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This note deals with one-dimensional diffusion of par-
ticles in the potential U�x�=V�x�−Fx, where V�x�=V�x+L�
is a periodic potential of period L and F�0 is a uniform
driving force. This problem arises when describing, for ex-
ample, superionic conductors, Josephson tunneling junctions,
rotations of dipoles in a constant field, and phase-locked
loops.1 One of the main results of this note concerns the
distributions of time � required for a particle to make a step
of length L in the upstream and downstream directions.
Counterintuitively, it turns out that the probability densities
of these times, �����, are identical,

�+��� = �−��� = ���� , �1�

i.e., the step time distribution is direction independent while
the step probabilities, W+ and W−, strongly depend on the
step direction. These probabilities are given by

W+ =
1

1 + exp�− �FL�
, W− =

exp�− �FL�
1 + exp�− �FL�

, �2�

independently of the presence of the periodic potential,
where �=1 / �kBT� with the standard notations kB and T for
the Boltzmann constant and absolute temperature. We derive
the relations in Eqs. �1� and �2� and then use them to obtain
the expressions for the effective drift velocity, veff, and dif-
fusion coefficient, Deff, that describe the coarse-grained mo-
tion of the particles at times which are much longer than the
mean step time.

Expressions for veff and Deff were first derived by Re-
imann et al.2 by calculating the long-time behavior of the
first two moments of the displacement, �x�t�=x�t�−x�0�, and
using the definitions, veff= limt→���x�t�� / t and Deff

= limt→�����x�t��2�− ���x�t���2� / �2t�. In this note we suggest
a different approach, which exploits the fact that after mak-
ing a step of length L the particle is exactly in the same
situation as initially. Based on this fact we map the continu-
ous particle dynamics onto a nearest neighbor asymmetric
continuous time random walk �CTRW� between sites sepa-
rated by distance L. Then we use some recent results for
asymmetric CTRW �Ref. 3� to obtain expressions for veff and
Deff. Although our formulas for veff and Deff, Eqs. �10� and
�11�, look differently from those derived in Ref. 2, their iden-
tity can be proved by straightforward but cumbersome ma-
nipulations. In spite of the fact that both our analysis and that
in2 are based on the first-passage-time statistics, there is a
significant distinction between the two since the first passage

times used below and in Ref. 2 are different. The former are
the first passage times from a starting point x0 to the two
points located at x0�L, while the latter is the first passage
time from the starting point to the point located at x0+L with
no constraints on the particle motion in the negative direction
from the starting point. We believe that the new approach,
which is focused on the particle motion on the finite interval
of length 2L, has an important advantage. It can be easily
generalized and used to study �both analytically and numeri-
cally� similar problems in higher dimensions, for example,
drift and diffusion in tubes with periodically varying cross
section.

Given an arbitrary set of discrete points �xi�, i
=0, �1, �2, . . ., one can always map one-dimensional dif-
fusive motion in a potential onto a nearest neighbor CTRW
on this set. In general, this CTRW is nonseparable4 in the
sense that the random walk first decides whether it makes the
next step in the positive or negative direction and then uses
the corresponding distribution of the step time to determine
the moment when it makes the step. The distributions of the
step time from a given site in the positive and negative di-
rections in the general case are different. The situation
changes dramatically when the potential has the form U�x�
=V�x�−Fx with V�x�=V�x+L� and the set �xi� is chosen so
that xi�1=xi�L. The reason is that in such a case, as follows
from Eq. �1�, the step time probability densities in both di-
rections are identical. As a consequence, the CTRW becomes
separable4 in the sense that the random walk makes decisions
about the moment when the next step is made and the step
direction independently.

The CTRW is characterized by the step probabilities,
W�, and the step time probability densities, �����. To derive
W� in Eq. �2� consider a particle that starts from an arbitrary
point x0 at t=0 and is trapped at its first touch of one of the
two end points located at xL and xR, xL�x0�xR. The particle
propagator, G�x , t 	x0�, considered as a function of x0 satisfies
the adjoint Smoluchowski equation,

�G

�t
= e�U�x0� �

�x0

D�x0�e−�U�x0� �G

�x0
� , �3�

where D�x� is the position-dependent diffusion coefficient,
which is also a periodic function, D�x+L�=D�x�, the initial
condition, G�x ,0 	x0�=	�x−x0�, and absorbing boundary
conditions at the end points. The probability fluxes entering
the trapping end points at time t are given by
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fL�t	x0� = �D�xL�
�G

�x
�

x=xL

, fR�t	x0� = �− D�xR�
�G

�x
�

x=xR

.

�4�

The probabilities of the particle trapping by the left �L� and
right �R� end points, WL,R�x0�, are given by the time integrals
of the fluxes, WL,R�x0�=
0

�fL,R�t 	x0�dt. Based on the defini-
tions above it can be shown that WL,R�x0� satisfy

d

dx0

D�x0�e−�U�x0�dWL,R�x0�

dx0
� = 0, �5�

with the boundary conditions WL�xL�=WR�xR�=1, WL�xR�
=WR�xL�=0. Solving Eq. �5� we find

WL�x0� =

�
x0

xR

e�U�z� dz

D�z�

�
xL

xR

e�U�z� dz

D�z�

, WR�x0� =

�
xL

x0

e�U�z� dz

D�z�

�
xL

xR

e�U�z� dz

D�z�

. �6�

Taking xL=x0−L, xR=x0+L and using the fact that

�
x0−L

x0

e�U�z� dz

D�z�
= e�FL�

x0

x0+L

e�U�z� dz

D�z�
, �7�

we obtain the relations in Eq. �2�. Note that the ratio of the
probabilities W+ and W− given in Eq. �2� is equal to the ratio
of the unbounded �unb� propagators Gunb�x0+L , t 	x0�
and Gunb�x0−L , t 	x0�, which satisfy Eq. �3� with ab-
sorbing boundaries moved to infinity, W+ /W−

=Gunb�x0+L , t 	x0� /Gunb�x0−L , t 	x0�=exp��FL�.
We next derive the identity of the step time probability

densities, Eq. �1�. To derive the identity we exploit the fact
that any trajectory that starts from x0 and is terminated at
x0�L, consists of two parts, namely, the direct transition
�dtr� part, which begins at x0 and ends up at x0�L without
coming back to x0, and the loop �l� part, which is the rest of
the trajectory. Considering all trajectories terminated at x0

+L we can introduce probability densities for durations of
the loop and direct transitions parts of such trajectories,
�+

�l���� and �+
�dtr����. Using these functions we can write �+���

as

�+��� = �
0

�

�+
�dtr������+

�l��� − ���d��. �8�

Respectively, �−��� is given by

�−��� = �
0

�

�−
�dtr������−

�l��� − ���d��, �9�

where �−
�l���� and �−

�dtr���� are defined using all trajectories
trapped at x0−L. It is obvious that �+

�l����=�−
�l����. The iden-

tity of the probability densities of the direct transition times,
�+

�dtr����=�−
�dtr����, is a consequence of the theorem proved in

Ref. 5 and the fact that �+
�dtr���� found for particles starting

from x0 and trapped at x0+L is identical to �+
�dtr���� found for

particles that start from x0−L and are trapped at x0. Thus, the
identity of the probability densities �+��� and �−��� in Eq.
�1� is a consequence of the identities of the probability den-
sities of durations of the two parts of the trajectories.

We obtain veff and Deff using the relations recently de-
rived in Ref. 3

veff = �W+ − W−�
L

���
= tanh��FL

2
� L

���
�10�

and

Deff = 
1 + �W+ − W−�2� ��2�
���2 − 2�� L2

2���

= �1 + 
tanh��FL

2
��2� ��2�

���2 − 2�� L2

2���
, �11�

where ��n�=
0
��n����d� is the nth moment of the particle

first passage time to one of the absorbing boundaries located
at distances �L from the particle starting point. The mo-
ments of the particle first passage time from x0 to the absorb-
ing boundaries located at xL and xR, xL�x0�xR, �tn�x0��,
satisfy

d

dx0

D�x0�e−�U�x0�d�tn�x0��

dx0
� = − ne−�U�x0��tn−1�x0�� , �12�

with boundary conditions �tn�xL��= �tn�xR��=0. Solving Eq.
�13� for xL=x0−L and xR=x0+L we obtain

��� =
1

1 + e−�FL�
x0−L

x0+L

e�U�z� dz

D�z��x0−L

z

e−�U�y�dy

− �
x0−L

x0

e�U�z� dz

D�z��x0−L

z

e−�U�y�dy �13�

and

��2�
2

=
1

1 + e−�FL�
x0−L

x0+L

e�U�z� dz

D�z��x0−L

z

e−�U�y��t�y��dy

− �
x0−L

x0

e�U�z� dz

D�z��x0−L

z

e−�U�y��t�y��dy , �14�

where the mean lifetime �t�y�� is given by

�t�y�� = 
�
x0−L

y

e�U�v� dv
D�v��




�
x0−L

x0+L

e�U�v� dv
D�v��x0−L

v

e−�U�u�du

�
x0−L

x0+L

e�U�v� dv
D�v�

− �
x0−L

y

e�U�v� dv
D�v��x0−L

v

e−�U�u�du . �15�

Substituting ��� and ��2� given in Eqs. �13� and �14� into Eqs.
�10� and �11� we obtain our final expressions for veff and
Deff.

Our results should be compared with the expressions for
veff and Deff derived in Ref. 2 by a different method. In Ref.
2 it was taken that D�x�=const=D0 and
found that veff=L�1−exp�−�FL�� /
x0

x0+LI+�x�dx and Deff

=L2�
x0

x0+LI+
2�x�I−�x�dx� / �
x0

x0+LI+�x�dx�3, where I��x�
= �1 /D0�
0

Lexp�−���U�x��U�x�y���dy. The identity of
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the results derived by the two methods can be checked by
straightforward but cumbersome manipulations.
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