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Abstract

A stereoselective intramolecular normal demand [4 + 2] cycloaddition of allenamides under thermal
conditions without metal assistance is described. This work led to the development of a
stereoselective tandem propargyl amide-isomerization–[4 + 2] cycloaddition sequence amenable for
rapid assembly of complex nitrogen heterocycles.

We have been embarking on the chemistry of allenamides in the last ten years.1,2 In particular,
allenamides have proven to be an excellent source of nitrogen-stabilized oxyallyl cations3,4
through DMDO-epoxidation, thereby allowing us to develop highly stereoselective [4 + 3]
cycloaddition manifolds5–7 including intramolecular8,9 cycloadditions such as using N-
tethered allenamide 19 en route to synthetically useful nitrogen heterocycle 3 [Scheme 1].
However, the dependence on DMDO as the key oxidant for the transformation can pose a
challenge in terms of scale and operational convenience. Mascareñas’s report10 intrigued us
because of their usage of PtCl2/CO in catalyzing a [4 + 3] cycloaddition of allenes. More
significantly, they also documented that a different catalyst [AuCl] could effectively direct the
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reactivity toward the competing [4 + 2] cycloaddition instead of the [4 + 3] cycloaddition.
Recently, Toste11 revealed a similar divergence in [4 + 2] versus [4 + 3] cycloaddition when
using different ligands along with a Au(I) catalyst. Our own efforts in exploring Mascareñas’s
PtCl2 versus AuCl protocol10,12,13 while adopting allenamides led us to an interesting and
different direction than the initially anticipated issues regarding competing [4 + 3] and [4 + 2]
cycloadditions [see 4-TS4+3→6 vs. 4-TS4+2→7, respectively, in Scheme 1]. We report here a
rare normal electron-demand1,14–17 [4 + 2] cycloaddition involving electron-rich heteroatom-
substituted allenes under thermal conditions and a stereoselective tandem propargyl amide
isomerization–intramolecular [4 + 2] cycloaddition sequence.

To commence our studies, we initially examined an N-Boc- substituted allenamide, but it was
not useful for platinum and gold protocols [see footnote 18 for results]. Consequently, N-
sulfonyl-allenamide 919 was prepared from propargyl amide 8 via our base-promoted
isomerization protocol using cat t-BuOK.20 We quickly found that with the exception of AuCl
[entries 5–7 in Table 1], platinum catalysts [entries 1–4] and Au(III) catalyst [entry 9] were
not useful in generating any cycloaddition types of products. Concentrations did not appear to
have any impact, as reactions run at 0.04 M led to the same outcome.

Most intriguingly, the illustration of the corresponding [4 + 2] cycloadduct 10 shown in Table
1 of hindsight after a series of subsequent studies. As shown in Figure 1, although 10 and its
regioisomer 11 are readily distinguishable, it is not obvious how to unambiguously distinguish
10 from potential [4 + 3] cycloadduct 12 solely based on the key 1H NMR resonances. However,
as we continued our explorations and began to achieve high yielding reactions with silver salts
[entries 10–13], Brønsted acids [entries 14 and 15, and then, ultimately simple thermal
conditions with [entry 16] or without 4Å MS [entry 17], we recognized that this did not appear
to be a simple [4 + 3] cycloaddition process. Instead, it turned out to be exclusively a [4 + 2]
cycloaddition pathway under all conditions after attaining an X-ray crystal structure [vide
infra].

The ability to pursue this cycloaddition thermally represents a unique opportunity for two major
reasons. Firstly, as shown in Table 2, this thermally driven allenic-[4 + 2] cycloaddition
manifold possesses a much broader synthetic potential than previous work.10,11

The substrate scope is comprised of: (1) Different N-substituents [entries 1–3] including
carbamates; (2) substitutions at the allenic γ-position [(±)-15a and (±)-15b in entries 4 and 5,
respectively] that gave the respective cycloadducts 16a and 16b with the major isomers shown
as assigned via nOe experiments [Figure 2]; (3) various furan substitutions [entries 6 and 7];
(4) a longer tethering that led to the regiochemical outcome in favor of the internal olefin of
the allenic motif [22 in entry 8], which is found as a single diastereomer;21 and also notably
in this case, when using 10 mol% of AgBF4 and 4Å MS, 22 was isolated in 58% yield as the
only regioisomer after heating in toluene at 110 °C for 36 h;21 and lastly, (5) a simple butadiene
[entry 9].

The X-ray structure of cycloadduct 14a unambiguously confirms the [4 + 2] cycloaddition
pathway [Figure 2], and it provides a general mechanistic picture for this allenic cycloaddition.
Based on the nOe assignments of the respective major isomers for 16a and 16b [dr 3:1], the
current mechanistic picture also implies that the furan approaches from the more hindered side
with R ≠ H. We are not certain of reasons behind this contra-steric approach.

Secondly and more importantly, we recognized the possibility of developing a tandem
sequence consisting of propargyl amide isomerization followed by cycloaddition. As shown
in Scheme 2, In the presence of 20 mol% t-BuOK at 65 °C, isomerization of propargyl amide
8 and the ensuing cycloaddition led to 10 in 86% yield over three steps furan [or two steps
from commercially available 2-(furan-2-yl)ethanol 26]. Likewise, cycloadduct 29 could be
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obtained in 68% yield in two steps from furfuryl alcohol. We note here that without t-BuOK,
this tandem process does not take place even after heating in toluene at 110 °C for 24 h, thereby
suggesting that the tandem sequence proceeds through exclusively the respective allenamide
intermediate.

In addition, with platinum or gold catalysts, the reaction proceeded through a very different
pathway.22,23 Moreover, in a related example from Kanemastu’s account,15 5.0 equiv of t-
BuOK was used and the reaction afforded ring-opened and aromatized products instead of
furan-cycloadduct 29. The use of catalytic amount of t-BuOK proves to be the key in accessing
these structurally more useful cycloadducts.

Finally, this tandem process is general for a range of propargyl amides [Table 3] including
those that are terminally substituted [entries 2–4], thereby also representing first examples of
successful based-promoted isomerizations of terminally substituted propargyl amides to
allenamides.20,24 It is noteworthy that all propargyl amides employed here were prepared from
respective furyl alcohols featuring a Mitsunobu reaction using N-sulfonylated propargyl amine
[see 27 in Scheme 2], allowing this tandem process amenable for facile constructions of
complex nitrogen heterocycles from very simple commercially available material.

We have described here a rare normal electron-demand [4 + 2] cycloaddition of N-tethered
allenamides under thermal conditions without assistance of any metals. Our efforts also led to
the development of an efficient and highly stereoselective tandem propargyl amide-
isomerization–[4 + 2] cycloaddition sequence amenable for rapid assembly of highly
functionalized nitrogen heterocycles from very simple commercial furyl alcohols. Applications
of this method toward constructing isoquinoline, quinoline, or isoindole containing natural
products are underway.
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Figure 1.
[4 + 2] Versus [4 + 3] Cycloadducts.
δppm: 6.60 (s, Ha); 2.53 (dd, Hb, J = 4.5, 14.0 Hz); 1.91 (d, Hc, J = 14.0 Hz) 5.02 (dd, Hd, J
= 1.5, 4.5 Hz); 6.32 (d, He, J = 5.5 Hz); 6.04 (d, Hf, J = 5.5 Hz)
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Figure 2.
nOes Experiments and X-Ray Structure of 14a.
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Scheme 1.
Cycloadditions of N-Tethered Allenamides.
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Scheme 2.
A Tandem Propargyl Amide-Isomerization–[4 + 2].
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Table 2
Thermal [4 + 2] Cycloaddions of of Allenamides.

entry allenamidesa time [h] cycloadducts yield [%]b

1 13a: R = p-Ns 12 14a: R = p-Ns 92

2 13b: R = Boc 20 14b: R = Boc 65

3 13c: R = (−)-menthyl 20 14c: R = (−)-menthyl 54c

4 (±)-15a: R = Ph 2 16a: R = Ph 77d

5 (±)-15b: R = Me 30 16b: R = Me 57d

6 17 <12

19

77
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entry allenamidesa time [h] cycloadducts yield [%]b

7 18 4

20

93

8 21 24

23

95e
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entry allenamidesa time [h] cycloadducts yield [%]b

9 24 20

25

78

a
Unless otherwise noted, all reactions were carried out in THF at 85 °C at concn = 0.10 M. Reactions in entries 3 and 8 were run in toluene. Entries 4 and

8 were run at 45 °C and 110 °C, respectively.

b
Isolated yields.

c
Only one isomer by 1H NMR but absolute configuration unassigned.

d
16a and 16b were found as a ~ 3:1 inseparable isomeric mixture.

e
Regioisomeric ratio of regioisomers 22 and 23 is ~ 4:1.
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Table 3
Tandem Isomerization–[4 + 2] Cycloadditions.

entry propargyl amidesa time [h] cycloadducts yield [%]b

1

30

24

14a

84
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entry propargyl amidesa time [h] cycloadducts yield [%]b

2 24 79c

3 24 42c,e

4 16 25d,e
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entry propargyl amidesa time [h] cycloadducts yield [%]b

5

32

14

19

63

a
Unless otherwise noted, all reactions were carried out in THF at concn = 0.10 M with 20 mol % of t-BuOK. For entries 1 and 5: Reaction temp = 65 °

C; for entries 3 and 4: temp = 85 °C; and for entry 2: temp = 25 °C.

b
Isolated yields.

c
dr = ~3:1.

d
dr = ~2:1.

e
The reaction was slower, and also observed was hydrolysis of the starting allenamide.
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