Table A3.
Results of fitting the weighted CoG model to the data obtained in the dual-task conditions (Experiment 3).
| Leftward | Rightward | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Conditio n | α | Slope | Int | SD | R2 | L | p | α | Slope | Int | SD | R2 | L | p |
| M L | M L | |||||||||||||
| Saccadic Task A lone | 0.87 | 0.95 | −3 | 31 | 0.42 | 686.9 | 0.81 | 1.27 | −129 | 34 | 0.52 | 688.8 | ||
| Dual Tasks: | ||||||||||||||
| Same Target Set | 0.78 | 1.06 | 48 | 30 | 0.46 | 1342.7 | <.05* | 0.81 | 1.23 | −112 | 33 | 0.51 | 1520.1 | 0.96 |
| Different Target Sets: ES | 0.66 | 1.21 | 123 | 30 | 0.45 | 1378.2 | <.001* | 0.79 | 1.07 | −35 | 31 | 0.43 | 1442.0 | 0.56 |
| Different Target Sets: EP | 0.49 | 0.98 | 24 | 29 | 0.32 | 946.3 | <.001* | 0.60 | 0.84 | 66 | 30 | 0.25 | 928.6 | <.001* |
| GT | GT | |||||||||||||
| Saccadic Task A lone | 1.00 | 0.87 | −51 | 36 | 0.40 | 1723.3 | 0.95 | 1.04 | −28 | 36 | 0.46 | 1604.8 | ||
| Dual Tasks: | ||||||||||||||
| Same Target Set | 0.78 | 1.07 | 43 | 33 | 0.42 | 2382.4 | <.001* | 0.79 | 1.13 | −69 | 36 | 0.40 | 2352.4 | <.001* |
| Different Target Sets: ES | 0.81 | 1.04 | 26 | 36 | 0.35 | 2423.8 | <.001* | 0.76 | 1.11 | −63 | 36 | 0.38 | 2350.5 | <.001* |
| Different Target Sets: EP | 0.86 | 1.05 | 27 | 38 | 0.37 | 2402.6 | <.01* | 0.91 | 0.98 | 12 | 35 | 0.42 | 2232.8 | 0.43 |
| SDK | SDK | |||||||||||||
| Saccadic Task A lone | 0.67 | 1.20 | 108 | 27 | 0.50 | 633.0 | 0.72 | 1.15 | −77 | 31 | 0.38 | 699.7 | ||
| Dual Tasks: | ||||||||||||||
| Same Target Set | 0.74 | 0.99 | 8 | 20 | 0.61 | 1710.5 | <.001* | 0.77 | 1.04 | −31 | 23 | 0.57 | 1829.5 | <.05* |
| Different Target Sets: ES | 0.62 | 1.10 | 64 | 23 | 0.51 | 1851.6 | <.05* | 0.70 | 0.96 | 5 | 25 | 0.42 | 1769.9 | 0.57 |
| Different Target Sets: EP | 0.53 | 0.99 | 17 | 22 | 0.47 | 1773.5 | <.001* | 0.61 | 1.02 | −28 | 24 | 0.44 | 1715.8 | <.001* |
ES: Emphasize Saccade
EP: Emphasize Percept
Slope and Int are the values of the slope and intercept of the given model (m and b in eq. A1).
SD is the root mean square error (RMSE) about the best fit line given by the model.
L the negative log of the maximum likelihood of the given model (eq. A2).
p values were obtained fro m testing the fit of the weighted COG Model W relative to a model F where α was set to the value obtained when the saccadic task was done alone (df=1, see equation A4).
indicates Model W is a significantly better fit than Model F.