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The replica exchange statistical temperature Monte Carlo algorithm �RESTMC� is presented,
extending the single-replica STMC algorithm �J. Kim, J. E. Straub, and T. Keyes, Phys. Rev. Lett.
97, 050601 �2006�� to alleviate the slow convergence of the conventional temperature replica
exchange method �t-REM� with increasing system size. In contrast to the Gibbs–Boltzmann
sampling at a specific temperature characteristic of the standard t-REM, RESTMC samples a range
of temperatures in each replica and achieves a flat energy sampling employing the generalized
sampling weight, which is automatically determined via the dynamic modification of the
replica-dependent statistical temperature. Faster weight determination, through the dynamic update
of the statistical temperature, and the flat energy sampling, maximizing energy overlaps between
neighboring replicas, lead to a considerable acceleration in the convergence of simulations even
while employing significantly fewer replicas. The performance of RESTMC is demonstrated and
quantitatively compared with that of the conventional t-REM under varying simulation conditions
for Lennard-Jones 19, 31, and 55 atomic clusters, exhibiting single- and double-funneled energy
landscapes. © 2009 American Institute of Physics. �DOI: 10.1063/1.3095422�

I. INTRODUCTION

Recently, replica exchange method �REM� �or parallel
tempering�1,2 has been widely used in the computer simula-
tions of diverse complex systems such as proteins,3–6

glasses,7–9 and atomic clusters,10–12 where the conventional
canonical ensemble sampling struggles to attain ergodicity
due to the rugged energy landscape characterized by multiple
minima and barriers. In the standard temperature REM
�t-REM�, a set of statistically independent canonical molecu-
lar dynamics �MD� or Monte Carlo �MC� simulations runs in
parallel at specified temperatures. The coupling of low and
high temperature replicas via exchanges of configurations
allows the low temperature replicas to escape from trapped
regions more easily, facilitating ergodicity.13,14

However, the standard t-REM exhibits a severe slowing
down of convergence as the dynamic energy range expands
with system size. The number of replicas must increase in
proportion to �f , f being the number of degrees of
freedom,15 to maintain sufficient energy overlaps between
neighboring replicas for configurational exchanges. The in-
creased number of replicas requires more configurational
swaps to sweep a whole temperature space and impairs the
convergence. Several sophisticated REM variants have been
developed15–27 to resolve this system size dependence. Fuku-
nishi et al.15 have developed the Hamiltonian REM, which
performs replica exchanges between the original system and
one with a scaled or deformed Hamiltonian. The underlying
idea of the Hamiltonian REM has been further adopted to the

generalized parallel tempering16 or q-REM,17 the replica ex-
change with solute tempering,18 the partial or local REM,19

and the resolution exchange REM.20,24

An alternative way to alleviate the system size depen-
dence of the t-REM is to incorporate the merit of the gener-
alized ensemble method �GEM�28–31 into the replica ex-
change scheme. The use of non-Boltzmann sampling weights
in the GEM increases the dynamic sampling range of each
replica with a delocalized energy distribution and allows a
sufficient energy overlap with far fewer replicas. In previous
studies,32–35 multicanonical �MUCA� sampling has been em-
ployed to combine the generalized ensemble sampling with
the replica exchange scheme. The multicanonical replica ex-
change method �MUCAREM� has been shown to produce
comparable performance to the conventional t-REM using a
half number of replicas.35 However, a prior weight determin-
ing process in MUCAREM becomes nontrivial as the system
size increases. This hampers the practical use of the method
in a rugged energy landscape due to the increased computa-
tional burden.

In the present paper, the replica exchange statistical tem-
perature Monte Carlo �RESTMC� algorithm is proposed to
improve upon the convergence of the t-REM and to mitigate
its system size dependence, by integrating statistical tem-
perature Monte Carlo �STMC� �Ref. 36� and replica ex-
change. In contrast to the t-REM sampling with the Gibbs–
Boltzmann weight at discrete temperatures, RESTMC
employs multiple STMC simulations, exploiting overlapping
temperature windows. The generalized sampling weights,
which correspond to the entropy estimates, are determined
automatically via the dynamic modification of the replica-
dependent statistical temperatures. The resulting flat energy
distribution, which increases the dynamic energy range of
each replica and maximizes energy overlaps between neigh-
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boring replicas, enables a significant acceleration of the con-
vergence of simulations while employing fewer replicas.

The paper is organized as follows. In Sec. II, the theo-
retical formulation of RESTMC is presented with a detailed
summary of simulation protocols. In Sec. III, the global con-
vergence of RESTMC simulations is examined and com-
pared with that of conventional t-REM, for the Lennard-
Jones 19, 31, and 55 atom clusters in various simulation
conditions. The tunneling times in replica and energy space,
heat capacities, and average acceptance probabilities are used
for the quantitative performance comparison. Section IV pro-
vides a brief summary and conclusions.

II. METHODS

A. REPLICA EXCHANGE STATISTICAL TEMPERATURE
MONTE CARLO „RESTMC…

In the REM, multiple Markov chains are run in parallel
and configurations are exchanged between neighboring rep-
licas, subject to detailed balance.1,2 With a given sampling
weight w�, � being the replica index, the acceptance prob-
ability of configurational exchanges between the �th and
��th replicas is denoted by A,

A�� → ��� = min�1,exp������� , �1�

where ����=ln w��X��+ln w���X�−ln w��X�−ln w���X�� ��
����, X and X� being the configuration of replicas � and ��,
respectively. In the conventional t-REM, sampling of each
replica obeys the Gibbs–Boltzmann weight, w�

GB=exp
�−��U�, �� and U being the inverse temperatures of the �th
replica and the potential energy, respectively. Then the expo-
nent ���� in Eq. �1� reduces to the usual form of ����−���
��U�−U�, where U�=U�X�� and U=U�X�, respectively.

The generalized ensemble method �GEM� is naturally
integrated with the REM by utilizing the non-Boltzmann
weight w� in Eq. �1�, which is designed to sample a more
delocalized energy space with an increased dynamic range.
The optimal combination of GEM and REM is accomplished
by employing a sampling weight which is inversely propor-
tional to the density of states, w�

id=1 /���U�,28,29,36,37 ���U�
being the partial density of states covering the energy range
of the �th replica. The resulting flat energy sampling maxi-
mizes energy overlaps between neighboring replicas and al-
lows a sufficient acceptance rate of configurational ex-
changes with substantially fewer replicas. A problem in this
procedure is that the exact density of states is not known

a priori and its estimate �̃��U� must be determined prior to
the production run of the replica exchange simulation as in
MUCAREM,35 which combines multicanonical sampling
with the REM. However, the determination of the multica-
nonical weight becomes highly nontrivial in rough energy
landscapes and requires a long iterative process to get a re-
fined weight in large systems.

Recently, a novel sampling algorithm, statistical tem-
perature Monte Carlo �STMC�,36,38 has been proposed to
achieve a flat energy sampling by exploiting the thermody-
namic relationship between the statistical temperature T�U�
and the density of states ��U�,39

T�U� = ��S�U�/�U�−1 = �� ln ��U�/�U�−1, �2�

where S�U�=kB ln ��U� �kB=1� is the microcanonical en-
tropy. Instead of direct modification of the density of states,
as in Wang and Landau37 sampling, STMC attains a uniform
energy distribution by dynamically refining the statistical
temperature. Since STMC is designed to generate a flat en-
ergy sampling with more rapid convergence and its weight
determining process is self-adjusting, the integration of
STMC and REM is promising to overcome the system size
dependence of the conventional t-REM, avoiding the un-
known weight dependence.

The first step of RESTMC is to divide the temperature
space into several overlapping windows. Multiple STMC
runs are applied to each window via the configurational ex-
changes between neighboring replicas. In contrast to the
t-REM, in which each replica samples a specific temperature
with w�

GB, each replica samples a range of temperature with

the generalized sampling weight w�=exp�−S̃��U��, S̃��U�
=�E1 / T̃��z�dz being the entropy estimate determined by in-
tegrating the replica-dependent statistical temperature esti-

mate T̃��U�.
A unique feature of RESTMC is that the sampling

weight of each replica is automatically determined “on the
fly” during the replica exchange process, through the dy-

namic modification scheme for T̃��U�. In an actual simula-
tion, the statistical temperature estimate is represented on the
energy grid points, defined as Ui=G�U /�����, with bin size
�� and G�x� returning the nearest integer to x. The statistical
temperature is systematically modified every time the system
visits the energy state Ui as36,38

T̃�,i�1� =
T̃�,i�1

1 � �f�T̃�,i�1

, �3�

where �f�=ln f� / �2���	1, f�
1 being the temperature
modification factor. Here the prime represents the updated
value. The initial modification factor f� and the energy bin
size �� are in general replica-dependent in RESTMC.

A continuum entropy estimate is obtained in RESTMC
by integrating the inverse of the statistical temperature esti-

mate. Since T̃��U� is represented on the energy grid, here we

utilized the staircase temperature interpolation T̃��U�
=	iT̃�,i��U− Ūi−1���Ūi−U�,38 � being the Heaviside step

function and Ūi= �Ui+Ui+1� /2, yielding

S̃��U� = 	
i=l

j−1

�/T̃�,i + �U − Ūi−1�/T̃�,i, �4�

for U� �Ūi−1 , Ūi�, Ul being an arbitrarily defined lower inte-
gration limit. As emphasized in Ref. 36, Eq. �4� constitutes a
smoothing process that yields the continuum well-behaved

sampling weight S̃��U�, even for a noisy TS�U�, and also
allows an adaptation of a large energy bin size ��, which is
particularly useful with increasing system size.

In RESTMC, the individual STMC simulation of the �th
replica proceeds with the acceptance probability
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A�X → X�;�� = min�1,exp�S̃��U� − S̃��U���� , �5�

for a trial move from X to X� and quickly achieves a flat
energy distribution at each modification factor f��1 using
the dynamic updating process of Eq. �3�. Through iterative
refinements with the reduction in the modification factor as

f�→�f�, the initial constant T̃��U� is transformed to the true
statistical temperature T��U�. Replica exchanges between
neighboring �th and ��+1�th STMC runs are accepted with
probability

A��� = min�1,exp����� , �6�

where ��= S̃��U�− S̃��U��+ S̃�+1�U��− S̃�+1�U�. Note that
neither the intra- nor inter-replica trial moves obey detailed
balance in an early stage of RESTMC, since the entropy

estimate S̃� is constantly changing with the dynamic modifi-

cation of T̃��U� at a nonzero �f� in Eq. �3�. However, as the
modification factor f� approaches unity, the weight becomes
frozen and detailed balance is recovered with a flat energy
histogram in each replica.

B. Detailed simulation protocols of RESTMC

The detailed simulation protocols of RESTMC are out-
lined as follows.

�i� The interesting temperature space between Tmin and
Tmax is divided into M overlapping temperature win-
dows restricted by �T�

min,T�
max� ��=1, . . . ,M�, in

which T�
max�T�+1

min to allow temperature overlap be-
tween �th and ��+1�th replica. The extent of the
overlap is adjusted by the temperature overlap param-
eter 
, which determines the temperature range of
each replica as

T�
min = T� − 
�T�+1 − T�� �7�

and

T�
max = T�+1 + 
�T�+1 − T�� . �8�

Here T� ��=1, . . . ,M +1� is the sequentially distrib-
uted temperature in an ascending order. Following the
original convention of t-REM we used two different
allocation schemes depending on the system as T�

=T1��T��−1 ���1 and T1=Tmin�, �T
= �Tmax /Tmin�1/M in the geometric allocation scheme,
and T�=Tmin+ ��−1��T, �T= �Tmax−Tmin� /M in the
equidistant allocation scheme, respectively. Subse-
quently, the individual STMC parameters such as the
energy bin size �� and the initial modification factor
f� are determined, and the statistical temperatures are

initialized as T̃��U�= �T�
min+T�

max� /2.
�ii� Multiple STMC runs are performed in parallel with

the dynamic updates of T̃��U� using Eq. �3� and swap-
ping configurations between neighboring replicas us-
ing the acceptance rule of Eq. �6�. During the simula-

tion T̃��U� is always maintained as T�
min� T̃��U�

�T�
max by enforcing T̃��U�=T�

min or T�
max every time

the instantaneous statistical temperature exceeds the

low or high temperature bound of each replica, re-
spectively. The modification factor is reduced as f�

→�f� every fixed MC cycle.

�iii� The dynamic update of T̃��U� is terminated and a pro-
duction run is initiated with a frozen statistical tem-
perature once �f� becomes sufficiently small. After a
long production run, multiple STMC simulations are
joined to estimate the full density of states using the
weighted histogram method40 as

�̃�U� =
	�=1

M N�P��U�

	�=1
M N�Z�

−1e−S̃��U�
, �9�

where P��U� and N� correspond to the normalized
energy distribution and the number of sampling data
in the �th replica. The relative partition function Z� is
calculated self-consistently using

Z�� = 	
U

	�=1
M N�P��U�

	�=1
M N�Z�

−1e−�S̃��U�−S̃���U��
. �10�

We would like to address a minor difference in the re-
duction scheme of f� between STMC and RESTMC. In the
previous single STMC simulation,36,38 the modification fac-
tor has been reduced only when the histogram fluctuation is
less than 20% of the mean, following the original convention
of Wang and Landau sampling.37 This rather stringent con-
dition has been imposed to obtain a highly refined statistical
temperature, which enforces the system to sample the whole
dynamic range without trapping, at the reduced modification
factor. In contrast, RESTMC does not require a very refined
statistical temperature because the dynamic sampling range
in each replica is significantly reduced, and the replica ex-
change process assists the system to avoid trapping even

with a rough estimate of T̃��U�. Furthermore, canonical ther-
modynamic properties can be accurately reproduced by re-
weighting using Eq. �9� once simulations are performed for a
long time with a frozen statistical temperature. Instead of a
20% histogram flatness condition, the periodical reduction
scheme, which reduces f� every prefixed MC cycles, is used
to shorten the weight determination process.

III. APPLICATIONS

The performance of RESTMC has been examined in
Lennard-Jones clusters LJN with N=19, 31, and 55. LJ
atomic clusters have long been used as benchmark systems
to test enhanced sampling algorithms.12,22,41,42 The potential
energy of LJN is given by U=4�	i�j

N ��� /rij�12− �� /rij�6�, �
and � being units of energy and length, respectively. To pre-
vent cluster evaporation the simulations were performed us-
ing a perfectly reflecting, spherical wall with the radius Rc

=2� for N=19, Rc=2.5� for N=31, and Rc=3� for N=55.

A. Lennard-Jones cluster with N=19

We performed several RESTMC simulations with vary-
ing numbers of replicas M =3, 5, 10, 15, 20, and 30. Since
each replica in RESTMC samples a range of temperatures
rather than a specific temperature we applied the equidistant
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temperature allocation scheme for the generation of T� ��
=1, . . . ,M +1�, with the overlap parameter 
=0.1. The en-
ergy bin size is chosen as ��=0.02+0.25��−1� / �M −1� to
take into account a narrow dynamic range for low tempera-
ture replicas. The modification factor f� has been reduced to
�f� every 2�106 MC cycles starting from 1.0001 in all
simulations. The statistical temperatures are effectively fro-
zen after 2�107 cycles and the production data for the re-
weighting have been collected for 108 cycles. Here one cycle
implies N trial attempts to move each atom in a cluster. The
reference thermodynamic data have been determined by the
conventional t-REM using 30 replicas in the temperature
range 0.01�T�0.45 for 109 MC cycles after 2�107 equili-
bration cycles. The global minimum of LJ19 was used as an
initial configuration for all replicas and replica swaps be-
tween each pair of adjacent replicas were attempted every
one MC cycle in both t-REM and RESTMC. Due to the
vanishing acceptance of low temperature replica exchanges
with the equidistant allocation, we applied the geometric al-
location scheme in the t-REM.

The profiles of the statistical temperatures T̃��U� ��
=1, . . . ,M� and the energy distributions P��U� of RESTMC
with M =5 in Fig. 1�a� clearly illustrate the characteristic
features of our algorithm. The replica-dependent statistical
temperatures associated with the different temperature win-
dows join together into a smoothly varying statistical tem-
perature across the overlapping temperature regions. The su-
perimposed statistical temperatures monotonically increase
with increasing U and show a plateau around the solid-liquid
transition region �T
0.28�. The resulting energy distribu-

tions P��U� show a flat energy histogram for the extended

energy region corresponding to T�
min� T̃��U��T�

max and rap-
idly decay in both low and high energy regions, where
RESTMC samples the canonical ensembles at T�

min and T�
max,

respectively.
The heat capacities determined by the reweighting of

RESTMC simulations for 108 MC cycles are compared to
those of t-REM in Fig. 1�b� which is averaged over 109 MC
cycles. All RESTMC heat capacities are superimposed on the
same curve, regardless of M, and are indistinguishable from
those of t-REM for the whole range of temperatures, includ-
ing the solid-liquid transition region corresponding to the
peak in Cv.

The success of RESTMC stems from its capacity to re-
tain �or enhance� the acceptance of replica exchanges with
fewer �or the same� number of replicas. The average accep-
tance probability pacc���=Naccept /Ntrial, Naccept and Ntrial being
the number of accepted and attempted replica swaps in each
replica, demonstrates that RESTMC always attains a higher
swap acceptance than the t-REM in both geometric and equi-
distant temperature allocations in Figs. 2�a� and 2�b�, respec-
tively. The enhancement of pacc��� in RESTMC is most
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FIG. 1. �Color online� �a� Statistical temperatures, T̃��U� �lines�, and energy
distributions, P��U� �lines points�, of RESTMC simulation with M =5 for
LJ19 and �b� heat capacities determined by RESTMC simulations with vary-
ing M for 108 MC cycles and t-REM with M =30 for 109 MC cycles. �
=1–5 in �a� from bottom to top. The magnitude of P��U� in �a� has been
adjusted for visualization.
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prominent in both solid-liquid transition and low temperature
regions, where t-REM exhibits a poor acceptance. In accor-
dance with the “incomplete beta-function law,”43,44 the ac-
ceptance in the t-REM is almost uniform for the smoothly
varying heat capacity region, but displays a minimum dip
around the transition region ��
26� corresponding to the
peak in Cv.45 With the equidistant schedule the acceptance of
low temperature replicas rapidly decays to zero, while
RESTMC still shows a considerable acceptance even at low
temperatures in Fig. 2�b�. Acceptance is further improved in
RESTMC by increasing the overlap parameter 
=0.1 in both
temperature schedules.

To investigate the effect of the number of replicas on the
acceptance probability, pacc��� is shown in Fig. 2�c� as a
function of T�+1 with varying M. With fixed 
=0.1, accep-
tance gradually declines for the whole temperature region
with decreasing M but still remains finite even with M =5.
As expected, the acceptance is significantly enhanced by in-
creasing 
 from 0.1 to 0.5 for the fixed M =5. It should be
also noted that the actual number of accepted replica swaps
remains almost same even with a smaller pacc��� as in M
=5 since replica swaps are more frequently attempted for
smaller M.

When the replica swaps are well balanced the mean ac-
ceptance p̄acc= �1 /M�	�pacc���, can be an effective measure
for the sampling performance. However, the convergence of
simulations will be poor, even with a moderate p̄acc, when the
replica swaps between one pair of replicas are rarely ac-
cepted, forming a bottleneck as in the t-REM with M =30 in
Fig. 2�a�. Therefore, we need a more systematic approach to
examine the global convergence of simulations. Here we uti-
lized the number of tunneling events in both replica and
energy space as the quantitative measure of sampling
performance.12,28,46 We calculated the accumulated tunneling
events N�X=	�=1

M n�X, to quantify how often all replicas make
transitions from one end to the other in X space, n�X being
the number of tunneling events in the �th replica. A tunnel-
ing in replica space occurs when each replica makes a tran-
sition, 1→M or M→1, while a tunneling in energy space is
counted between two boundary energies.

The accumulated tunneling events in replica space N�R

increase linearly as a function of MC cycles in both
RESTMC and t-REM simulations �see Fig. 3�a��. This im-
plies that the mean tunneling time for 1→M or M→1 is
almost constant throughout the simulations. The tunneling
events in RESTMC with M =30 are twice as frequent as
those of the t-REM. Furthermore, N�R in RESTMC rapidly
grows with decreasing M, while it does not show any notice-
able change from M =45 to 30 in the t-REM. The compari-
son of the mean tunneling time �R, which corresponds to the
inverse of the linear slope in Fig. 3�a�, reveals that the sam-
pling speed of RESTMC with M =5 is seven times greater
than that of the t-REM with M =30. More frequent attempts
of replica sweeps with a finite pacc��� in Fig. 2�c� greatly
shortens �R with decreasing M.

We also calculated the mean tunneling time �U in energy
space, by counting tunneling events between two boundary
energies ��72 and �51�, roughly corresponding to the inter-
nal energies at Tmin and Tmax, respectively. In both RESTMC

and t-REM, �R
�U with M =30. However, �U is significantly
longer than �R with decreasing M in RESTMC, implying that
some replica swaps do not contribute to the effective accel-
eration in the energy or configuration sampling. In compari-
son to the factor of seven acceleration in replica space, the
acceleration in energy space is a factor of three in RESTMC
with M =5. The more frequent exchange attempts at smaller
M induce recurring replica swaps before exchanged configu-
rations diffuse and relax into energy regions beyond the
overlapping temperature regions.

B. Lennard-Jones cluster with N=55

We applied our algorithm to LJ55, which has been the
focus of much study as a prototype for the melting of small
clusters.47,48 LJ55 exhibits a strong van der Waals loop �or
backbending behavior� in the statistical temperature �or mi-
crocanonical caloric curve�,47 which is analogous to a first-
orderlike phase transition in finite size systems.49–51 The
solid-liquid transition of LJ55 is characterized by the pro-
nounced peak in the heat capacity around T=0.3. Thus LJ55

is a good benchmark system to test the performance of
RESTMC in the presence of a strong phase transition and
van der Waals loop.

RESTMC simulations are performed for the temperature
range between Tmin=0.01 and Tmax=0.45 using a large over-
lap parameter 
=1.0, with M =5 and 10. The modification
factor f� has been periodically reduced to �f� every 5
�106 MC cycles, from the initial value of 1.00005, and rep-
lica exchanges are attempted every one MC cycles per rep-
lica. The energy bin size has been chosen as ��=0.1
+0.4��−1� / �M −1�. The t-REM has been performed for the
same temperature range using 50 replicas with the equidis-
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FIG. 3. �Color online� �a� Accumulated tunneling events in replica space of
RESTMC and t-REM simulations and �b� mean tunneling times in replica
and energy space of RESTMC simulations as a function of M. All RESTMC
simulations use the equidistant temperature schedule with 
=0.1. �R=1.01
�105 and �U=1.05�105 MC cycles for the t-REM with M =30.
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tant temperature schedule, but it is found that pacc��� of low
temperature replicas ���3� is far below than 0.1. Produc-
tion data are collected for 2.5�109 cycles after discarding
5�107 cycles spent for the weight determination in
RESTMC and the equilibration in t-REM.

As previously reported,47 the superimposed statistical
temperatures in Fig. 4�a�, determined by RESTMC with M
=5, show a clear van der Waals loop around T=0.3 corre-
sponding to the peak in the heat capacity in Fig. 4�b�. The

minor differences among T̃��U� ��=3, 4, and 5� in the back-
bending region are attributed to the relatively short weight
determination time. In contrast to the backbending behavior
in T�U�, the inverse of the canonical average energy, i.e.,
Uav

−1�T�, monotonically increases across the transition region,
implying that the statistical ensembles are nonequivalent in
finite size systems.49 The heat capacities determined by two
different RESTMC simulations are superimposed on a single
curve and are indistinguishable from those of the t-REM for
the full temperature range.

The advantage of the RESTMC algorithm over the
t-REM is explicitly demonstrated by comparing trajectories
of RESTMC with M =5 and t-REM with M =50. Both en-
ergy and replica trajectories of one replica in the t-REM in
Figs. 5�a� and 5�b�, respectively, reveal that the solidlike and
liquidlike states are clearly separated by intermittent transi-
tion events and the transition regions associated with the van
der Waals loop in T�U� are very rarely sampled. On the other
hand, RESTMC shows very frequent transitions in both en-

ergy and replica space even with only five replicas, as seen in
Figs. 5�c� and 5�d�, respectively. The transition regions are
much effectively sampled than in the t-REM.

The sampling performance of RESTMC has been exam-
ined more quantitatively by comparing the accumulated tun-
neling events N�R and N�U in Figs. 6�a� and 6�b�, respec-
tively. N�U was counted between U=−275 and �210. It is
remarkable that the number of transition events in RESTMC
simulations with M =5 and M =10 exceed those of the
t-REM with M =50 by more than 104 order of magnitude in
replica space and 103 in energy space. This dramatic accel-
eration of tunneling in RESTMC results from the significant
reduction in the free energy barrier between the solidlike and
liquidlike states. In the presence of backbending behavior in
T�U�, the extremum condition of the Helmholtz free energy
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FIG. 5. �a� Energy and �b� replica trajectories of one replica in the t-REM
with M =50 and �c� energy and �d� replica trajectories of one replica in
RESTMC with M =5.
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density F���U ,T��=U−T�S�U�, in the ��th replica near the
transition temperature T�, generates multiple roots, Ui �i=1
�3�, satisfying T�Ui�=T� �U1�U2�U3�. In the canonical
ensemble, the profile of F���U ,T�� becomes double well as-
sociated with two free energy minima at U1 and U3, and the
transition barrier at U2. On the other hand, the free energy
density in RESTMC, i.e., F���U ,T��=−�1 /��ln w��U�
−T�S�U�=T��S̃���U�−S�U��
0 becomes almost flat with a

correct estimation of S̃���U�. By removing a free energy bar-
rier around a first-orderlike transition region, RESTMC leads
to a substantial increase in the frequency of barrier crossing
and more effective sampling in the transition region, as seen
in Fig. 5�c�.

The ratio N�U /N�R, falls significantly from 0.8 to 0.27
with a decrease in M from 10 to 5 in LJ55, at the fixed 

=1.0, which means that a speed up of replica exchanges does
not necessarily lead to an enhancement in tunneling in en-
ergy space, especially for smaller M. This is attributed to the
combined effects of the enlarged sampling range of each
replica and the increased attempt frequency for replica swaps
with decreasing M. Note that configuration swaps between
the fourth and fifth replicas in Fig. 4�a� are mostly accepted
for a broad energy range between Uav�T5

min�
−250 and
Uav�T4

max�
−204, corresponding to the overlapping energy
region of both replicas. When the attempt frequency for rep-
lica exchanges is too short, the swapped configurations are
immediately changed back to the original states via the sub-
sequent replica exchange attempt before they diffuse or relax
to other energy regions. These recurring replica exchanges in
a short time period might not contribute to enhanced conver-
gence, as demonstrated in Fig. 6�b�.

C. Lennard-Jones with N=31

Compared to LJ19 and LJ55, which exhibit single-
funneled energy landscapes, LJ31 is computationally more
challenging due to the underlying double-funneled landscape
associated with the structural transition between the Mackay
icosahedral global minimum and the anti-Mackay isomers at
low temperatures. This solid-solid transition is signified by a
narrow peak in the heat capacity around T
0.027 �Ref. 22�
in addition to a core melting peak around T
0.32. Since the
sampling of the solid-solid transition is very sensitive to the
convergence of simulations,11,12,22,52 LJ31 is a good bench-
mark to test newly developed sampling algorithms in a rug-
ged energy landscape.

RESTMC simulations were performed for the tempera-
ture range between Tmin=0.01 and Tmax=0.4 with varying M
and 
. The reference thermodynamic data were determined
by the conventional t-REM using 35 replicas for 1010 MC
cycles for the same temperature range. In all simulations, the
geometric temperature allocation scheme was applied and
the replica exchanges were attempted every one MC cycle
per replica. The energy bin size in RESTMC was chosen as
��=0.01+0.25��−1� / �M −1� and the modification factor f�

was periodically reduced to �f� every 5�106 MC cycles
starting from 1.0001. A longer time was used for the weigh
determination, in view of the difficulty in attaining ergodicity
compared to LJ19.

The superimposed statistical temperatures T̃��U� deter-
mined by RESTMC with M =10 and 
=1.0, show a smooth
single master curve for the whole energy range �see Fig.
7�a��. LJ31 shows a rounded slope variation across the solid-
liquid transition region near T
0.3, contrary to LJ19 which
shows a sharp slope variation through the melting region.
Remarkably, the statistical temperatures present an additional
signature around T�0.028, which is more clearly demon-

strated in the magnified view of Fig. 7�b�. T̃��U� ��=3, 4,
and 5� monotonically increases from Tmin, displays a plateau
around U
−132.3, and then increases again. This character-
istic variation in the statistical temperatures is associated
with the Mackay→anti-Mackay structural transition. De-
pending on whether each replica samples this low tempera-
ture transition or not, the profiles of P��U� are quiet differ-
ent. Both P1�U� �red lines points� and P��U� ��
6� show a
typical flat energy sampling for the energy region of T�

min

� T̃��U��T�
max, while P��U� ��=2�5�, associated with the

plateau region in T̃��U�, manifests a strong bias across the
transition region.

A bias in P��U� implies that T̃��U� has not fully con-
verged to the exact T�U�, where P��U��exp��U�1 /T�z�
−1 / T̃��z��dz�. Indeed, noticeable variations show up for the
solid-solid transition region with different M and 
. As seen
in RESTMC with M =20 and 
=0.5 in Fig. 8�a�, the super-

imposed T̃��U� shows a rather smooth variation around a

higher T�0.035. The dependence of T̃��U� on the weight
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FIG. 7. �Color online� �a� Statistical temperatures T̃��U� �lines, �=1�M
from bottom to top� in RESTMC with M =10 and 
=1, employing the
geometric temperature schedule for LJ31 and �b� magnified view at low
temperatures with P��U� �lines points�. Arrows in ��a� and �b�� indicate the

variations in T̃��U� associated with structural transitions.
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refinement process is due to the extremely long equilibration
time associated with the Mackay→anti-Mackay transition,
which is demonstrated in replica and energy trajectories of
RESTMC and t-REM simulations in Fig. 9. Both replica and
energy trajectories are highly localized in two separated sam-
pling domains and the transition events are very rare, with a
long residence time in each domain. Only two transitions
between the Mackay and the anti-Mackay isomers occur dur-
ing 1.5�108 MC cycles in the t-REM due to the double-
funnel landscape.

RESTMC shows much more frequent transitions as M
decreases, which will be analyzed more quantitatively below
in terms of the tunneling events. Roughly, the characteristic
tunneling time of the solid-solid transition varies from 107 to
108 MC cycles depending on the weight determination pro-
cess �see Figs. 12�b� and 12�c��. The statistical temperature

T̃��U� of RESTMC employing a longer weight determination
process in Fig. 8�b�, in which f� has been reduced to �f�

every 107 MC cycles, shows a plateau around T�0.022,
which is much lower than T�0.028 in Fig. 7�b�. We found

that the plateau region in T̃��U� systematically moves down
to T�0.022 as the time spent on the weight determination
increases in RESTMC.

In single-replica STMC, the refinement of the sampling
weight plays a central role in obtaining a random walk in
energy. However, RESTMC does not need a very refined
statistical temperature, since the dynamic sampling range of
each replica is significantly decreased, and the replica ex-
changes assist the system to avoid trapping. Furthermore, the

reweighting in Eq. �9� reproduces a correct canonical ther-

modynamics even with a less refined T̃��U�, since a minor

deviation of T̃��U� from the exact T�U� is compensated by a
bias in P��U� and corrected to give a consistent thermody-
namics via reweighting. Indeed, heat capacities from
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3.5�109 MC cycle segments of various RESTMC simula-
tions show a perfect coincidence regardless of M and 
 in
Fig. 10�a� and are almost indistinguishable from those of
t-REM averaged over 9.5�109 MC cycles. The robustness
of RESTMC is further illustrated in the magnified view of
heat capacities at low temperatures in Fig. 10�b�. All
RESTMC simulations exhibit good agreement even for the
low temperature peak region. Furthermore, the heat capaci-
ties �I and II in Fig. 10�b�� computed by a block average of
consecutive 1.5�109 MC cycles of RESTMC with M =10
and 
=0.1 are nearly identical, implying that the simulation
is well converged.

Average acceptance probabilities of both t-REM and
RESTMC in Fig. 11�a� display a minimum dip around the
solid-solid and the solid-liquid transition regions, corre-
sponding to �=10 and 33 in the t-REM, and �=9 and 31 in
RESTMC with 
=0.1. However, RESTMC always shows a
higher pacc��� for all replicas compared to the t-REM. The
use of a large overlap parameter 
 consistently increases
pacc��� for the fixed M =35. The enhancement in pacc��� with
increasing 
 is remarkable for a smaller M, as in the cases of
M =10 and 20 in Fig. 11�b�.

The convergence of simulations of LJ31 is very slow,
which makes it difficult to test performance with thermody-
namic criteria. The numbers of tunneling events in replica
and energy space are more effective as quantitative bench-
marks. Compared to the t-REM, both N�R and N�U in
Figs. 12�a� and 12�b�, respectively, are significantly en-

hanced in RESTMC with decreasing M at fixed 
=0.1. N�R

is roughly three times larger in M =15 and dramatically ac-
celerated with M =10. The enhancement in N�R leads to the
increase in N�U in Fig. 12�b�, computed between �133 and
�105. Note that RESTMC simulations with M =10 and 15
show about two times more tunnelings in energy compared
to the t-REM. The acceleration of N�U with increasing 
 is
also illustrated in Fig. 12�c�, in which N�U is about 2.5 times
larger with M =35 and 
=1.0, compared to the t-REM. On
the other hand, a further increase in 
 from 0.1 to 0.5, with
M =10, provides no further enhancement in N�U. RESTMC
employing a longer weight determination process with M
=10 and 
=1.0 shows a further enhancement in N�U, indi-
cating an intimate connection between the refinement of the
statistical temperature and the sampling performance.

Finally, it should be noted that the time dependence of
tunneling events in LJ31 show a very different characteristic
from that of LJ19 or LJ55 due to the quantitative differences
in the underlying energy landscapes. In contrast to the per-
fect linear relationship between the tunneling events and the
simulation time in LJ19 or LJ55 �see Figs. 3�a� and 6�a��, both
N�R and N�U in LJ31 are quiet irregular with a staircaselike
increment. This nonmonotonous diffusion process in both
replica and energy space is attributed to the double-funneled
energy landscape intrinsic to LJ31, in which intermittent
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Mackay→anti-Mackay transitions dominate the global sam-
pling dynamics, forming a bottleneck in the convergence of
simulations.

IV. CONCLUSION

We developed the RESTMC algorithm by naturally com-
bining STMC �Ref. 36� and REM1,2 methods. RESTMC
samples a range of temperatures rather than a specific single
temperature and achieves a flat energy sampling by employ-
ing a generalized sampling weight in each replica. The sys-
tematic enhancement in energy overlaps between neighbor-
ing replicas allows the use of fewer replicas for an increased
dynamic sampling range as a function of the system size.
Moreover, the sampling weight in each replica is self-
adaptively determined via the dynamic updates of the
replica-dependent statistical temperature for a faster conver-
gence.

The quantitative performance comparison between
RESTMC and the conventional t-REM, in both single- and
multifunneled energy landscapes of LJ 19, 55, and 31 atom
cluster systems, reveals that RESTMC provides a consider-
able enhancement in the rate of convergence of simulations
accompanied with accelerated tunneling in replica and en-
ergy spaces, even when employing a significantly smaller
number of replicas. The robustness of RESTMC has been
explicitly demonstrated in various simulation conditions by
varying number of replicas, temperature allocation schemes,
and temperature overlap parameters. In all cases, RESTMC
provides the correct canonical thermodynamics via reweight-
ing, even with a less refined sampling weight due to the long
equilibration time in the Mackay→anti-Mackay transition
region of LJ31.

The extensive increase in the number of replicas in the
conventional t-REM is a fundamental problem for the con-
formational sampling of biomolecules with explicit solvents.
Several sophisticated replica exchange methods15–27 have
been developed to resolve this limitation. We expect that the
same strategy used in RESTMC represents one alternative
route to overcome this limitation with a proper extension to
molecular dynamics simulations.
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