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Abstract

Background: Fully differentiated adipocytes are considered to be refractory to introduction of siRNA via lipid-based
transfection. However, large scale siRNA-based loss-of-function screening of adipocytes using either electroporation or
virally-mediated transfection approaches can be prohibitively complex and expensive.

Methodology/Principal Findings: We present a method for introducing small interfering RNA (siRNA) into differentiated
3T3-L1 adipocytes and primary human adipocytes using an approach based on forming the siRNA/cell complex with the
adipocytes in suspension rather than as an adherent monolayer, a variation of ‘‘reverse transfection’’.

Conclusions/Significance: Transfection of adipocytes with siRNA by this method is economical, highly efficient, has a simple
workflow, and allows standardization of the ratio of siRNA/cell number, making this approach well-suited for high-
throughput screening of fully differentiated adipocytes.
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Introduction

Murine 3T3-L1 adipocytes are a well-characterized cell culture

model that is widely used to study the role of adipocyte biology in

obesity and type 2 diabetes. These properties make 3T3-L1

adipocytes an attractive model for carrying out loss-of-function

assays using siRNA technology. However, fully differentiated 3T3-

L1 adipocytes are among the most difficult cell types to transfect

efficiently with siRNA using standard lipid-based techniques.

Typically, siRNA is introduced into 3T3-L1 adipocytes using

either electroporation or virally-mediated approaches [1,2,3,4].

Both of these approaches have limitations in systematic siRNA-

mediated screening experiments, including the potential cell

damage and equipment and reagent costs associated with

electroporation in a high-throughput format or the complexity

and safety issues associated with virally-mediated transfection.

Alternatives include peptide-based transfection reagents that are

highly efficient, but require sonication of the peptide prior to

transfection and have not been demonstrated in fully differentiated

adipocytes [5]. ‘‘Reverse transfection’’, also known as solid phase

optimized transfection RNAi (SPOT-RNAi) [6], is an alternative

that uses glass plates or cell culture plates preloaded with siRNA

and to which the cells of interest are then added.

With improved transfection efficiency, lipid-based siRNA

transfection using a version of ‘‘reverse transfection’’ in which

the siRNA and cells are mixed in suspension would offer the

simplest and least expensive approach to systematic screening

using siRNA in adipocytes. The adipocytes would then be allowed

to reattach to an adherent plate surface while in the presence of

the siRNA complex. This approach has been reported in the

human melanoma cell line LOX, another cell line that is

considered difficult to transfect using lipid-based reagents [7].

Herein, we present a method for lipid-mediated siRNA

transfection of fully differentiated 3T3-L1 adipocytes and primary

human adipocytes that is based on incubating the siRNA/lipid

complex with the detached adipocytes in suspension. This results

in highly efficient siRNA transfection and is simple, cost-effective,

and nontoxic, making this approach well suited to systematic high

throughput siRNA screening of fully differentiated adipocytes.

Materials and Methods

Materials
Dulbecco’s Modified Eagle’s Media (DMEM) was purchased

from MediaTech. Bovine and fetal bovine (FBS) serums were

obtained from Hyclone. Insulin, IBMX, dexamethasone , DAPI,

and collagen (#C-7116) were purchased from Sigma-Aldrich.

OptiMEM, Calcein-AM, and propidium iodide were from

Invitrogen. The mouse monoclonal PPARc (sc-7273), goat

polyclonal lamin A/C (sc-6215), and mouse monoclonal b-actin

(sc-47778) antibodies were purchased from Santa Cruz Biotech-

nology. The rabbit polyclonal E6-AP antibody (A300–352A) was

from Bethyl Laboratories. Horseradish peroxidase conjugated

secondary antibodies were obtained from Jackson Immunore-

search Laboratories. DharmaFECT transfection reagents, siGLO

RISC-free labeled with DY-547 (Rhodamine filter) siRNA,
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siGenome non-targeting siRNA Pool #2, lamin A/C siRNA,

TBL-1 and TBLR-1 siRNA were purchased from Thermo Fisher

Scientific-Dharmacon. E6-AP and PPARc siRNAs were pur-

chased from Santa Cruz Biotechnology. Polyfect was purchased

from Qiagen and Xfect was purchased from Clontech. All

TaqMan primer/probes pairs were obtained from Applied

Biosystems. Differentiated human primary adipocytes (lot #
L041806) were purchased from Zen-Bio, Inc.

Cell Culture
Murine 3T3-L1 preadipocytes were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) high glucose containing 10%

calf serum and antibiotics (100 units/ml penicillin G and 100 mg/

ml streptomycin). To obtain fully differentiated adipocytes, the 3T3-

L1 preadipocytes were plated and grown on 10 cm plates to 2 days

post confluence and induced to differentiate using a standard

induction cocktail of 3-isobutyl-1-methylxanthine, dexamethasone,

and insulin (MDI) as previously described [8]. After 48 hours this

medium was replaced with DMEM high glucose supplemented with

10% fetal bovine serum (FBS) and the cells were maintained in this

medium. The 3T3-L1 adipocytes were used for transfection at day

4-6 post-induction when lipid droplets were readily apparent.

The differentiated adipocytes were rinsed in phosphate-buffered

saline (PBS, 5 ml) prewarmed to 37uC and detached from the

plate via trypsin treatment (1 ml of 0.25% trypsin/10 cm plate) at

37uC. The adipocytes were in contact with the trypsin only until

the cells began to detach, approximately 2–5 minutes. The

detached adipocytes were gently resuspended in DMEM, high

glucose with 10% FBS and antibiotics (5 ml) and collected by

centrifugation at 5146g (1000 rpm, Beckman Coulter GH 3.8

rotor) for five minutes at room temperature. The pelleted

adipocytes were gently resuspended in DMEM, high glucose with

10% FBS and antibiotics (5 ml) and an aliquot was counted using

a hemocytometer after the addition of trypan blue. A typical yield

was 1.021.26107 cells/plate.

Optimization of siRNA Transfection of 3T3-L1 Adipocytes
To determine optimal conditions for lipid-based siRNA

transfection of the adipocytes, we established a grid in the 48

well format to test four variables concurrently: cell density,

transfection reagent, siRNA concentration, and transfection

reagent volume. Each grid allows optimization using two cell

densities, two concentrations of siRNA, and four different

transfection reagents at three volumes each. The plates were

collagen-coated throughout these experiments. The adipocytes

were replated at 5.46104 cells/cm2 or 1.166105 cells/cm2 in the

48 well format at 1 cm2/well. We initially used several lipid-based

transfection reagents including DharmaFECT 4, DharmaFECT

Duo, Polyfect, and Xfect. Each transfection reagent was tested at

0.7 ml/cm2, 1.4 ml/cm2, or 3.7 ml/cm2. At 3.7 ml/cm2 of the

transfection reagents, the cells detached from the plate within

24 hours. Therefore subsequent experiments were carried out with

DharmaFECT D4, DharmaFECT Duo, Polyfect, or Xfect at

0.7 ml/cm2 or 1.4 ml/cm2 with optimal results obtained using

DharmaFECT Duo at 1.4 ml/cm2. During optimization, fluores-

cently labeled siRNA that does not induce the RNA silencing

complex (RISC-free) was used at 25 nM or 100 nM for the siRNA

complex. The siRNA complex was formed in the 48 well plate by

adding equal volumes of the stock concentration of siRNA and

OptiMEM and incubating at room temperature in a laminar flow

hood. At the end of 5 minutes, the transfection reagent was added

along with additional OptiMEM to yield a final total volume of

40 ml/well and incubated at room temperature. At the end of 20

minutes, the resuspended adipocytes at the desired concentration

in a total volume of 200 ml were added and the siRNA complex:

adipocytes mixture was plated and incubated at 37uC, 5% CO2

for 24 hours before the media was exchanged for DMEM, high

glucose with 10% FBS and antibiotics.

Detection of Fluorescent Labeled siRNA and DAPI
Stained Nuclei

At 24 and 48 hours post-transfection, transfection efficiency was

assayed via fluorescent detection of the labeled siRNA using a

Nikon Eclipse TS100 inverted microscope equipped with

rhodamine and DAPI filters and Metamorph version 6.1 software.

DAPI staining was used to determine the cellular location of the

transfected siRNA. Adipocytes transfected with fluorescent labeled

[DY-547 (Rhodamine filter)] RISC-free siRNA were incubated

with DAPI (0.14 mM) in media for 2.5 hours at 37uC, 5% CO2

without fixation of the cells. Thereafter, the adipocytes were rinsed

twice with media and the DAPI signal was visualized. Merged

images were generated using ImageJ software.

Classical Transfection of 3T3-L1 adipocytes with siRNA
3T3-L1 preadipocytes were plated at 1.1656105 cells/cm2 in a

48 well plate format and induced to differentiate 24 hours later

using the standard induction cocktail as described under Cell

Culture. The adipocytes were transfected with 25 nM or 100 nM

siRNA and 1.4 ml/cm2 DharmaFECT Duo for each well at days 4

or 5 post-induction. Transfection efficiency was assessed 48 hours

post-transfection by detection of fluorescent labeled RISC-free

siRNA and western blot analysis of siRNA targeted proteins.

Transfection of Human Primary Adipocytes with siRNA in
Suspension

Primary human subcutaneous adipocytes were obtained at day 7

post induction and were maintained in DMEM/F-12 with 3% FBS,

33 mM biotin, 17 mM pantothenate, 1 mM bovine insulin, 1 mM

dexamethasone, and 100 U penicillin/100 mg streptomycin/

0.25 mg Fungizone. At day 9 post-induction, the adipocytes were

transfected in suspension as described for the 3T3-L1 adipocytes

using 1.1656105 cells/25 nM siRNA or 1.1656105 cells/100 nM

siRNA and plated on collagen-coated 48 well plates at

4.16104 cells/cm2. Transfection efficiency was assessed 48 hours

post-transfection by detection of fluorescent labeled RISC-free

siRNA and western blot analysis of siRNA targeted proteins.

Cell Viability Assay
Cell viability was determined using calcein-acetoxymethyl

(calcein-AM) to stain viable cells and DNA intercalation of

propidium iodide (PI) to stain dead cells. The 3T3-L1 adipocytes

at 5.46104 or 1.166105 cells/cm2 were transfected with non-

targeting siRNA (25 nM and 100 nM of siGenome non-targeting

siRNA, pool #2, which includes luciferase siRNA) and incubated

for 48 hours with a single media change at 24 hours after

transfection. The cells were then rinsed twice with PBS and

incubated with calcein-AM (10 mM) and PI (10 mM) in PBS at

37uC for 15 minutes. The fluorescent signals were detected and

quantitated using a Flexstation 2 fluorometer (Molecular Devices)

and Softmax Pro 4.8 software at an excitation of 490 nm and

emission of 515 nm for detection of fluorescence generated from

the calcein-AM and an excitation of 535 nm and emission of

617 nm for detection of PI bound to DNA.

Real-time RT-PCR
Total RNA was purified from cultured cells using TriReagent

(Molecular Research Center) according to the manufacturer’s

Adipocyte siRNA Transfection
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instructions. When comparing adipocyte marker genes pre and

post-replating (Figure 1B) with expression of the marker genes in

the preadipocytes, total RNA was purified from equivalent cell

numbers harvested prior to replating (‘‘Pre’’) and 48 hours after

replating (‘‘Post’’). RNA (200 ng) was reverse transcribed using

Multiscribe Reverse Transcriptase (Applied Biosystems) with

random primers at 37uC for 2 hour. Real-time PCR was

performed with TaqMan chemistry (Applied Biosystems) using

the 7900 Real-Time PCR system (Applied Biosystems) and

universal cycling conditions (50uC for 2 minutes; 95uC for 10

minutes; 40 cycles of 95uC for 15 seconds and 60uC for 1 minute;

followed by 95uC for 15 seconds, 60uC for 15 seconds and 95uC
for 15 seconds). All results were normalized to a Cyclophilin B

expression control.

Oil Red O staining
Oil Red O staining was performed as described by Green and

Kehinde [9].

Preparation of Whole Cell Extracts
Cell monolayers were rinsed with phosphate-buffered saline

(PBS) and harvested in a denaturing buffer containing 50 mM

Tris-Cl, pH 7.4 with 150 mM NaCl, 1 mM EDTA, 1% Igepal,

0.5% Na-deoxycholate, 0.1% SDS, protease inhibitors (1 mM

PMSF, 1 mM pepstatin, 50 trypsin inhibitory milliunits of

aprotinin, 10 mM leupeptin). Protein concentrations of whole cell

extracts were determined using a BCA assay (Thermo Fisher

Scientific, Rockford, IL) according to the manufacturer’s instruc-

tions.

Figure 1. Adipocytes continue to differentiate after harvesting and replating post-induction. The 3T3-L1 preadipocytes were induced to
undergo adipogenesis and harvested at day 3–4 post induction when lipid droplets were clearly visible. (A) Oil Red O staining of neutral lipids forty-
eight hours after harvesting and replating. (B) The gene expression of adipocyte marker genes aP2, LPL, PPARc, and adiponectin was measured via
real-time PCR upon harvesting (Pre) and forty eight hours after (Post) the adipocytes were replated at 5.46104 cells/cm2 (low) or 1.166105 cells/cm2

(high) and compared to the expression of each gene in preadipocytes prior to induction (preAd). Expression of each gene was assayed in triplicate,
normalized to cyclophilin B gene expression, and reported as the mean and standard deviation. The results are representative of experiments carried
out twice independently.
doi:10.1371/journal.pone.0006940.g001
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Gel Electrophoresis and Immunoblotting
Proteins were separated in polyacrylamide (National Diagnos-

tics) gels containing sodium dodecyl sulfate (SDS) according to

Laemmli [10] and transferred to nitrocellulose (BioRad) in 25 mM

Tris, 192 mM glycine, and 20% methanol. Following transfer, the

membrane was blocked in 4% milk for 1 hour at room

temperature. The membranes were incubated with mouse

monoclonal anti-PPARc (1:125 dilution), rabbit polyclonal anti-

lamin A/C (1:200 dilution), or rabbit polyclonal anti-E6-AP

(1:2000 dilution) as indicated for 1–2 hours at room temperature.

Following extensive washes, the results were visualized with

horseradish peroxidase (HRP)-conjugated secondary antibodies

and enhanced chemiluminescence (Pierce).

Results and Discussion

We first confirmed that the fully differentiated adipocytes could

be replated after trypsinization in a 48 well format and continue to

express adipocyte markers. As shown in Figure 1A, when

harvested and replated on day 4 post-induction, the adipocytes

continue to accumulate neutral lipids when assayed using Oil Red

O staining (Figure 1A) 48 hours after replating on the collagen-

coated plates. When replated at 5.86104 cells/cm2 (‘‘low’’ cell

density, Figure 1B) or 1.166105 cells/cm2 (‘‘High’’ cell density,

Figure 1B), there is increased gene expression of lipoprotein

lipase (LPL), fatty acid binding protein (aP2), peroxisome

proliferator activated receptor gamma (PPARc), and adiponectin

(Figure 1B) when compared to the levels of each gene present in

the preadipocytes, indicating the adipocytes continue to undergo

differentiation after harvesting and re-adherence to the collagen-

coated plates. LPL and adiponectin were significantly increased at

a cell density of 1.166105 cells/cm2 (‘‘High’’) compared to a cell

density of 5.86104 cells/cm2 (‘‘low’’).

We then used a 48 well grid (Figure 2A) to test a combination

of factors, including cell density, transfection reagent, transfection

reagent volume, siRNA concentration, and incubation time, to

determine if the adipocytes could be efficiently transfected in

suspension using lipid-based reagents. We initially assessed the

fluorescence signal obtained with each transfection reagent

(Figure 2B). Maximal fluorescent signal/cell number plated was

obtained with three transfection reagents (D4, Duo, Xfect) at

either 25 nM siRNA (D4 or Xfect) or 100 nM siRNA (Duo). The

optimal combination of transfection efficiency and cell viability in

the fully differentiated adipocytes was obtained using

1.166105 cells/cm2, 100 nM siRNA, and 1.4 ml/cm2 Dharma-

FECT Duo. As shown in Figure 3, the fluorescent-tagged siRNA is

localized in the adipocytes and appears to be excluded from the

lipid droplets. Co-staining with DAPI indicates that the siRNA is

localized to the cytoplasm (Figure 3C).

As an example of our approach, to test the efficiency of

transfection using 1.166105 cells/cm2, 1.4 ml of DharmaFECT

Duo/cm2, and 100 nM siRNA, for each well of the 48 well plate,

the siRNA complex was formed by combining 10 ml of OptiMEM

and 10 ml of 2 mM siRNA (in H2O) at room temperature. After 5

minutes, 18.6 ml OptiMEM was added followed by 1.4 ml

DharmaFECT Duo and incubated at room temperature. At the

end of 20 minutes, 200 ml of adipocytes resuspended in media at

5.86105 cells/ml was added to obtain 1.166105 cells/cm2 (for

1 cm2 well).

When cell viability under the optimized conditions was assayed

by the production of calcein from calcein-AM (live cells) or PI

binding to DNA (dead cells), the overwhelming majority of

adipocytes remain viable compared to the dead cells as assayed

using fluorescence detection of calcein and DNA bound

propidium iodide (Figure 4). This indicates lipid-based siRNA

transfection of the adipocytes while in suspension does not

adversely affect the viability of fully differentiated adipocytes.

The effectiveness of RNAi experiments is determined by the

efficiency of siRNA transfection and the ability of the siRNA

sequence to silence a specific target mRNA. To test the efficiency

of gene knockdown, we assayed the siRNA-mediated decrease in

expression of the peroxisome proliferator activated receptor

gamma (PPARc), a nuclear receptor that is required for the

formation and maintenance of adipocytes [11]. Along with PPARc

Figure 2. Optimization of siRNA transfection of adipocytes in
suspension. (A) Grid layout for testing transfection variables based on
a 48 well plate format. This grid accommodates testing two
concentrations of siRNA (1,2) when transfecting cells at two densities/
cm2 (3,4) with four transfection reagents (A,B,C,D) at three concentra-
tions each (E, F, G). (B) Maximal fluorescent signal/cell number plated
was obtained with three transfection reagents (D4, Duo, Xfect) at either
25 nM siRNA (D4 or Xfect) or 100 nM siRNA (Duo). The siRNA is siGLO
RISC-free labeled with DY-547 (rhodamine filter). The cells were plated
at 1.166105 cells/cm2. The fluorescent signals were detected and
quantitated using a Flexstation 2 fluorometer (Molecular Devices) and
Softmax Pro 4.8 software. The fluorescent signal was assayed in
triplicate, normalized to the number of cells plated/well, and reported
as the mean and standard deviation from experiments carried out twice
independently.
doi:10.1371/journal.pone.0006940.g002
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as our gene of interest, we also transfected the fully differentiated

adipocytes with siRNA directed against lamin A/C as a control

target and the luciferase siRNA (siRNA Pool #2) as a non-

targeting control. In addition, we are interested in the role of the

ubiquitin proteasome system in regulating PPARc transcriptional

activity in adipocytes. Therefore, we also tested the efficiency of

knockdown of three ubiquitin ligases that regulate nuclear

hormone receptor activity. E6-AP regulates nuclear receptor

activity and targets the estrogen receptor alpha to the proteasome

for degradation [12]. The TBL-1 and TBLR-1 genes are ubiquitin

ligases that target the nuclear receptor corepressor NCoR to the

proteasome for degradation [13,14]. As shown in Figure 5, we

Figure 3. Adipocytes in suspension are efficiently transfected with siRNA. Uptake of the fluorescent-labeled siRNA was assayed at 48 hours
post transfection of adipocytes plated at 1.166105 cells/cm2. (A) Brightfield and (B) fluorescent (rhodamine filter) image of the transfected cells taken
with a 40X objective. (C) Co-staining with DAPI and the fluorescent-labeled siRNA indicates the siRNA is located in the cytoplasm. The image in (C) is
from a different experiment than the paired images in (A) and (B). This experiment was carried out independently greater than four times.
doi:10.1371/journal.pone.0006940.g003

Figure 4. 3T3-L1 adipocytes maintain viability with lipid-based siRNA transfection. Cell viability was determined using Calcein-AM (green,
viable cells) and propidium iodide (red, non-viable cells) staining in a ‘‘live-dead’’ assay. The assay was carried out at 48 hours post-transfection using
non-targeting siRNA (Dharmacon siRNA pool #2 containing luciferase siRNA). (A) Brightfield images taken with a 20X (upper panel) and 40X objective
(lower panel). (B) Fluorescent images taken with a 20X (upper panel) and 40X objective (lower panel) showing minimal PI staining. The experiment
was carried out twice independently.
doi:10.1371/journal.pone.0006940.g004
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Figure 5. Specific genes are efficiently targeted with lipid-based siRNA transfection of adipocytes. Knockdown of specific genes was
assayed at 48 hours post-transfection using either the RISC-free control siRNA (control), nontargeting siRNA (NT), or siRNA targeted to the indicated
gene (target). (A) Thirty-five mg of protein was loaded in each lane and separated by SDS-PAGE. Knockdown of lamin A/C, PPARc1 and PPARc2, and
E6-AP was assayed via western blot analysis. Equal loading of each lane was determined using b-actin expression. (B) knockdown of TBL-1 and TBLR-1
was assayed via real-time PCR in triplicate and reported as the mean and standard deviation. These experiments were carried out independently
greater than four times.
doi:10.1371/journal.pone.0006940.g005

Figure 6. Transfection of adherent 3T3-L1 adipocytes with siRNA does not decrease expression of targeted proteins. Forty-eight
hours post-transfection, transfection efficiency was assayed as uptake of fluorescent-labeled siRNA and the siRNA-mediated effect on targeted
protein expression. (A) Brightfield and fluorescent (rhodamine filter) images of the transfected cells were taken with a 40X objective. (B) Knockdown
of lamin A/C and PPARc was assayed via western blot analysis post-transfection with either the RISC-free control siRNA (control), nontargeting siRNA
(NT), or siRNA targeted to the indicated gene (target). Thirty-five mg of protein was loaded in each lane and separated by SDS-PAGE. Equal loading of
each lane was determined using b-actin expression. The experiment was carried out twice independently.
doi:10.1371/journal.pone.0006940.g006
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Figure 7. Transfection of human primary adipocytes in suspension with siRNA is associated with decreased expression of targeted
proteins. The human adipocytes were transfected on day 9 post-induction (1.1656105 cells/100 nM siRNA ) and plated at 4.16104 cells/cm2. Forty-
eight hours post-transfection, transfection efficiency was assayed as uptake of fluorescent-labeled siRNA and the siRNA-mediated effect on targeted
protein expression. (A) Brightfield and fluorescent (rhodamine filter) images of the transfected cells were taken with a 40X objective. (B) Knockdown
of lamin A/C and PPARc was assayed via western blot analysis post-transfection with either the RISC-free control siRNA (control), nontargeting siRNA
(NT), or siRNA targeted to the indicated gene (target). Thirty-five mg of protein was loaded in each lane and separated by SDS-PAGE. Equal loading of
each lane was determined using b-actin expression. The mean and standard deviation of the ratio lamin A/C and PPARc compared to b-actin was
determined after the expression levels of each protein were quantified using Un-Scan-It software (version 6.1) from samples run in triplicate. The
experiment was carried out twice independently.
doi:10.1371/journal.pone.0006940.g007
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obtain efficient knockdown of lamin A/C, PPARc, and E6-AP

proteins when assayed via western blot analysis (Figure 5A) and

TBL-1 and TBLR-1 when the mRNA levels are assayed via real-

time qRT-PCR (Figure 5B).

To determine if the siRNA transfection conditions established

for adipocytes in suspension would be applicable to adherent

adipocytes, we compared siRNA transfection of the 3T3-L1

adipocytes in suspension with the classical approach of introducing

siRNA into cells that remain attached (Figure 6). While the

fluorescent-tagged RISC-free siRNA is clearly present in the

adipocytes (Figure 6A), there was no decrease in the level of the

targeted proteins, including PPARc as an adipocyte specific target

(Figure 6B). The lack of change in target protein expression is

surprising, given the efficiency of introducing the fluorescent

tagged RISC-free siRNA into the adherent adipocytes. However,

this result suggests that incubation of the siRNA complex with the

adipocytes in suspension or the process of adipocyte readherence

in the presence of a targeting siRNA complex may enhance

induction of the RNAi silencing complex (RISC) response or

delivery of the siRNA to RISC in the adipocytes.

To extend our method to a model of human adipocytes, we

applied the optimized (1.1656105 cells/100 nM siRNA) condi-

tions for the 3T3-L1 adipocytes to fully differentiated primary

human adipocytes cultured from subcutaneous adipose tissue

(Figure 7). The fluorescent-tagged siRNA is apparent in the

human adipocytes and is excluded from the lipid droplets

(Figure 7A) as occurs with the 3T3-L1 adipocytes (Figure 3A,B).

Western blot analysis shows that siRNA targeting lamin A/C and

PPARc reduces the expression of both proteins (Figure 7B). While

further optimization is expected to improve the efficiency of gene

knockdown, PPARc protein expression is reduced to approxi-

mately 40% of the control levels and lamin A/C protein

expression is reduced to approximately 20% of the control levels

using the transfection conditions established for the 3T3-L1

adipocytes.

Our results show that lipid-mediated siRNA transfection of fully

differentiated adipocytes occurs in suspension with high efficiency

as determined by localization of the fluorescent-tagged siRNA in

the adipocyte cytoplasm and the decrease in the expression level of

five independent and specific targets, including the adipocyte-

specific PPARc and a small set of ubiquitin ligases. We conclude

that lipid-based siRNA transfection of 3T3-L1 adipocytes and

primary human adipocytes in suspension yields gene knockdown

results that are valid as a model for loss-of-function studies in fully

differentiated adipocytes. While optimization is required for

siRNA-based transfection of any cell type, transfection of

adipocytes with siRNA by this method is economical, highly

efficient, has a simple workflow, and allows standardization of the

ratio of siRNA/cell number, making this approach well-suited for

high-throughput screening of fully differentiated adipocytes. In

these experiments, we used transfection reagents from a limited

number of suppliers, but anticipate that other lipid-based

transfection reagents will also provide efficient siRNA transfection

of the adipocytes in suspension.
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