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Abstract
The immuno-modulatory properties of airway smooth muscle have become of increasing importance
in our understanding of the mechanisms underlying chronic inflammation and structural remodeling
of the airway wall in asthma and chronic obstructive pulmonary disease (COPD). ASM cells respond
to many cytokines, growth factors and lipid mediators to produce a wide array of immuno-modulatory
molecules which may in turn orchestrate and perpetuate the disease process in asthma and COPD.
Despite numerous studies of the cellular effects of cytokines on cultured ASM, few have identified
intracellular signaling pathways by which cytokines modulate or induce these cellular responses. In
this review we provide an overview of the transcriptional mechanisms as well as intracellular
signaling pathways regulating cytokine functions in ASM cells. The recent discovery of toll-like
receptors in ASM cells represents a significant development in our understanding of the immuno-
modulatory capabilities of ASM cells. Thus, we also review emerging evidence of the inflammatory
response to toll-like receptor activation in ASM cells.
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Introduction
Cytokines and chemokines play a central role in regulating inflammatory and immune
responses in chronic lung diseases such as asthma and COPD. Indeed, in vivo studies using
selective inhibitors as well as neutralizing antibodies against various cytokines and chemokines
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demonstrate their importance in antigen-induced airway inflammation (leukocyte infiltration)
and hyper-responsiveness in animal models of asthma [1-3]. Studies in knock-out or transgenic
mice also illustrate the importance of cytokines in the abnormal airway changes induced by
allergen challenge in sensitized animals [4]. A potential site for the deleterious action of many
cytokines in airways disease is the airway smooth muscle a primary effector tissue historically
thought to only regulate bronchomotor tone. In human cultured ASM cells that retain
physiological responsiveness, cytokines alter pro-inflammatory gene expression that in turn
may play an important role in the pathogenesis of chronic inflammatory airways disease [5].
Despite numerous studies of the cellular effects of cytokines on cultured ASM, few have
identified downstream signaling cascades by which cytokines modulate or induce these cellular
responses. In this review we discuss the role of three major intracellular signaling pathways:
Mitogen-Activated Protein Kinase (MAPK), Nuclear Factor-kappa B (NF-κB), and Janus
kinases and Signal Transducers and Activators of Transcription (STATs) in regulating cytokine
functions, with a particular focus on inflammatory gene expression, in regulating ASM
functions.

The capacity for ASM cells to respond to numerous cytokines has revealed the extensive
immune-regulatory potential of these cells. In response to cytokines such as IL-1β, TNF-α and
IFN-γ, ASM cells can be induced to express a host of cell-adhesion and co-stimulatory
molecules that allow interactions between the ASM and inflammatory cells that infiltrate the
airways. Moreover, ligation of ASM cell-surface molecules such as CD40 and OX40L by their
respective counter-ligands leads to activation of ASM inflammatory responses. Further
advances in understanding the immune-regulatory potential of ASM have come with the
discovery that cytokines also up-regulate the expression of multiple toll-like receptors (TLRs)
in ASM cells. These latter receptors are pattern-recognition receptors that mediate innate and
adaptive immune and inflammatory responses to microbial infection, tissue injury or
inflammation. Emerging evidence now suggests a role for TLRs in the development,
perpetuation and exacerbation of chronic inflammatory airway disease [6]. Thus, we also
discuss the potential role of TLRs in the amplification of ASM inflammatory responses.

1. MAPKs
The MAPK signal transduction pathway consists of MAPK, MAPK kinase (MEK, MAPKK,
or MKK), and MAPK kinase kinase (MEKK, MAPKKK, or MKKK). The MAPK cascade
activation occurs by sequential phosphorylation of Thr-X-Tyr motifs. In mammalian cells,
there are five distinct subfamilies including extracellular signal-regulated kinase (ERK), p38
MAPK (p38), c-Jun N-terminal kinase (JNK), ERK3/4 and ERK5. Among the five distinctive
MAPK pathways, ERK, p38 MAPK and JNK have been extensively studied in ASM cells
[7] (Figure 1).

1.2 MAPK signaling in ASM inflammatory gene expression
(a) p42/44 ERK—ERK signaling induces downstream activation of different intracellular
transcription factors such as Elk-1, c-fos, c-myc, Sap-1, and Tal, and consequently modulates
DNA synthesis and cell proliferation [8]. In ASM, activation of ERK signaling is elicited by
various stimuli including platelet derived growth factor (PDGF), epidermal growth factor
(EGF), basic fibroblast growth factor (bFGF), endothelin-1 (ET-1), thrombin, oncostatin M,
leukemia inhibitory factor (LIF), insulin-like growth factor I, and 5-hydroxytryptamine
[9-14]. Cytokines are also important activators of ERK signaling. Phosphorylation of ERK1/2
by IL-1β leads to production of numerous inflammatory mediators including prostaglandin-
E2 (PGE2), eotaxin, RANTES, and GM-CSF [15]. ERK is also involved in mediating ASM
eotaxin and IL-8 release in response to Th2 cytokines (IL-4, IL-9, IL-13) and the Th17 cytokine
IL-17 [16-18]. The interleukin-17B receptor (IL-17BR) is also up-regulated in ASM cells in
an ERK-dependent manner [19].
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(b) p38—p38 signaling is activated in response to physical and chemical challenges including
oxidative stress, UV irradiation, hypoxia, ischemia as well as various cytokines [20,21]. The
down-stream effectors of this cascade are transcription factors such as Elk-1, Sap-1, ATF-2,
CREB, CHOP, and Max. p38 mediates bFGF-induced ASM proliferation [22] and ASM
inflammatory gene expression in response to multiple stimuli. Indeed, p38 MAPK mediates
IL-17A induced IL-6, IL-8 and eotaxin secretion [23-26] as well as bradykinin induced IL-6
secretion [27]. Although there are no published reports of the MAPKs regulating IL-5 secretion,
p38 regulates expression of the IL-5 receptor (IL-5R) in response to IL-1β, TNFα and IFN-γ
[28]. p38 MAPK appears to have both positive and negative regulatory effects on cytokine-
induced inflammatory responses in ASM; it acts to augment TNF-α-induced IL-6 and
RANTES release and IL-1β-induced eotaxin release, but inhibits TNF-α induced ICAM-1
expression and IL-1β induced GM-CSF release [15,29]. This suggests a gene specific role of
p38 MAPK in regulating specific transcriptional outcomes.

We recently made the novel finding that, under basal conditions, p38 negatively regulates IFN-
β promoter activity (Damera et al., unpublished data). In line with this, treatment of ASM cells
with the p38 inhibitor SB203580 showed a specific reduction in tonic p38 activity and enhanced
IFN-β transcription and protein secretion. Functional studies using an IFN-β neutralizing
antibody reversed the inhibitory effect of SB203580 on TNF-α-induced IL-8 secretion,
indicating an important role of autocrine IFN-β in regulating p38-dependent inflammatory
responses.

(c) c-Jun NH2-terminal kinases (JNK)—JNK signaling is activated by environmental
stress, pro-inflammatory cytokines and genotoxic agents. Following activation of JNK, three
Jun transcription factors (JunB, c-Jun and JunD), which are all members of the AP-1 family,
are activated [30]. These transcription factors modulate gene expression responsible for many
biological responses, including migration, proliferation, differentiation and cell death [31]. In
murine studies, administration of the JNK inhibitor SP600125 after allergen challenge prevents
T cell-mediated inflammation and ASM cell proliferation, indicating a role for JNK signaling
in allergic airway inflammation and remodeling [32]. Studies using the JNK inhibitor
SP600125 implicated JNK in the regulation of IL-1β- and TNF-α-induced RANTES, GM-
CSF, and IL-8 secretion in ASM cells [33]. IFN-γ and TNF-α induced fractalkine expression
also occurs through JNK dependent mechanisms [34].

1.2 Implications of MAPK cross-talk in ASM cells
While unique stimuli initiate the majority of cellular responses by specific signaling cascades,
it is not uncommon to derive such responses by multiple and parallel signaling cascades.
Exogenous addition of TGF-β1 to ASM cultures increases [3H]-thymidine incorporation and
ASM cell proliferation via ERK, p38 and JNK-dependent pathways [35]. Similarly, TNF-α-
mediated induction of CD38, a potent modulator of calcium homeostasis and ASM tone,
involves all MAPK cascade components [36]. The induction of matrix metalloproteinase-9
(MMP-9) expression by cytokines also involves active participation of several MAPK
pathways [37,38]. Interestingly, in some instances, the induction of one MAPK pathway may
antagonize another. Indeed, LPS-induced activation of p38 MAPK down-regulates changes in
ASM responsiveness and IL-6 secretion associated with ERK1/2 activation [39].

2. NF-κB
Nuclear factor-kappa B (NF-κB) is a ubiquitously expressed transcription factor that mediates
the expression of many inflammatory mediators, including cytokines, adhesion molecules,
chemokines, and growth factors [40]. NF-κB-dependent pro-inflammatory genes are believed
to play a central role in a variety of inflammatory diseases including chronic inflammatory
airway diseases such as asthma. Increased markers of NF-κB pathway activity have been
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demonstrated in the airways of, or samples from, asthma patients [41-45] as well as in rodent
models of asthma [46-49]. For this reason, the NF-κB signalling pathway is an attractive target
for novel asthma therapies. Indeed, studies have shown that targeting NF-κB, using various
molecular methodologies, inhibits aspects of the allergic response in rodent models of asthma
[50-56].

2.1 NF-κB signaling cascade
NF-κB is activated in response to a number of stimuli, including physical and chemical stress,
lipopolysaccharide (LPS), double-stranded RNA, T- and B-cell mitogens and proinflammatory
cytokines [57]. NF-κB induced gene expression is controlled by a complex series of enzymatic
signalling events at multiple levels. An overview of the NF-κB activation cascade is depicted
in Figure 2.

NF-κB is made up of a hetero- or homodimer of members of the DNA-binding Rel family of
proteins which contains five known mammalian members: p50 (NF-κB1, precursor of which
is p105), p65 (Rel A, NF-κB3), p52 (NF-κB2, precursor of which is p100), c-Rel and Rel B.
The p65 and p50 subunits are ubiquitously expressed, whereas p52, c-Rel and Rel B are
restricted to specific differentiated cell types [58]. In resting cells, the majority of NF-κB is
bound to I-κB inhibitory protein, which holds the complex in the cytoplasm. Upon cellular
stimulation, the I-κB protein is phosphorylated, ubiquinated, and degraded by the proteosomal
pathway. With the I-κB removed, NF-κB translocates to the nucleus and mediates gene
transcription [59]

I-κB phosphorylation and activation of Rel proteins can occur via the classical (canonical) or
non-classical (non-canonical) pathway. In the classical pathway, a critical phosphorylation of
the I-κB protein is performed by the I-κB kinase (IKK) complex, which consists of at least
three subunits, including two catalytic subunits IKK-α and -β, also known as IKK-1 and -2,
and one regulatory subunit IKK-γ (also known as NEMO) [57]. Of the two catalytic subunits,
IKK-β is 20 fold more active than IKK-α in the phosphorylation of I-κB [60]. It is also thought
that IKK-β, not IKK-α, is critical for NF-κB activation [61-64] and hence attempts to target
this pathway for therapeutic intervention have focused on inhibitors of this subunit [65,66].
Stimuli of the classical pathway include the TLR/IL-1R family members, ligation of the T-cell
receptor (TCR), and TNFR signalling [59](Figure 2). IKK-2 has been shown to be critical in
NF-κB activation in ASM cells [67,68].

In addition to the classical pathway, an alternative (non-canonical) pathway has been described
mainly in B cells. This latter pathway can be activated by different stimuli such as lymphotoxin
β, CD40 ligand, and receptor activator of NF-κB ligand [69,70] The alternative NF-κB pathway
is characterised by the inducible phosphorylation and processing of p100 to p52, and
subsequent nuclear translocation of the heterodimer p52:Rel B is independent of IKKγ and
IKKβ and only requires the IKKα subunit [71]. This pathway is believed to play key roles in
adaptive immunity [72].

The NF-κB pathway can be further controlled by post translational modifications, including
the modulation of Rel protein interactions with other components of the transcriptional
machinery. Altered activation of NF-κB can occur via its phosphorylation status, for example
the phosphorylation of p65 enhances transcription, yet phosphorylation of p105 can reduce its
processing into p50 and hence reduce activation [73]. Acetylation of the Rel proteins also play
a key role [74,75]. Additionally, covalent modifications of the chromatin environment which
regulates the access of transcription factors to gene promoters alter NF-κB-dependent
transcription. This control is achieved by recruitment of protein complexes that alter chromatin
structure via enzymatic modifications of histone tails and/or nucleosome remodelling. NF-κB
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activation requires several cofactor histone acetyltransferases, including CBP, p300, p/CAF,
and SRC-1, of which p/CAF appeared to be relatively more important [74,76].

2.2 NF-κB signaling in ASM inflammatory gene expression
A multitude of studies in ASM cells implicate a role for NF-κB in the regulation of
inflammatory chemokines, cytokines, and adhesion molecules. Indeed, NF-κB is involved in
IL-17-induced IL-8 release [23,77]; IL-1β and TNF-α-induced GRO-α release [78]; neutrophil-
derived elastase-induced TGF-β expression [79]; in the expression of cell adhesion molecules
such as ICAM-1 and VCAM-1 induced by TNF-α, IL-1β and LPS [80-82]. As stated above,
IKK-2 plays a crucial role in the classical NF-κB pathway and for this reason there has been
considerable interest in studying and developing ways to manipulate this kinase in order to
identify new therapeutics for the treatment of asthma. Data from ASM cells demonstrate that
inhibition of IKK2 using the small molecule inhibitors TPCA-1, PS-1145 and ML120B, or
molecular intervention using adenoviral approaches to knock down IKK2, demonstrate a role
for this kinase in the expression of ICAM-1, cyclooxygenase-2, IL-6, IL-8, GM-CSF,
RANTES, monocyte chemotactic protein-1 (MCP-1), GRO-α, neutrophil-activating protein-2
(NAP-2), and epithelial neutrophil activating peptide 78 (ENA-78), some of which are
upregulated and play a role in asthma pathogenesis [67,68]. Similarly, in rodent models of
asthma, modulation of IKK-2 using parallel molecular techniques, have shown positive disease
modifying data [83-86]. These data suggest that inhibition of IKK2 and hence the NF-κB
pathway may have therapeutic implications for asthma treatment.

Of interest, TNF-α but not IL-1β activation of NF-κB signaling involves recruitment of the
downstream transducer protein TRAF2 by TNF-α receptor 1 (TNFR1) via the receptor-
associated death domain protein, TRADD [87,88]. Similar findings were also reported in ASM
cells from guinea pigs where TNFR1 activation with agonistic antibodies also induced NF-
κB activation [89].

Recent work investigating pro-inflammatory stimuli on NF-κB activity with regard to
phosphorylation and chromatin remodeling in ASM cells has emerged. TNF-α has been
reported to phosphorylate both IKK-β [90] and the p65 subunit at Ser276 and Ser536 in ASM
cells [91]. In the latter study, the authors also demonstrated that TNF-α recruits the histone
acetyl-transferase p/CAF to the CCL-11 (eotaxin) promoter to increase NF-κB mediated
transactivation of this gene [91]. p300/CBP acetylation is also required for NF-κB mediated
TNF-α-induced VCAM-1 and ICAM-1 induction in ASM cells [80,92,93].

3. JAK/STATs
The classical components of the IFN signaling cascade include the Janus tyrosine kinases and
signal transducers and activators of transcription (STATs) factors. Activation of each IFN
receptor complex stimulates different receptor-associated tyrosine kinases, namely, JAK1 and
Tyk2 by IFN-α/β (type I), or JAK1 and JAK2 by IFN-γ (type II) [94]. JAKs-mediated
phosphorylation of STAT proteins results in STAT assembly in dimeric or oligomeric forms,
which translocate to the nucleus, where they can regulate gene expression via DNA binding
motifs called either γ-activated sequence (GAS) elements (recognized by STAT1 homodimers)
or IFN-stimulated response element (ISRE, recognized by STAT1-STAT2 heterodimers)
[95,96]. Up-regulation of STAT1 and STAT1-dependent genes such as ICAM-1 and IFN
regulatory Factor-1 (IRF-1) are observed in asthmatic airways suggesting the potential
contribution of IFN-associated JAK/STATs in the regulation of immuno-modulatory genes
associated with asthma [97].
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3.1 Modulation of ASM synthetic functions by IFNs
IFNs regulate many cellular responses in human ASM cells: IFN-γ induces the expression of
ICAM-1 and VCAM-1 [98], the CysLT1 receptor [99] and the secretion of nerve growth factor
in ASM cells [100]. IFN-γ also synergizes with TNF-α to augment expression of CD38 [101]
and several chemokines including RANTES, IP-10 and fractalkine [34,102,103]. Most studies
that used a combination of IFN-γ and TNF-α showed that the synergistic action involves several
molecular mechanisms. In some instances, their co-operativity may be explained by the IFN-
γ-induced up-regulation of TNF-α receptors [104] or vice-versa [105] (Figure 3). Furthermore,
both cytokines may collaborate at the gene level by increasing promoter activation through a
synergistic interaction between transcription factors activated by IFN-γ (STATs, IRF-1) and
TNF-α (NF-κB) [106,107] (Figure 3). These amplifying properties of IFN-γ may explain, at
least in part, why viral infection, which increases production of IFNs, is an important trigger
for asthma and chronic obstructive pulmonary disease exacerbation [108]. Another mechanism
of co-operation could be secondary induction of IFN-β, which has been shown to mediate TNF-
α induced RANTES and CD38 expression [101,109] (Figure 3) (see below).

In some instances, however, IFNs may antagonize TNF-α inflammatory responses by
inhibiting the NF-κB pathway. Indeed, Keslacy and colleagues recently reported that IFN-γ
potently inhibits TNF-α-induced NF-κB-dependent genes including IL-6, IL-8 and eotaxin in
ASM cells [90]. Multiple mechanisms underlying IFNs inhibitory effect on NF-κB pathways
have been proposed including inhibition of NF-κB DNA binding, prevention of IκB
degradation, or regulation of TNF-α receptor 1 via STAT interaction [110]. Specifically, in
ASM cells, IFN-γ inhibits the transcriptional activity of NF-κB by reducing the acetylation
level of p65 [90].

3.2 Autocrine IFN-β regulates pro-asthmatic gene expression in ASM cells
In ASM cells, TNF-α is able to activate JAK1 and Tyk2, and STAT1- and STAT2-dependent
gene expression via the autocrine action of IFN-β [109]. Indeed, autocrine IFN-β regulates i)
TNF-α-induced inflammatory gene expression, by suppressing IL-6 and promoting RANTES
secretion and ii) TNF-α-associated airway hyper-responsiveness, by potentiating the ability
for TNF-α to enhance GPCR-dependent contractile responses [111,112].

The putative implication of IFN-β in lung diseases is supported by the heightened expression
of IFN-β in the airways in mouse models of allergic asthma [111]. We therefore propose that
the functional cross talk between type I and II IFNs and TNF-α in lung structural cells,
particularly the ASM, is a novel axis in the pathogenesis of lung diseases, although a similar
phenomenon could also occur in other cell types (such as hemopoietic cells). A recent study
by Ivashkiv and colleagues recently confirmed the inflammatory potential of IFN-β/TNF-α
interaction in macrophages [113]. This elegant study showed that IFN-β-mediated autocrine
loops were essential for maintaining TNF-α-induced inflammatory genes that prime
macrophages for augmented responses to additional stimulation by cytokines and toll-like
receptors agonists. In previous studies performed in 3T3-L1 adipocytes, TNF-α was shown to
induce phosphorylation of STAT1 by directly interacting with both JAK1 and JAK2 [114],
whereas in Hela cells, STAT1 was shown to physically interact with TNFR1 and the adaptor
proteins TNF receptor-associated death domain (TRADD), but not TRAF-2 [115]. TNF-α also
induces STAT1 phosphorylation at serine 727 in macrophages.

In Summary, ASM-derived IFN-β is a novel signaling component of TNF-α inducible genes
involved in airway inflammation (Figure 3) and regulation of airway hyper-responsiveness
[111].
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3.3 IFNs interference with ASM steroid responsiveness
Most anti-inflammatory effects of steroids are mediated via the glucocorticoid receptor alpha
isoform (GRα), which suppresses expression of inflammatory genes through mechanisms
known as transactivation or transrepression [116]. As a result of alternative splicing
mechanisms, another glucocorticoid receptor isoform, namely GRβ, has been described
[117]. We and others recently showed that treatment of ASM cells with the specific
combination of IFNs with TNF-α impairs the ability of steroids to inhibit the expression of
various proinflammatory genes such as CD38, RANTES and ICAM-1 by a mechanism
involving the up-regulation of GRβ isoform [118]. Interestingly, steroids augment IFN-γ/TNF-
α induced fractalkine and TLR2 expression in ASM [34,119]: whether this involves similar
mechanisms involved in the attenuation of corticosteroid activity by IFN-γ/TNF-α remains to
be established. Although the pathological role of the GRβ isoform is not well understood,
previous reports demonstrate a strong correlation between steroid resistance in individuals with
asthma and the expression levels of GRβ [120]. More importantly, increased GRβ in the
airways has been detected in patients who died of asthma [121]. Indeed, by its ability to act as
a dominant-negative inhibitor of steroid action in other cell types [122], GRβ has been
associated with steroid resistance in different inflammatory diseases [123]. GRβ over-
expression in ASM cells also prevents the capacity for steroids to induce transactivation activity
and inhibit cytokine-induced pro-inflammatory gene expression [118].

Interestingly, short-term treatment of ASM cells with IFNs and TNF-α inhibits, in a GRβ-
independent manner, the capacity for steroids to induce transactivation partially through the
cellular accumulation of IRF-1 [124]. IRF-1 is an early response gene involved in diverse
transcriptional regulatory processes [125]. Interestingly, a strong association was found
between IRF-1 polymorphism and childhood atopic asthma [126]. Early steroid dysfunction
seen after short incubation with IFNs and TNFα could be reproduced by enhancing IRF-1
cellular levels using constitutively active IRF-1 which dose-dependently inhibited
glucocorticoid response element (GRE)-dependent gene transcription [124]. Consistently,
reducing IRF-1 cellular levels using siRNA approach in TNF/IFN-treated ASM cells
significantly restored steroid transactivation activities. These findings demonstrate for the first
time that IRF-1 is a novel alternative GRβ-independent mechanism mediating steroid
dysfunction induced by proinflammatory cytokines. The fact that different studies showed that
the expression of IRF-1 was largely increased after viral infections [127] combined with the
suppressive effect of IRF-1 on steroid signaling in ASM cells [124], may explain the reduced
steroid responsiveness seen in asthmatic patients experiencing viral infections [128].

4. TLRs in chronic inflammatory airways disease
TLRs may be considered as a ‘sensing’ system that protects the host from infectious and non-
infectious tissue injury and inflammation. TLRs also serve a homeostatic role to maintain tissue
integrity and regeneration. TLRs ‘sense’ diverse molecules including microbial products and
endogenous ligands generated in response to cell stress or injury. Currently, there are 10 known
human TLRs named TLR1 through TLR10. TLR2 and TLR4, which primarily mediate
recognition of bacterial cell wall components (eg LPS – the major ligand for TLR4) and
endogenous ‘danger signals’ (eg heat shock proteins, extracellular matrix fragments) are the
best studied of this receptor family. TLR3, TLR7 and TLR8 mediate recognition of viral RNA
whilst TLR9 mediates recognition of bacterial DNA containing CpG motifs. Activation of
TLRs triggers the activation of immune and inflammatory responses through NF-κB, IRF3/7
and MAP kinase dependent signaling pathways [6].

Epidemiological studies suggest that genetic polymorphisms in TLR genes, together with
early-life exposure to environmental TLR stimulants (e.g. LPS in house dust, microbial
exposure associated with certain farming activities, respiratory viral infections) are likely to
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be important, but also very complex, determinants of asthma incidence and severity. On the
converse, emerging evidence shows that allergic airway inflammation impairs innate host-
defense mechanisms, including TLR function, which results in impaired bacterial clearance
[129,130]. This may offer some explanation for increased bacterial colonization in asthmatic
lungs and also provides some basis for infective exacerbations of asthma. Emerging evidence
also indicates a role for TLR4 in the airway inflammatory response to cigarette smoke exposure,
the primary causative factor of COPD [131-133].

The demonstration of functional TLR expression in human ASM cells over the past few years
adds to the growing body of evidence of the immuno-modulatory capabilities of ASM cells.
This has wide-ranging implications for the disease process in asthma and COPD, as activation
of TLRs in ASM may exacerbate airway inflammatory responses by inducing expression of
cell adhesion molecules and release of cytokines and chemokines, and may also amplify ASM-
inflammatory cell interactions.

4.1 TLR expression in ASM cells
Human ASM cells in culture express TLR1 through TLR10 mRNA under basal conditions.
TLR2, TLR3 and TLR6 are the most highly expressed, whilst TLR4 is the least expressed
[119]. Interestingly, in one study, constitutive expression of TLR7 or TLR8 was not
demonstrated [134]. Whether this was due to cell donor differences, type of ASM cells used
(eg tracheal vs bronchial; distal vs proximal) or methodological issues remains to be resolved.
In addition to evidence of TLR gene expression, cell surface and intracellular protein
expression for both TLR2 and TLR3 has also been demonstrated [119,135]. TLR2, TLR3 and
TLR4 expression in ASM cells is up-regulated in response to inflammatory cytokines including
IL-1β, TNF-α and IFN-γ, and microbial products including LPS and dsRNA. Combined
stimulation with IFN-γ and TNF-α has synergistic and additive effects on TLR2 and TLR4
mRNA expression, respectively [119,135].

4.2 TLR activation and ASM inflammatory gene expression
Evidence of TLR expression in ASM has fuelled recent interest in ASM cell inflammatory
responses to TLR ligands. Stimulation of ASM cells with synthetic TLR2 ligands, LPS or poly
IC induces the production of various cytokines and chemokines [39,119,134-136]; Pam3CSK4
(a synthetic bacterial lipopeptide) and FSL-1 (S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-
Pro-Lys-His-Pro-Ser-Phe), which activate TLR2/TLR1 and TLR2/TLR6 heterodimers,
respectively, induce IL-8 release; LPS induces expression of IL-6, IL-8 and eotaxin; and
polyriboinosinc-polyribocytidylic acid (poly IC) induces expression of IL-6, IL-8, eotaxin,
RANTES and IP-10. Stimulation of ASM cells with poly IC together with IL-1β or TNF-α has
synergistic effects on IL-6, IL-8, IP-10 and RANTES release. Interestingly, poly IC induced
eotaxin expression is inhibited in the presence of IL-1β or TNF-α, but is augmented by the Th2
cytokine IL-4.

The specific activation of TLR2 in mediating IL-8 release has not been confirmed in ASM
cells, although anti-TLR2 or transfection with a dominant negative mutant form of TLR2
inhibits ERK1/2 signaling in response to the microbial derived TLR2 ligand lipoteichoic acid
(LTA), thus providing functional evidence of TLR2 activation in ASM cells [137]. Although
ASM cells express TLR3 on the cell surface and in intracellular endosomes, specific activation
of endosomal rather than surface TLR3 was shown to be responsible for poly IC mediated
eotaxin release [135]. The specific activation of TLR4 in mediating LPS-induced cytokine and
chemokine release in ASM cells remains to be established.

In addition to inducing ASM cell cytokine and chemokine release, activation of TLRs in ASM
cells may also amplify airway inflammatory responses by facilitating ASM-inflammatory cell
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interactions. This is demonstrated by studies showing that addition of TLR2, TLR4, TLR7 or
TLR8 ligands to ASM cells in co-culture with peripheral blood mononuclear cells (PBMCs)
leads to greater release of IL-6, IL-8 and CCL2 compared to TLR-activation of either cell type
alone [134,138]. IL-1β produced by LPS-activated monocytes was shown to be responsible,
to some extent, for amplification of ASM-PBMC inflammatory responses [138]. Poly IC and
LPS may also promote ASM-inflammatory cell interactions via inducing the expression of cell
adhesion molecules such as ICAM-1 and VCAM-1, respectively [134]. Indeed, LPS has been
shown to mediate VCAM-1-induced neutrophil adhesion in ASM cells [81].

In vitro infection of human ASM cells with respiratory viruses such as rhinovirus or respiratory
syncytial virus leads to production of several cytokines and chemokines including IL-1β, IL-6,
IL-8 and IL-11 [139-141]. The role of TLRs in mediating these responses has not as yet been
addressed, although it is likely that viral-sensing TLRs as well as other intracellular viral
recognition proteins such as protein kinase R, and cell-surface molecules such as ICAM-1
(which is a receptor for rhinovirus) are involved. Whether infection of ASM cells with
respiratory viruses, or indeed other microbial pathogens that colonize the lungs in asthma and
COPD, occurs in vivo is an important area of further investigation; especially given the potential
impact of microbial-TLR interactions on ASM inflammatory responses.

Activation of TLRs in ASM occurs not only in response to microbial-derived products but may
also occur in response to endogenous molecules present within the inflammatory milieu.
Recently, it was shown that neutrophil-derived elastase (NE) activates ASM cells to synthesize
TGF-β via a mechanism involving TLR4 and its associated down-stream signaling cascade.
However, stimulation of TGF-β synthesis by NE was only partially inhibited by a TLR4-
blocking antibody indicating that other mechanisms or perhaps TLRs may be involved.
Interestingly, TLR4 protein expression on ASM was reduced following treatment with NE,
indicating that NE-dependent TLR4 responses may require internalization of the receptor
[79].

Although our understanding of the role of TLRs in the pathogenesis of asthma and COPD is
only just evolving, evidence of their pro-inflammatory functions in ASM further extends the
role of ASM as a critical mediator of the airway inflammatory response, potentially having the
capacity to respond to environmental as well as endogenous molecules involved in the
perpetuation and exacerbation of airway inflammatory disease. Studies of the expression and
function of TLRs in ASM cells in vivo is an important area of future research.

Conclusions
Cytokines play a principal role in modulating inflammatory as well as immune responses in
chronic inflammatory diseases such as asthma and COPD. Pro-inflammatory and
immunomodulatory cytokines activate multiple signaling cascades in ASM cells that lead to
amplification of ASM inflammatory responses. Research over the past decade has taken us
forward in our understanding of MAPK, NF-κB and JAK/STAT signaling mechanisms
involved in regulating ASM inflammatory gene expression and studies in animal models show
that specific targeting of these pathways offer therapeutic potential for the treatment of chronic
inflammatory airways disease [32,68,142-144]. Whilst there is some advantage in targeting
these signaling pathways in isolation, further understanding of the cross-talk mechanisms and
pathway interactions that exacerbate inflammatory responses or impair steroid responsiveness
in ASM cells may provide novel targets or approaches for the future therapy of chronic
inflammatory airways disease.

TLR ligands represent potentially exciting new therapeutic approaches for the treatment of
asthma. Indeed, several studies published in the last five years demonstrate protective effects
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of TLR2, TLR3, TLR4, TLR7/8 and TLR9 ligands against allergic airway inflammation,
airway hyperreactivity and airway remodeling in animal models of asthma [145-152]. The
mechanisms that underlie protection against asthma in these models are slowly being unraveled
and studies so far have focused on delineating immuno-modulatory pathways. However,
evidence that the synthetic TLR7/8 ligand R-848 imparts some of its protection against airway
remodeling by inhibiting ASM proliferation [152] indicates that the ASM is a potential target
of immuno-modulatory therapy. An understanding of the signaling pathways regulating TLR-
dependent inflammatory responses in ASM is an important area of further investigation.
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Figure 1. Schematic overview of MAPK pathways regulating airway smooth muscle functions
A variety of external stimuli activate immune cells or airway epithelial cells to release a variety
of biological mediators. These mediators transduce their effects through ERK, p38 or JNK
signaling cascades leading to expression of genes that modulate airway smooth muscle
contractile, proliferative and secretory responses.
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Figure 2. NF-κB signal transduction pathways
In resting cells, the majority of NF-κB is bound to I-κB inhibitory protein, often IκBκ, which
masks the nuclear localisation sequence (NLS) and holds the complex in the cytoplasm. In the
‘conical’ or ‘classical’ NF-κB activation pathway, ligand binding to a cell surface receptor (e.g.
tumor necrosis factor-receptor (TNFR) or Toll-like receptor) recruits adaptors (e.g., TRAFs
and RIP) leading to the recruitment of an IKK complex directly onto the cytoplasmic adaptors,
activating the IKK complex. IKK then phosphorylates IκB at two serine residues, which leads
to its ubiquitination and degradation by the proteasome. NF-κB then enters the nucleus to turn
on target genes. TNFR activation can also lead to the phosphorylation of p65 at Ser 276 and
536, and recruitment of cofactors such as p/CAF (via PKCβ) to heighten transcription. TCR
engagement leads to recruitment and activation of receptor-associated tyrosine kinases of the
Src and Syk families. The latter phosphorylate phospholipase C and phosphatidylinositol 3-
kinase (PI3K). Phosphorylation of phosphoinositides by PI3K leads to membrane recruitment
and activation of PDK1, which may directly phosphorylate and activate PKCθ to control further
recruitment of CARMA1 into the signaling complex. Assembly of these molecules into lipid
rafts and PKCθ-dependent phosphorylation of CARMA1 initiate recruitment of BCL10 and
MALT1 and possibly TRAF6 and TAK1, leading to IKK activation. The general model shown
here for TCR signaling can also be applied to BCR signaling, although a role of PDK1 in this
pathway needs to be demonstrated and instead of PKCθ, it involves PKCβ. The non-canonical
or non-classical pathway differs from the canonical pathway in that only certain receptor
signals (e.g., Lymphotoxin B (LTb), B-cell activating factor (BAFF), CD40) activate this
pathway and because it proceeds through an IKK complex that contains two IKKα subunits
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(but not NEMO). In the noncanonical pathway, receptor binding leads to activation of the NF-
κB-inducing kinase NIK, which phosphorylates and activates an IKKα complex, which in turn
phosphorylates two serine residues adjacent to the ankyrin repeat C-terminal IκB domain of
p100, leading to its partial proteolysis and liberation of the p52/RelB complex. This complex
then enters the nucleus to turn on target genes. Figure adapted from Edwards et al, 2008 [66].
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Figure 3. Schematic overview of the mechanism underlying TNF-α and IFN-γ synergism
IFN-γ and TNF-α synergistically modulate the expression of different inflammatory genes such
ICAM-1, RANTES, IL-8 and CD38. Their cooperativity may be explained at the receptor level
by the IFNγ-induced up-regulation of TNF-α receptors or vice-versa. Alternatively, both
cytokines may collaborate at the gene level by increasing promoter activation through a
synergistic interaction between transcription factors activated by IFN-γ (STATs, IRF-1) and
TNF-α (NF-κB). Another mechanism underlying such cooperation could be the induction of
defined genes by TNF-α via activation of the autocrine action of IFN-β.
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