSet/1415862_at
to generate the Trait Data and Analysis form. Step 6. In the Analysis Tools section, locate the options for Trait Correlations. Under Choose
Database select the Eye M430V2 (Sep 08) RMA database, under Return select top 100, and select 'Trait Correlations'. A Correlation Table
is constructed listing the top 100 correlates associated with the Tyrp1 expression variation in the eye. Step 7. Click on as many as 100 of the
correlates. For the graph above, we have specifically selected the first Tyrp1 probe set and the next 17 probe sets of the 100 genes that are of
the most interest and highest correlation. After the probe sets are chosen, select the 'Add to Collection' function. Step 8. At the BXD Trait
Collection page, select all or the genes of interest and select the 'Network Graph' function. For this figure an absolute value of 0.7 was set
as the correlation threshold in the user defined settings. The network is drawn using certain default parameters that can easily be changed.
The network displays are interactive and allow the user to link to interesting nodes and traits for further analysis.
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The signature loci differ between cell types or tissue types:
Each of the five tissue types in Figure 16 has a unique pattern
of modulatory loci that provide a whole-genome QTL
signature. These QTL signatures are distinct. For example, the
five scleral signature genes listed in Table 2 (Aebp1, Bgn,
Fmod, Mxra8, Pcolce) and 15 of their tightest covariates are
jointly modulated by QTLs on Chr 3 at 52–58 Mb and Chr 9
near Col12a1 at 80 Mb. Several cohorts of transcripts have a
common band on the distal half of Chr 4 that is most likely
due to direct and indirect effects of the Tyrp1 mutation. The
corneal signature (Aldh3a1) and the macrophage signature
(Cd68) have a common band on distal Chr 1. Many other
bands are unique to single sets of transcripts. For example, the
Chrna6-related cohort of transcripts (ganglion cell associated)
has unique bands on Chr 1 and proximal Chr 8. As a control,
several series of genes were selected that were not correlated
and no consistent signature loci were observed.

When we examine the structure of the regulatory loci for
the transcripts that make up this cohort we observe that it is
different from most of the other signatures illustrated in Figure
17. Genes associated with strong cis-acting QTLs are prime
candidates for upstream modulators of the gene network.
Aldh3a1 has a network [39,78] that includes many of other
genes characteristic of the cornea, among them keratin 12,

members of the KLF transcription factor family, and the
corneal crystalline, Tkt. There is a distinct trans-acting band
on distal Chr 1, two bands on Chr 4, a broad band on
chromosome 10, and a tight band on distal Chr 18. This
signature of regulatory loci reflects the unique series of loci
that modulate the genetic network controlling the selected
expression of genes in the cornea (Figure 17). We can identify
the cis-acting elements for the tight trans-acting band on distal
Chr 1 using the advance search feature in GN. This allows us
to extract candidate genes associated with strong cis QTLs in
this band (see legend for steps). Among them are Cenpf, Nek2,
Slc30a1, Rd3, Traf5, Rocr3, Kcnh1, and G0s2. Since two of
these (Cenpf and Nek2) have the same genome-wide QTL
pattern as well known corneal signature genes, these genes are
good candidates for upstream modulators of the corneal
network.
Conclusion: We have provided a large resource that is
especially useful for characterizing molecular and genetic
networks in the eye and for tracking down sequence variants
related to differences in expression and disease susceptibility.
By treating changes in mRNA levels as a phenotype,
differences in transcriptional control can be evaluated using
traditional QTL mapping methods. Variation at the transcript
level can be correlated with other higher order transcriptional

Figure 16. QTL signatures for cells and tissue types. Five cohorts of transcripts (n=20) were generated using signature genes listed in Table 2:
Aebp1 (sclera), Aldh3a1 (cornea), Cd68 (anterior segment and macrophages), Chrna6 (retinal ganglion cells), and Chat (starburst amacrine
cells). Each row in this figure is color-coded by the strength and polarity of genetic control. Chromosome regions that exert strong control are
either blue (B alleles contribute to higher expression) or red (D alleles contribute to higher expression). Each tissue type has one or more
chromosomal regions with relatively consistent QTL peaks. In contrast, the strong modulation by a QTL near Tyrp1 on Chr 4 is a notable
feature across several cell and tissue types. How to identify QTL networks modulating tissue specific gene expression: Step1. Follow the steps
in the legend of Figure 8 to generate a set of 10 of more transcripts that covary with signature transcripts listed in Table 2. Step 2. Place the
transcript data sets into your BXD Trait Collection (maximum is approximately 100). Step 3. Select traits in your BXD Collection and click
on the 'QTL Heat Map' button.
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networks, as well as with cellular and morphological
differences. This approach can be used to define molecular
signatures within tissues and cells of the eye, identify
candidate genes for human ocular disease, assemble genetic
networks regulating tissue specific gene expression, and
identify complex interactions among gene variants that
generate variation in eye structure and function.
What comes next: Two technologies will soon greatly enrich
the analysis of transcriptional circuitry in eye and other cells
and tissues. The first of these is massively parallel sequencing
technology. It is now practical to generate up to 600 million
independent 50-mer mRNA sequence reads in less than a
week from an mRNA sample. The precision and dynamic
range of sequence-based estimates of expression level will be
much improved compared to array-based hybridization
methods. It will be practical to quantify mRNA isoforms
without the biases of probe sequence selection and
hybridization reactions. The second innovation is cell-specific
RNA profiling methods [79] that make it practical to generate
comparatively accurate expression data for individual cell
types in genetically engineered lines of mice. We can soon
expect far more comprehensive and specific lists of genes for
several important cell and tissue types that can be used to
assemble multicellular expression networks in eye.
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Appendix 1.

Sex differences in gene expression based on a subset of
93 strains for which matched male and female data are
available. To access the data, click or select the words

“Appendix 1.” This will initiate the download of a Microsoft
Excel (.xls) file that contains the data.
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