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Despite extensive study of individual enzymes and their organization into pathways, the means by
which enzyme networks control metabolite concentrations and fluxes in cells remains incompletely
understood. Here, we examine the integrated regulation of central nitrogen metabolism in
Escherichia coli through metabolomics and ordinary-differential-equation-based modeling. Meta-
bolome changes triggered by modulating extracellular ammonium centered around two key
intermediates in nitrogen assimilation, a-ketoglutarate and glutamine. Many other compounds
retained concentration homeostasis, indicating isolation of concentration changes within a subset of
the metabolome closely linked to the nutrient perturbation. In contrast to the view that saturated
enzymes are insensitive to substrate concentration, competition for the active sites of saturated
enzymes was found to be a key determinant of enzyme fluxes. Combined with covalent modification
reactions controlling glutamine synthetase activity, such active-site competition was sufficient to
explain and predict the complex dynamic response patterns of central nitrogen metabolites.
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Introduction

Microbes tailor their growth rate to the nutrient environment.
For example, Escherichia coli grow faster in the presence of
ample ammonium than when nitrogen is scarce (Atkinson
et al, 2002; Gyaneshwar et al, 2005). Although the metabolic
pathways converting nutrients to biomass are well known, a
quantitative understanding of the relationship between
nutrient environment, metabolism, and growth rate is still
missing. Furthermore, despite much progress towards quanti-
tatively understanding potential mechanisms for controlling
metabolite concentrations and fluxes (as reviewed in Sorribas
and Savageau, 1989; Heinrich and Schuster, 1996; Fell, 1997),
the most important control mechanisms operating in cells
have not been rigorously dissected. This is particularly true for
networks containing cycles and branches.

One approach to gaining quantitative understanding of
cellular metabolic regulation is to analyze the dynamics
of intracellular metabolite concentrations in response to
changes in nutrient availability. For such analysis, nitrogen
assimilation in E. coli provides a tractable model network.

As a prokaryote, E. coli lacks extensive compartmentation.
Compared with carbon metabolism, the metabolic circuitry
for nitrogen assimilation is simpler. Extensive biochemical
analysis has been conducted on some of the key nitrogen
assimilation enzymes in E. coli, especially glutamine synthe-
tase (GS) (Miller and Stadtman, 1972; Schutt and Holzer, 1972;
Mantsala and Zalkin, 1976; Kustu et al, 1984; Alibhai and
Villafranca, 1994). A strong correlation has been demon-
strated between the intracellular pool size of glutamine and
growth rate under nitrogen limitation in the closely related
organism Salmonella (Ikeda et al, 1996).

The networks of ammonium assimilation and GS regulation
in E. coli are shown in Figure 1. Glutamate is the principal
cellular nitrogen distributor (Ikeda et al, 1996; Reitzer, 2003)
and can be produced through either a single reaction
catalyzed by glutamate dehydrogenase (GDH) or by the
glutamine synthetase/glutamate synthase cycle (GS/GOGAT)
(Figure 1A). GDH directly converts a-ketoglutarate, ammonia,
and reducing power (NADPH) to glutamate. The GS/GOGAT
cycle catalyzes the same net reaction, but by first producing
glutamine, and then converting one glutamine and one
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a-ketoglutarate to two molecules of glutamate. The GDH
reaction does not consume ATP, whereas the GS reaction does.
In exchange for this energy input, GS has a higher affinity than
GDH for ammonia (KmB0.1 versus 1.5 mM) (Sakamoto et al,
1975; Alibhai and Villafranca, 1994).

GS is extensively regulated. Its transcription and catalytic
activity are controlled by two interlinked cycles of protein
covalent modification that respond to the intracellular
concentrations of glutamine and a-ketoglutarate (Figure 1B)
(Schutt and Holzer, 1972; Senior, 1975; Garcia and Rhee, 1983;
Kustu et al, 1984; Atkinson et al, 2002; Reitzer, 2003; Jiang
et al, 2007). The ultimate function of these cycles is to regulate
the concentration of active (unmodified) GS. On short time
scales, this is largely achieved through GS adenylylation/
deadenylylation by the bifunctional adenylyltransferase/ade-
nylyl-removing enzyme (AT/AR) (Schutt and Holzer, 1972;
Kustu et al, 1984; Reitzer, 2003). AT/AR is controlled directly
by glutamine (which favors adenylylation, or inactivation),
and also by the signaling protein PII (which in its unmodified
state indicates nitrogen sufficiency, favoring GS adenylylation
through AT/AR and also turning off GS transcription)
(Bancroft et al, 1978; Reitzer, 2003; Ninfa and Jiang, 2005).
PII can itself be covalently modified (thereby indicating

nitrogen limitation) by another bifunctional enzyme, uridylyl-
transferase/uridylyl-removing enzyme (UT/UR), which
uridylylates PII when glutamine is scarce (Jiang et al, 1998a;
Ninfa and Atkinson, 2000). In addition, PII can be modified by
noncovalent binding of a-ketoglutarate, which rises in
concentration during nitrogen limitation (Ninfa and Jiang,
2005; Brauer et al, 2006). PII can also respond to other inputs,
including adenylylate energy charge (Jiang and Ninfa, 2007).

The net effect of the PII-AT/AR-GS cascade on nitrogen
assimilation (on short time scales, in which transcriptional
regulation is not important) has been simulated computation-
ally by Bruggeman et al, who developed an ordinary-
differential-equation model of the network (Bruggeman et al,
2005). Kinetic parameters of the model were estimated based
on biochemical studies of individual components, conducted
in large part by Ninfa and colleagues (Jiang et al, 1998a, b;
Ninfa and Atkinson, 2000). This modeling effort revealed that
the system is indeed capable of producing the anticipated
regulatory behavior: under nitrogen poor conditions, PII is
uridylylated and GS is not covalently modified, whereas under
conditions of nitrogen excess, PII is unmodified and GS is
substantially inactivated by adenylylation. Moreover, the
model showed that such regulation is adequate to control
glutamine and glutamate concentrations, with glutamine
varying more widely in response to nitrogen availability than
glutamate, consistent with experimental data (Schutt and
Holzer, 1972; Ikeda et al, 1996).

Although informative, the model of Bruggeman et al is
incomplete in several respects. It considers the concentration
of a-ketoglutarate to be constant during nitrogen perturba-
tions. As we show here, the a-ketoglutarate pool size rapidly
changes by an order-of-magnitude in response to changing
nitrogen availability. Given that a-ketoglutarate is both a
substrate for nitrogen assimilation and a regulator of the GS
covalent modification cascade, considering its dynamics is
critical. In addition, Bruggeman et al assume that consumption
of glutamine and glutamate are independent of each another,
which fails to take into account the stoichiometric require-
ments for each in building biomass. Thus, Bruggeman et al fail
to capture the fundamental interdependence of metabolite
pools and growth: metabolite pool sizes can control growth
rate, with growth requiring consumption of metabolites in
fixed ratios dictated by the composition of biomass. The
integrated control of nitrogen assimilation within the larger
framework of overall cellular metabolic activity therefore
remains an open question.

Here, we investigate the short-term (i.e., nontranscriptional)
regulation of ammonium assimilation in E. coli using a
combination of experiments and computational modeling.
We sample the metabolome of ammonium-limited and
ammonium-replete E. coli and use mass spectrometry to
quantify a broad spectrum of cellular metabolites in the
resulting extracts. We then use data on central nitrogen
metabolites to drive the development of a dynamic model that
links extracellular ammonium availability to intracellular
metabolite concentrations and thereby cellular growth rate.
Through this data-driven modeling process, we demonstrate
that competition for enzyme active sites by substrates,
products, and inhibitors is an important component regulating
cellular nitrogen assimilation fluxes. Thus, even for one of the
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Figure 1 Ammonia assimilating pathways and regulation of glutamine
synthetase in E. coli. (A) Ammonia can be assimilated through either glutamate
dehydrogenase (GDH) or the glutamine synthetase/glutamate synthase cycle
(GS/GOGAT). For each turn of the GS/GOGAT cycle, one molecule of ammonia
is assimilated into glutamate. (B) GS catalytic activity is regulated by the
bifunctional enzyme adenylyltransferase/adenylyl-removing enzyme (AT/AR),
with adenylylation inactivating GS. The activity of AT/AR is regulated by the
signaling protein PII, which is itself covalently modified by another bifunctional
enzyme, uridylyltransferase/uridylyl-removing enzyme (UT/UR). Unmodified PII

indicates nitrogen sufficiency and promotes GS adenylylation. Glutamine and
a-ketoglutarate allosterically regulate AT/AR and UT/UR as shown.
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best-studied metabolic subnetworks, combining metabolomic
experiments with modeling identified an important but
previously overlooked means of flux control.

The resulting model quantitatively reproduces the experi-
mentally observed metabolic responses used in model devel-
opment. In addition, it accurately predicts cellular responses to
different perturbations. This work thereby lays the ground-
work for combining metabolomics and modeling to develop
larger predictive models of metabolic dynamics.

Results

GS/GOGAT cycle produces most of the glutamate
in wild-type E. coli grown on sufficient glucose
and ammonium

Determination of the pathways that carry the bulk of steady-
state flux is a prerequisite to understanding metabolic
dynamics. To investigate the relative contribution of the
GDH and GS/GOGAT pathways to glutamate synthesis in cells
grown with ample glucose and ammonium, we have pre-
viously used an isotope tracer-based approach, kinetic flux
profiling, which suggested a dominant role for the GS/GOGAT
cycle (Yuan et al, 2008). To investigate whether GS/GOGAT
indeed predominates, here we conducted kinetic flux profiling
of E. coli mutants lacking GDH or GOGAT.

In media with adequate glucose and ammonium, DGDH and
DGOGAT grew comparably to wild type (Supplementary
Figure 1A), and also showed a similar overall metabolome
when compared with wild type (Supplementary Figure 1B).
Consistent with GDH carrying little flux, knocking out GDH
did not alter the kinetics of cellular assimilation of
15N-ammonium into glutamine or glutamate (Supplementary
Figure 1C and D). In contrast, knocking out GOGAT subs-
tantially slowed assimilation of 15N-ammonium into gluta-
mine (Supplementary Figure 1C), with flux through glutamine
reduced from 54 mM/min to 13 mM/min (Supplementary
Table 1). The results are consistent with 41 mM/min of
glutamine feeding into GOGAT in wild type, and generating
82 mM/min of glutamate (because of the 1:2 glutamine:gluta-
mate stoichiometry of GOGAT), which is 485% of the total
glutamate biosynthetic flux in wild type (Yuan et al, 2006).
Thus, E. coli uses the GS/GOGAT cycle as the major route for
glutamate production, even when the more energy-efficient
GDH pathway can support equally rapid growth.

Ammonium limitation of filter-grown cultures

We grew E. coli on filters on top of an agarose-media mixture
to enable rapid, noninvasive sampling of the intracellular
metabolome (for alternative approaches, see Lange et al,
2001; Noh et al, 2007; Villas-Boas and Bruheim, 2007). When
spread diffusively so that they cover only a small fraction of the
filter surface area, E. coli will double several times on the filter
at a growth rate similar to that in liquid media (Yuan et al,
2006). When the agarose-media mixture contained 10 mM
ammonium, E. coli grew to an optical density at 650 nm
(OD650)B1.0 with a doubling time of 58 min (Figure 2A, gray
triangles).

To induce nitrogen limitation of filter-grown cultures,
we reduced the initial ammonium concentration to 2 mM.
The culture grew at the unlimited rate to an OD650B0.4 (which
occurred B3 h after transfer of the cells to filter culture),
at which time the surface ammonium concentration at the
agarose-filter interface became measurably depleted
(Figure 2B). As the underlying agarose provides a reservoir
of ammonium, growth of the culture did not stop, but
continued at a reduced rate for B1.5 additional doublings
(doubling time B220 min) (Figure 2A, cyan triangles).
Consistent with the culture being nitrogen-limited, the GS
protein content was elevated (Figure 2C). The growth rate was
partially restored (doubling time B117 min) by transferring
the ammonium-limited filter culture to plates with 10 mM
ammonium (Figure 2A, blue dots). Thus, although some cell-
to-cell variability to ammonia availability likely was present
(Atkinson et al, 2002), overall the culture became effectively
nitrogen-limited.

Growth in 2 mM initial ammonium concentration was
assessed also for the DGDH and DGOGAT strains. Both grew
comparably to wild type (Supplementary Figure 2). Given the
higher affinity of the GS/GOGAT pathway than of GDH for
ammonia, the lack of a growth defect for the DGOGAT strain
was surprising, but could be rationalized if growth was limited
by ammonium diffusion from the agarose to the filter, rather
than by cellular ammonium assimilation. We hypothesized
that co-culture should accordingly reveal a growth defect, as
the DGOGAT strain should be inferior in competing for the
limiting ammonium that diffuses to the E. coli-filter interface.
Indeed, DGOGATwas out-competed by the wild-type strain in
nitrogen-limited co-cultures (Figure 2D). Consistent with the
DGOGAT strain being inferior at scavenging ammonium from
the plate surface, the surface ammonium concentration at the
onset of nitrogen limitation (3 h) was higher for the DGOGAT
than for the wild-type strain (Figure 2C).

Metabolome changes induced by ammonium
upshift center around glutamine and
a-ketoglutarate

Having established a technique for ammonium limitation of
filter cultures, we measured the dynamic metabolic responses
triggered by ammonium upshift (N-upshift). Cells grown on
2 mM ammonium plates to the point of nitrogen limitation
(3 h; OD650B0.4) were transferred to plates with 10 mM
ammonium. At various time points thereafter, filters were
quenched with cold organic solvent, extracted, and the
resulting extracts analyzed by a set of LC-MS/MS methods,
which together enable quantitation of B250 metabolites
(Lu et al, 2008).

Quantitative data throughout the entire time course were
obtained for 59 metabolites (the others were below the limit of
quantitation or too unstable to yield reliable information).
Dynamics of these 59 compounds (normalized to levels of the
corresponding metabolite in exponentially growing E. coli with
sufficient ammonium) are shown in Figure 3 in clustered
heat-map format. To identify in an unbiased manner the
predominant patterns in this data, we used singular value
decomposition (SVD) (Alter et al, 2000). The first two
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characteristic metabolite response patterns obtained by SVD
are shown above the heat map. The first characteristic pattern
accounts for a remarkable 63% of the overall information in
the data, and the second 23%; thus, together, these two
patterns account for the majority (86%) of the overall
information (Supplementary Figure 3). The compound most
strongly contributing to the first characteristic pattern is a-
ketoglutarate (Supplementary Table 2), which accumulates
dramatically during ammonium limitation and decreases
monotonically to a normal level after ammonium upshift.
The compound most strongly driving the second characteristic
pattern is glutamine, which is depleted during ammonium
limitation and transiently overshoots its normal level on
nitrogen upshift. Thus, an unbiased data analysis revealed that
the compounds whose concentrations are most strongly
driving the overall metabolome response are themselves the
central players in nitrogen assimilation.

Other strongly impacted compounds included ones closely
tied to a-ketoglutarate and glutamine: other TCA compounds
(Figure 3, orange labels) and amino acids (Figure 3, green
labels). During ammonium upshift, cofactors such as ATP and

NADPH, although reactants in nitrogen assimilation, did not
change markedly; neither did the adenylylate energy charge or
central carbon compounds outside of the TCA cycle (large dark
region at the bottom of Figure 3; Supplementary Figure 4).
Thus, short-term concentration responses to nitrogen avail-
ability occur in a localized region of metabolism closely related
to the limiting nutrient, with homeostasis maintained through-
out much of core metabolism.

Qualitative assessment of central nitrogen
assimilation

Motivated by the observed metabolome changes revolving
around central nitrogen assimilation, we focused on quantita-
tively modeling central nitrogen assimilation reactions. These
efforts were facilitated by having experimentally determined
that the key cofactors (ATP, NADPH) remained at homeostasis,
thereby enabling approximation of their concentrations as
constants.

Dynamics of core nitrogen assimilation compounds during
nitrogen limitation and subsequent upshift (Figure 4, left
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column) were qualitatively consistent with expectations based
on prior literature: for example, the transient overshoot in
glutamine on nitrogen upshift can be explained by high
activity of GS in nitrogen-limited cells and subsequent GS
inactivation by adenylylation when glutamine accumulates
after upshift (Schutt and Holzer, 1972; Kustu et al, 1984).
Similarly, the transient dip in glutamate on upshift can be
explained by rapid glutamate consumption by GS when
ammonium availability increases, followed by increased
glutamate production by GOGATwhen glutamine accumulates
(Miller and Stadtman, 1972; Schutt and Holzer, 1972).

A challenge in quantitatively modeling these data is that
glutamate can be formed by either the GDH or GS/GOGAT
pathways. To eliminate this complexity, we conducted the
same ammonium perturbation in DGDH and DGOGAT E. coli.
Consistent with the expectation that the GS/GOGAT pathway
dominates under nitrogen limitation, metabolite patterns in
the DGDH cells were indistinguishable from wild type
(Figure 4, middle column), whereas those in DGOGAT cells
were completely different (Figure 4, right column). Most
strikingly, in the DGOGAT cells glutamine behavior was
opposite to that in wild type. The observed glutamine pattern
in the DGOGATcells (elevation during nitrogen limitation and
decrease on N-upshift) can be qualitatively rationalized based
on lack of glutamate (which falls substantially during nitrogen
limitation of DGOGAT cells) slowing cellular growth, hence
reducing glutamine consumption, and thereby leading to
glutamine accumulation.

Another important consideration in quantitatively modeling
these data is whether ammonium enters the cell through
unfacilitated membrane diffusion or facilitated diffusion
through the ammonium channel AmtB. To address this,
experiments were conducted in DAmtB cells. Consistent with
a previous report by Atkinson et al (2002), the growth (data not

shown) and metabolome phenotypes of DAmtB cells (Supple-
mentary Figure 5) were indistinguishable from wild type under
our experimental conditions. As our experiments were
conducted at pHB7, the lack of a phenotype of DAmtB is
consistent with AmtB being an ammonium cation channel
(Fong et al, 2007; Javelle et al, 2008), which enhances cellular
access to ammonium primarily at acidic pH, when ammonia
(which can pass through the cell membrane by diffusion) is
strongly depleted by protonation.

Initial quantitative modeling of central nitrogen
assimilation

To translate this qualitative understanding to quantitative
equations, we wrote a differential-equation model of the
network, including the cascade of covalent modification
reactions that controls GS activity through (de)adenylylation
(Figure 5). The model treats the extracellular concentration of
ammonium and intracellular concentrations of the central
carbon metabolites a-ketoglutarate and oxaloacetate as
inputs to a nitrogen assimilation module, which converts
these metabolites into glutamate, glutamine, and aspartate.
The concentrations of glutamine and glutamate control growth
rate, which in turn determines the consumption of amino acids
to form biomass. The effluxes of amino acids to biomass are a
known function of growth rate, dictated by the average
composition of E. coli (Reitzer, 2003). These effluxes involve
glutamine, glutamate, and aspartate contributing to synthesis
of other metabolites (e.g., through transamination), as well as
being directly assimilated into protein.

Implementation of the model required defining a variety of
parameters: the rate of transport of ammonia into the cell by
diffusion (kdiff), binding affinities of metabolites for enzyme
active sites (Km and Ki), maximum enzyme velocities (Vmax),
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and parameters relating intracellular metabolite concentra-
tions to cellular growth rate. The general philosophy was to
take Km and Ki values directly from biochemical literature
when available (see Supplementary Table 3), and to select
other parameters to fit the observed experimental data shown
in Figure 4 using a global search algorithm (genetic algorithm)
(Goldberg, 1989; Feng et al, 2006). Values taken from literature
were from experiments at physiological pH and temperature
whenever possible; nevertheless, these literature values may
not precisely reflect enzyme properties in the cellular milieu.
The complete set of parameters used in our model is provided
in Supplementary Table 3. All parameters were assumed to be
constant between the wild-type, DGDH, and DGOGAT strains,
except for the Vmax values for GS and GDH, which varied as a
result of differential enzyme concentrations. The relative Vmax

values were assumed to be proportional to the associated
enzyme protein levels, which were measured directly by
western blots (Figure 2C).

Growth rate was simulated as a function of intracellular
metabolite concentrations using a variant of a previously
described saturable, Hill-type function (Goyal and Wingreen,
2007):

tð½Q�; ½E�Þ ¼ t0½1þ ðKQ=½Q�Þ2 þ ðKE=½E�Þ2� ð1Þ

where t is the doubling time of the cells (i.e., the inverse of
growth rate), t0 is the doubling time with ample ammonium,

[Q] and [E] are the intracellular glutamine and glutamate
concentrations, and KQ and KE are parameters. This formula-
tion satisfies following plausible constraints: t is a mono-
tonically decreasing function of the two metabolite pools,
t approaches infinity if either pool approaches zero, and
t becomes asymptotically independent of either metabolite
pool ([Q], [K]) above a saturating pool size (KQ, KE).

The selection of a Hill coefficient of two was based on Ikeda
et al’s results for Salmonella (Ikeda et al, 1996) and
our observation that this choice of Hill coefficient enables
us to fit the experimentally observed growth rates based on
the experimentally observed glutamine and glutamate
concentrations, both before and after nitrogen upshift in
wild-type, DGDH, and DGOGAT E. coli (t0, KQ, and KE equal to
90 min, 1.77 mM, and 49.5 mM respectively). The relatively
large value of t0 reflects the fact that the cells, after having
experienced nitrogen limitation, have a reduced maximum
growth rate (perhaps because of a lower ribosome density;
such delayed recovery of growth rate on nitrogen upshift was
also observed by Blauwkamp and Ninfa (2002) and has been
reported for Salmonella (Kjeldgaard et al, 1958; Bremer and
Dennis, 1975)). The value of KQ (1.77 mM) was within five-
fold of that found by Ikeda et al in Salmonella (0.4 mM) (Ikeda
et al, 1996).

Efforts at fitting the dynamic metabolite concentration data
using the above framework were, however, initially unsuc-
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PII) are calculated as variables by the model, whereas those outside the boxes (a-KG, OA, and extracellular NH3) must be provided as inputs. N-assimilation consists of
five metabolic and regulatory reactions: (1) glutamate dehydrogenase, GDH; (2) glutamine synthetase, GS; (3) glutamate synthase, GOGAT; (4) adenylyltransferase/
adenylyl-removing enzyme, AT/AR; (5) uridylyltransferase/uridylyl-removing enzyme, UT/UR. Ammonia enters the cell by passive diffusion across the membrane.
N-utilization consists of two different classes of reactions, which consume amino acids: those in which a nitrogen group is transferred to an acceptor molecule, recycling
the carbon skeleton (N-donation) and those that consume the entire metabolite (protein and biosynthesis). In the model, the rate of GLN, GLU, and ASP consumption for
biosynthesis and protein production was taken to be proportional to growth rate (for details, see Supplementary Table 5).
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cessful. In particular, no parameter sets captured the sus-
tained increase in glutamate, after a transient drop, that
occurred after ammonium upshift in wild-type andDGDH cells
(Figure 4).

Competition for the active site of GOGAT controls
the glutamate production rate

To assess whether the simulation’s failure reflected a logistical
difficulty (coding error or inadequacy of the parameter search)
or a more fundamental issue, we analyzed glutamate fluxes in
DGDH cells algebraically, assuming pseudo-steady-state both
before and 15 min after the nitrogen upshift. After nitrogen
upshift, to enable the B2-fold increase in cellular growth rate,
glutamate consumption and production must both increase
B2-fold. The only route of glutamate production in DGDH
cells is the GOGAT reaction, which is strongly forward driven
(DG � 0, based on the literature reported DG0 and observed
metabolite concentrations; Supplementary Table 4A); thus the
reverse flux is negligible. Accordingly, the forward rate of this
reaction must increase B2-fold after nitrogen upshift. Quali-
tatively, the large increase in cellular glutamine concentration
after nitrogen upshift seems adequate to drive this flux
increase. Quantitatively, however, the state-steady analysis
revealed a problem: even during nitrogen limitation, the
cellular glutamine concentration (1.9 mM) is six-fold above
the Km of GOGAT for glutamine (0.3 mM) (Miller and Stadt-
man, 1972). Thus, GOGAT is saturated both before and after
nitrogen upshift, and the flux through GOGATshould therefore
hardly increase even if cellular glutamine concentration
increases greatly. Compounding this problem, other metabo-
lite concentration changes that occur after nitrogen upshift
(falling a-ketoglutarate and rising glutamate) tend to favor
lower, not higher, GOGAT flux.

To quantify the extent of GOGATsaturation by glutamine, we
evaluated the elasticity coefficient. By definition, the elasticity
coefficient of enzyme flux (V) with respect to changes in
substrate or product concentrations (C) is given by qlnV/qlnC.
The elasticity coefficient can be decomposed into a mass
action term (which captures the general propensity of
substrate addition to favor product formation, and is positive
for substrate and negative for product) and a kinetic term
(which in our case captures the propensity of both substrate
and product to cause enzyme active-site saturation, and is
negative for both substrate and product) (Hofmeyr, 1995).
As shown in Supplementary Table 4C, for glutamine and
GOGAT, the elasticity coefficient was only 0.37 during nitrogen
limitation, and yet lower after upshift. These low elasticity
coefficients reflected a substantial negative kinetic term indi-
cative of active-site saturation by glutamine, and therefore
relative insensitivity of GOGAT flux to glutamine concentration.

Modeling the increase in GOGAT flux after N-upshift
required recognition of an important role played by active-
site competition. Although product inhibition had been
included in the initial failed modeling attempt, competitive
inhibition by aspartate, a feature identified indirectly in a
classic biochemical study of GOGAT, had not (Miller and
Stadtman, 1972). The average occupancy of a particular
species Xj in a binding site that can accommodate N possible

species is

pj ¼
½Xj�
KXj

1þ
PN

i

½Xi �
KXi

ð2Þ

If Xj is a substrate, the forward reaction rate is proportional
to pj. Thus, the occupancy of GOGAT by glutamine must
increase by two-fold for flux to increase two-fold. We find that
an adjustment in the Michaelis constant of glutamine (from 0.3
to 0.8 mM) enables this occupancy change while using best
estimates of all other metabolite-binding affinities from the
literature (Miller and Stadtman, 1972) (Supplementary Tables
3 and 4). The resulting expression for the GOGAT flux is (with
the ratio of NADPþ to NADPH, which did not change measur-
ably in response to nitrogen upshift, incorporated into Keq)

vGOG ¼
Vmax

½GLN�
KGLN
� ½aKG�

KaKG
� ½GLU�2

KGLNKaKGKeq

� �

1þ ½GLN�
KGLN
þ ½GLU�

KGLU
þ ½ASP�

KASP

� �
1þ ½aKG�

KaKG
þ ½GLU�

KGLU

� � ð3Þ

In equation (3), the numerator reflects the propensity for the
reaction to proceed (in the forward minus the backward
direction) given no limitation on enzyme active-site avail-
ability; the first bracketed term in the denominator reflects
competition for the enzyme’s glutamine binding site; and the
second term reflects competition for the a-ketoglutarate one.
Repeating the evaluation of the elasticity coefficient, we find
that inclusion of aspartate competition (along with modifica-
tion of the Michaelis constant of glutamine) roughly triples the
elasticity coefficient of GOGAT flux with respect to glutamine
concentration (Supplementary Table 4C). In addition, aspar-
tate competition renders the elasticity coefficient of GOGAT
flux with respect to glutamate concentration less negative; that
is, it mitigates the impact of product inhibition. Both of these
changes in elasticity coefficients favor the requisite increase in
GOGAT flux after ammonia upshift.

Using the above expression for GOGAT, and similar
expressions for all other metabolic reactions (Supplementary
Table 5), parameters were identified that resulted in a good fit
of the simulation to the experimental data from both wild-type
and mutant E. coli (Figure 4).

To assess the sensitivity of the model results to the precise
values of the parameters, in addition to computing response
coefficients (Supplementary Table 7), we ran simulations with
each parameter varied by fixed ratios from its optimal value.
In the nitrogen-limited regime, the calculated growth rate was
insensitive to changes in nearly every enzymatic parameter in
the model, with two informative exceptions: growth was
impaired by increases to the Vmax of GOGAT, and also by
decreases to the Michaelis constant of GOGAT for glutamine
(Figure 6). In each case, the glutamine pool is depleted by the
increased activity of GOGAT. These predictions highlight the
physiological importance of regulation of glutamate produc-
tion by competition for the GOGAT active site.

Control of net aspartate production

To investigate whether active-site competition might be more
broadly implicated in regulation of cellular metabolism, we
examined also aspartate production from glutamate and
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oxaloacetate, catalyzed by aspartate aminotransferase (AST).
As oxaloacetate was not directly measured because of its low
cellular concentration and instability, its concentration was
estimated by assuming equilibrium between oxaloacetate and
malate (Voet and Voet, 2004).

To feed protein and nucleic acid synthesis, net aspartate
production must increase B2-fold after nitrogen upshift given
the observed two-fold increase in growth rate. This flux
increase is not caused simply by increased substrate concen-
tration, as glutamate rises only modestly and oxaloacetate
presumably falls with nitrogen upshift. Instead, control of the
reverse reaction rate by active-site competition is the most
important means of controlling net flux. Before and after
nitrogen upshift, AST’s two substrate binding sites (one for the

four carbon compounds oxaloacetate and aspartate, and
the other for the five carbon compounds glutamate and
a-ketoglutarate) are both saturated, largely with aspartate and
glutamate (Powell and Morrison, 1978; Deu et al, 2002). When
these amino acids occupy both sites (the most common
situation), no reaction occurs. Thus, the forward and reverse
reaction rates are each small compared with the maximum
turnover rate of AST. The forward reaction that produces
aspartate proceeds only when oxaloacetate is bound and
the reverse reaction only when a-ketoglutarate is bound. Of the
four reactants and products, the one changing most in
concentration with nitrogen upshift is a-ketoglutarate, which
decreases B20-fold, thereby decreasing by B20-fold the rate
of the reverse reaction. The net reaction thereby shifts from

 GOGAT Ki Glu 
 GOGAT Km Gln 

GOGAT Km α-KG 
 GOGAT Ki Asp 

 GS Vmax 
 GSAMP Vmax 

 GS Km Glu 
 GS Km NH3 

 GS Ki Gln 
 GDH Vmax 

 GDH Km α-KG 
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Figure 6 Fluxes and pool sizes under nitrogen limitation were generally robust to changes in model parameters. Simulations were performed in which a single model
parameter was multiplied by a factor of (from left to right) 1/16, 1/8, 1/4, 1/2, 2, 4, 8, or 16, and the nitrogen-limited steady-state pool sizes of GLU and GLN, the fluxes in
the GS/GOGAT cycle, and the growth rate were calculated. Values shown are ratios between the perturbed simulation and the original. Gray boxes indicate simulations,
which did not reach steady state. GOGAT, glutamate synthase; GS, glutamine synthetase; GDH, glutamate dehydrogenase; AT, adenyltransferase; AR, adenyl-
removing enzyme; UT, uridyltransferase; UR, uridyl-removing enzyme; AST, aspartate aminotransferase; kdiff, the diffusion constant for ammonia across the cell
membrane. When referring to a Km or Ki value, the substrate is listed after Km/i, for example, the Km of GOGAT for glutamine is listed GOGAT Km Gln.
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being weakly forward driven (close to equilibrium) before
nitrogen upshift, to largely unidirectional (Supplementary
Table 6). This turning off of the reverse reaction results in the
requisite increase in net aspartate production on nitrogen
upshift (Figure 4).

Evaluating the AST reaction in terms of elasticity coeffi-
cients, during nitrogen limitation, the elasticity coefficients of
AST flux with respect to substrates and products were high
(strongly positive for both substrates and strongly negative for
both products; Supplementary Table 6C). These large coeffi-
cients, dominated by the mass action terms, reflect the system
being near equilibrium, in which a modest change in substrate
or product concentrations results in a marked change in net
flux. Given the large elasticity coefficients for both substrates
and products, the overall flux change was dominated by the
metabolite that varied most in concentration after ammonia
upshift, a-ketoglutarate.

Predicting the response to other perturbations

To assess the predictive power of the model, all parameter
values were fixed based on the data shown in Figure 4, and
subsequently the metabolite profiles for three additional
perturbations were simulated and compared with experimen-
tal results (Figure 7). The first perturbation involved a nitrogen
upshift (the same qualitative perturbation as the training
data), but to a lower final ammonium concentration (3-fold
upshift instead of 13-fold). The model correctly predicted that,
in both wild-type and DGOGAT E. coli, the smaller nitrogen
upshift (Figure 7A, orange) would result in the same general
pattern as the larger upshift (Figure 7A, gray). Moreover, the
simulation correctly predicted that the glutamine overshoot
and glutamate dip observed in wild type would be reduced in
magnitude.

To determine whether the model could also predict
responses to qualitatively distinct perturbations, we examined
a downshift from limiting ammonium to ammonium starva-
tion. Nitrogen-limited cells were transferred to ammonium-
free agarose and consumption of the trace residual ammonium
on the filters measured (Supplementary Figure 6). These
measurements were then used to predict cellular metabolite
dynamics (Figure 7A, dark blue). For wild-type cells,
glutamine was predicted to fall rapidly, whereas in DGOGAT
cells glutamine was predicted to hardly fall. In contrast,
glutamate was predicted to fall rapidly in DGOGAT cells, but
not in wild-type cells. These major predictions were experi-
mentally verified, although the quantitative match between
the simulations and experimental data was imperfect.

To examine whether the model could also be used to predict
responses to genetic perturbations, DglnE cells, lacking GS
adenyltransferase (AT/AR), were subjected to the 13-fold
ammonium upshift. This strain lacks the ability to turn off GS
by adenylylation, thereby breaking the feedback circuit that
normally limits glutamine accumulation. Results are shown
separately from the data for the above perturbations, as the
glutamine response would otherwise be off-scale (Figure 7B).
The model predicted that glutamine would increase dramati-
cally and persistently with nitrogen upshift, to an order-of-
magnitude above the highest concentrations seen in wild
type, with the plateau level of glutamine after upshift

controlled by direct product inhibition of the GS active site.
In contrast, the model predicted that glutamate would closely
mimic wild type, showing a transient dip. This prediction
for glutamate contrasted with expectations based on prior
literature, which suggested that glutamate should be substan-
tially depleted (Kustu et al, 1984). Nevertheless, the model’s
predictions for both glutamine and glutamate were experi-
mentally verified.

Notably, the DAT/AR strain actually grew more slowly
after nitrogen upshift than before the onset of N-limitation.
Similar impaired growth was reported for DAT/AR Salmonella
on addition of ammonium to proline-fed cells and was
attributed to depletion of the glutamate pool (Kustu et al,
1984). Here, however, we did not observe substantial
glutamate depletion (Figure 7B). This discrepancy likely arises
from the different N-limiting condition used (proline feeding
versus ammonia limitation, which result in the main route
to glutamate being different). Instead, the growth defect
observed here may be due to excessive glutamine indu-
cing osmotic stress. Consistent with cells’ attempting to
reduce their internal osmolarity, the DAT/AR strain leaked
amino acids on nitrogen upshift (Supplementary Figure 7).
As the consumption of amino acids by growth was over-
estimated in the model after N-upshift (because of high
glutamine and glutamate concentrations), such unmodeled
amino acid leakage likely contributes to the model’s ability to
predict intracellular amino acid dynamics decently. Such
leakage may also contribute to the measured glutamate
concentrations being somewhat below those predicted by
the simulation.

To assess the predictive power of the model more
quantitatively, we plotted model predictions versus experi-
mental results (Figure 7C). To distinguish predictive power
from the ability to fit data, all data used for parameter
identification were excluded from this analysis. Overall, the
ability of the model to predict cellular metabolite concentra-
tions was good, with no evidence of systematic error
(95% confidence limits of the slope included 1) and most of
the variance explained (R¼0.85).

Computed phenotypes

Having validated the predictive power of the simulation, we
used it to estimate certain intracellular parameters that cannot
be readily measured experimentally. One of these is the
intracellular ammonium concentration, which the simulation
estimates as B1 mM in nitrogen-limited wild-type and DGDH
cells, and B30mM in DGOGAT cells. The higher intracellular
ammonium concentration in the DGOGAT cells accounts for
their ability to grow similarly to wild-type cells despite the
lower affinity of GDH (KmE1.5 mM) than GS (KmE0.1 mM)
for ammonium.

Measuring the dynamic changes in fluxes as a system
transitions between steady states remains experimentally
infeasible. Results of computational simulation of the central
ammonium assimilation fluxes during the transition from
limiting to ample ammonium in wild-type E. coli are plotted in
Supplementary Figure 8.

Other important parameters that can be readily calculated
using the simulation are enzyme flux-control coefficients: the
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fractional change in pathway flux that is produced by a
fractional change in the concentration of the enzyme of
interest, that is, (DFpathway/Fpathway)/(D[Ej]/[Ej]) (Fell, 1997).
For the nitrogen assimilation pathway (resulting in net
ammonium assimilation, glutamate production, and growth),
the simulation revealed that, under nitrogen-limiting conditions,
the flux-control coefficients of GS, GDH, and GOGAT are
negligible, with all flux control resting in diffusion of ammonia
into the cell (captured by the parameter kdiff in the model).

Discussion

E. coli are remarkably efficient at converting nutrient inputs
into biomass. This efficiency enables estimation of many of
their steady-state metabolic fluxes through linear optimization,
an approach called flux balance analysis (FBA) (Edwards et al,
2002). Although FBA is a powerful tool for flux estimation, it
does not reveal the chemical events actually controlling
metabolite concentrations and fluxes in cells. Here, we
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attempted to understand quantitatively such regulation, focus-
ing on short-term responses to changes in nitrogen availability.

To this end, we used LC-MS/MS to measure the dynamics
of the E. coli metabolome when ammonium availability
increases. Large concentration changes in a-ketoglutarate
and glutamine, two of the central players in nitrogen
assimilation, occurred rapidly (B10-fold changes in the first
minute after upshift). Unbiased statistical identification of the
major trends in the metabolome revealed two predominant
characteristic response patterns, one mirroring a-ketoglutarate
and one mirroring glutamine. Thus, at least among measured
metabolites, those most strongly signaling nitrogen availabil-
ity were species directly involved in nitrogen assimilation.
This observation also conforms well to the known regulation
by glutamine and a-ketoglutarate of the protein sensors
of nitrogen status (e.g., PII) (Ikeda et al, 1996). The
a-ketoglutarate response is also interesting in light of evidence
that a-ketoglutarate is the principal signal of nitrogen status in
cyanobacteria (Forchhammer, 2004).

A substantial fraction of the metabolome (B27/59) showed
a muted version of the a-ketoglutarate and/or glutamine
response patterns, with citric acid cycle compounds generally
mirroring a-ketoglutarate and amino acids generally mirroring
glutamine. Another large set of metabolites hardly changed in
concentration (B30/59). Thus, despite the dramatic altera-
tions to overall cell physiology, which lead to a two-fold
increase in growth rate after ammonium upshift, much of the
metabolome was effectively insulated from these changes. The
homeostatic compounds included ATP and NADPH, both
substrates consumed in nitrogen assimilation. Presumably,
increased consumption of these compounds on ammonium
upshift was offset by increased production.

The observation that co-factors involved in nitrogen
assimilation remained homeostatic enabled simulation of the
core reactions of nitrogen assimilation as a discrete module,
with the measured cellular concentrations of the relevant
carbon skeletons (e.g., a-ketoglutarate) considered as inputs
to the model. The model included regulation of GS activity by
a cascade of covalent modification reactions. In addition to GS
modification, the model captured ammonia diffusion into the
cell, its assimilation into glutamine, glutamate, and aspartate,
and consumption of these species to drive biomass produc-
tion. Growth rate was simulated as a function of the
intracellular concentrations of glutamine and glutamate. The
model thereby related environmental conditions to the growth
rate through intracellular metabolite levels. To our knowledge,
it is the first quantitative model to simulate the chemical steps
by which environmental nutrient availability controls,
through intracellular metabolite levels, cellular growth.

To the extent possible, the biochemical parameters of the
model were taken from literature data. Those parameters not
available in the literature (or for which biochemical estimates
are generally not indicative of cellular conditions, e.g., Vmax),
were determined by using a genetic algorithm to search for
parameter values that resulted in the model matching the
experimental results. One important conclusion of this
integrated experimental-modeling effort was that, for the most
part, known regulation of nitrogen assimilation is correct: it
was sufficient to result in good agreement between the model
and the experimental data.

Perhaps most informative, however, was the exception to
this rule: all of the simulations failed to reproduce experi-
mental results unless competition for enzyme active sites was
explicitly included. Although theoretical analyses of metabolic
regulation have discussed the potential importance of such
competition (Fell, 1997), concrete examples of its significance
have been lacking. Here we provide two examples. One
involves competition of aspartate, glutamate, and glutamine
for the active site of GOGAT. Given that neither aspartate nor
glutamate is a potent GOGAT inhibitor biochemically (Miller
and Stadtman, 1972), such competition was previously over-
looked; however, given the high cellular concentrations of
these amino acids, this ‘weak’ inhibition is nevertheless
physiologically critical. Interestingly, aspartate, which is not
directly involved in the GOGAT reaction, is a more important
active-site inhibitor than glutamate, the enyzme’s product.
A second example involves control of net aspartate production
(by AST), which increases on nitrogen upshift. This net flux
increase is achieved not by accelerating the forward reaction
but by shutting off the reverse one. The decrease in the reverse
flux is accomplished by glutamate out-competing a-ketoglu-
tarate for the enzyme active site.

Our observation that active-site competition has an im-
portant function in controlling nitrogen assimilation fluxes
matches nicely with the recent finding that most enzymes are
substrate saturated in E. coli (Bennett et al, 2009). Both of these
findings point to the intracellular milieu being crowded not
only with macromolecules (Vazquez et al, 2008), but also with
small molecule metabolites, which greatly outnumber macro-
molecules on a molar basis. Flux control through active-site
competition is especially valuable in vivo given such an
intracellular environment, because it provides regulation even
in the regime in which substrate concentration greatly exceeds
the Km of the enzyme.

A distinguishing feature of flux control by active-site
competition, relative to allostery or protein covalent modifica-
tion, is that maximum enzyme activity can always be
achieved if the substrate pool gets high enough. Thus,
while flux control by active-site competition is efficient
(not requiring expression of specific regulatory proteins or
subunits), it is insufficient when reaching maximum enzyme
activity might actually be dangerous to the cell. For example,
it is probably critical for cells to be able to shut down GS
activity in some circumstances, to save ATP and to prevent
excess glutamine production (e.g., in ammonium shock of
carbon-starved cells).

This work builds on a rich history of dynamic modeling of
biological systems using ordinary differential equations,
including in the area of metabolism (Teusink et al, 2000;
Rohwer and Botha, 2001; Chassagnole et al, 2002; Snitkin et al,
2008). A distinguishing feature here is integration of systems
level experiments with computational modeling to quantita-
tively understand a metabolic network involving multiple
levels of regulation (i.e., protein covalent modification and
enzyme active-site competition). We experimentally validated
the model’s ability to predict not only trends but time-
dependent absolute cellular concentrations (Figure 7).

Beyond clarifying mechanisms of cellular metabolic regula-
tion, integrated experimental-modeling studies have the
potential to generate models of intrinsic value. One potential
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value of these models is providing an easy way to determine
properties that cannot be readily experimentally measured.
Examples include dynamically changing fluxes (Supplemen-
tary Figure 8), flux-control coefficients, and sensitivities of
metabolite concentrations to enzyme parameters (Figure 6).
These properties, together with the measured ones, will then
hopefully reveal regulatory principles. As an example, here we
propose two principles relating to control of steady-state
metabolite concentrations in cells:

(1) In nutrient-limited cells, the concentration of the growth-
limiting metabolite (e.g., glutamine in wild-type cells,
glutamate in DGOGAT ones) is determined by the
sensitivity of growth rate to the metabolite’s concentration
(i.e., the Km of the growth function). The logic is that
production of this metabolite is limited by environmental
factors (e.g., the amount of ammonium). To balance
production with consumption, growth must slow. The
concentration in which this slowing occurs determines the
metabolite’s steady-state value.

(2) The concentrations of other metabolites are determined by
the strength of the feedback control of their production.
The logic is that production capacity of most metabolites
exceeds demand and is brought into balance by feedback.
The concentration in which balance is achieved is
controlled by the Ki (or analogous parameter) of the
feedback, as well as the extent of excess production
capacity. This concept has been explored in depth
mathematically (Hofmeyr and Cornish-Bowden, 2000).

In addition to providing insight into regulation of nitrogen
assimilation in particular, and metabolite concentrations and
fluxes in general, this work exemplifies the potential for using
metabolomic data to drive the development of predictive
metabolic models. As parameter identification for large non-
linear dynamic models is unreliable, we believe the most
promising route to genome-scale dynamic simulations is
through careful development of modular models such as the
one presented here. If designed appropriately, these models
can then be integrated to yield larger ones. For example, the
nitrogen assimilation model, which takes a-ketoglutarate and
oxaloacetate concentration as inputs, is well prepared for
integration with a modular model of the TCA cycle, which
predicts these concentrations, among others. The points in
which these modular pathways meet, for example, a-ketoglu-
tarate between the TCA cycle and nitrogen assimilation,
should be particularly informative regarding metabolic inte-
gration: how information about the availability of one nutrient
is communicated to pathways metabolizing others.

Materials and methods

Strains and media

All strains were isogenic of prototrophic E. coli NCM 3722 (Soupene
et al, 2003). Strain FG 1088 (DgdhAHKan), FG 1079 (gltDHKan) (Yan,
2007), FG 1114 (DglnE), and NCM 4310 (amtBHKan) were a generous
gift of Dr Dalai Yan, and strain HG 0710 (DlacZHKan) of Dr Hani Girgis.
All strains were cultured in minimal salts media (Gutnick et al, 1969)
with 10 mM NH4Cl and 0.4% glucose at 371C, unless otherwise noted.
Plates contained, in addition to the appropriate media, 1.5% ultrapure

agarose (triply washed with cartridge-filtered water to remove trace
organic contaminants).

Culture conditions and metabolite extraction

Detailed protocols for preparing filter cultures and extracting
metabolites have been published (Bennett et al, 2008; Yuan et al,
2008). In brief, filter cultures were prepared by passing 5 ml of
exponentially growing liquid batch culture through membrane filters.
The filters were then placed on top of agarose loaded with the
appropriate minimal media. To measure growth, filters were washed
thoroughly with 5 ml of water and absorbance at 650 nm measured. To
quench metabolism and initiate extraction, the filters were submerged
directly into �751C methanol or �201C 40:40:20 acetonitrile:metha-
nol:water with 0.1% formic acid. In both cases, serial extraction
(two additional rounds) was used to maximize metabolite yields.
All extracts of a given sample were then pooled and mixed with
isotope-labeled internal standard compounds (the 10 listed in Bajad
et al (2006), as well as isotope-labeled glutamine) and stored at 41C
until analysis. The methanolic extracts were used to generate data on
central carbon metabolites and amino acids; the acetonitrile-contain-
ing ones for nucleotides and their derivatives (Rabinowitz and
Kimball, 2007).

Metabolite measurement

Cell extracts were analyzed by LC-electrospray ionization (ESI)-MS/
MS on a Thermo Quantum triple quadrupole mass spectrometer
operating in selected reaction monitoring (SRM) mode. All samples
were analyzed within 24 h of their preparation. Separate LC runs were
conducted for positive and negative ionization modes, using hydro-
philic interaction chromatography and ion-pairing reversed phase
chromatography, respectively (Lu et al, 2008).

Amino acids were derivatized before their quantitation by LC-ESI-
MS/MS. Cell extract (200ml) was mixed with triethylamine (5 ml) and
benzyl chloral formate (1ml) to convert amines to N-benzylcarbamate
(Cbz) derivatives (Kraml et al, 2005).

As internal standard signals did not vary substantially or system-
atically between samples within a given time course, the reported
metabolite concentration changes are between-sample ratios of the
peak heights of the SRM chromatograms without correction for the
internal standard response, except for glutamate and glutamine, in
which correction for internal standards was performed to maximize
quantitative accuracy.

Flux measurement

Fluxes were measured by kinetic flux profiling (Yuan et al, 2006). Filter
cultures were grown on minimal media plates to mid log-phase with
10 mM 14NH4Cl as the sole nitrogen source, and then transferred to
minimal media plates containing 10 mM 15NH4Cl as the sole nitrogen
source. At various time points (e.g., 10, 30, 60, 120 s) after the transfer,
cell extracts were prepared and analyzed by LC-MS/MS. For
each metabolite of interest, the multiple isotopomers caused by the
15N-labeling were monitored simultaneously using LC-MS/MS, and
fluxes were then calculated based on the kinetics of the replacement of
the unlabeled species by the labeled ones. A step-by-step protocol has
been published (Yuan et al, 2008).

Ammonium assay

To estimate the ammonium concentration on the surface of a plate, the
filter culture was removed and immediately replaced with a piece of
fresh preweighed membrane filter. The filter was allowed to absorb
media from the surface of the plate for B30 s, and then weighed and
washed with 1 ml water. The wash was then assayed for ammonium
using the indophenol blue method (Aminot et al, 1997), and the
concentration of ammonium in the surface of the plate was then
calculated. This measurement method captures total NH3þNH4

þ

content irrespective of protonation state.
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Competition assay

Competitions were carried out between the DGOGAT strain and a
DLacZ strain that is otherwise wild type. Each strain was grown
separately in liquid batch culture to OD650B0.1. The strains were then
mixed 1:1, loaded onto membrane filters, and allowed to grow on
agarose plates with 2 or 10 mM ammonium media. At the indicated
time points, cells were washed off filter with minimal media lacking
ammonium and analyzed using the Macconkey assay.

Western analysis

Filter-grown cells were washed into water, and the presence of GS and
GDH in the resulting cell suspension determined by western. To obtain
a rough estimate of fold over- or under-expression of enzymes in the
DGOGATstrain relative to wild type, samples were diluted 1:2 or 1:4 in
lysis buffer before electrophoresis. GS antibody was purchased from
Abcam (Cambridge, MA). GDH antibody was a gift from D Yan.

Ammonium perturbation time-course experiment

For all ammonium perturbation time courses, filter cultures were
grown on minimal media plates with 2 mM NH4Cl as sole nitrogen
source for 3 h (the point of initial ammonium limitation), and then
transferred to plates with the desired postperturbation ammonium
concentration (10 mM NH4Cl for the 13-fold upshift, 2 mM NH4Cl for
the 3-fold upshift, and no ammonium for downshift). At various time
points preceding (�15,�4, 0 min) and following (5, 10, 20, 30 s, 1, 2, 4,
8, 15, 30 min) the perturbation, metabolism was quenched and
metabolites extracted as described above.

All data presented are averages of multiple independent experi-
ments conducted on separate days. On each day, two replicate cultures
of exponentially growing cells were analyzed. For each metabolite, the
average signal in these samples (Sexp) was used to determine a
conversion factor between measured ion counts in samples taken on
that experimental day (Sj) and absolute concentration of the
metabolite, using the previously determined absolute concentration
of the metabolite in exponentially growing cells (Cexp) (Bennett et al,
2009):

Cj ¼ Rj�Cexp

where Rj¼Sj/Sexp and Cj is the absolute metabolite concentration in
sample j.

Values of Cj were then averaged across the multiple independent
experiments on different days to obtain C̄j. Standard error (s.e.) in C̄j

(DCj) was determined by standard propagation of error:

DCj

�
�Cj

� �2¼ DRj

�
�Rj

� �2þ DCexp

�
Cexp

� �2

where DRj is the standard error of the replicate measurements of Rj

made on different days, R̄j is the average measured value of R, and
DCexp is the s.e. of C based on prior measurements (Bennett et al,
2009).

Data taken at �15, �8, �4, and 0 min did not differ significantly and
were accordingly averaged to estimate the preperturbation steady-state
metabolite levels. The primary mass spec data can be downloaded from
https://ProteomeCommons.org with following hash code: kiaAkSlMli
PpPPX0irpSWGh6ZjUsxxCfn75I8qJrk3e13k5O3FWEHyKt0BbDPþQ7B
TVZ4Wþ 8HnASbTe4HOSnfrYMx00AAAAAAAGxVw¼¼

Data analysis

Metabolite-concentration changes (expressed as log2 ratios) were
clustered based on Euclidean distance between metabolites using
software available through the Princeton Microarray Database (http://
puma.princeton.edu). SVD analysis was performed using similarly
accessed software.

Model formulation

Differential equations describing the time-dependent concentrations of
glutamate, glutamine, aspartate, intracellular ammonium, and the
average modification states of GS and PII were formulated assuming
reversible Michaelis–Menten kinetics (Supplementary Table 5).
Equilibrium constants were taken from Bruggeman et al and adjusted
to account for the measured (and time invariant) intracellular ratios
([ADP]� [Pi])/[ATP] and [NADPþ ]/[NADPH] when appropriate. The
rate of passive diffusion of ammonia across the membrane was
approximated as kdiff([NH3]ext�[NH3]int). The model requires as
inputs the experimentally observed time-dependent intracellular
concentrations of a-ketoglutarate and malate, and the measured
extracellular ammonium concentration. The model estimates these
concentrations between measured time points through linear inter-
polation. As significant depletion of surface ammonium was not
observed over the 30 min period of interest after upshift, the
ammonium concentration after upshift was taken as the relevant
media concentration (10 or 2 mM).

Parameter identification and simulation

In vitro estimates of Km and Ki values for GS, GDH, GOGAT, and AST
were taken from the literature when available (Supplementary Table
3). The concentration of GS and GDH in the DGOGATstrain relative to
wild type was estimated from the western analysis. All other
parameters were estimated by a genetic algorithm (Feng et al, 2006),
which searched for parameter sets that minimized the mean square
error between simulated and observed metabolite concentrations,
with data points weighted according to the inverse of the experimental
error (i.e., the smaller the observed error, the greater the cost of the
model deviating from the observed experimental mean). Simulated
time courses were obtained by numerically integrating the system of
differential equations. A representative parameter set was used to
generate the simulation results shown in Figures 4, 6, 7, and
Supplementary Figure 8. Although some parameter values were not
tightly constrained, simulation results were similar for all of the best-
scoring parameter sets generated by the genetic algorithm. The
dichotomy between diverse parameter values and tight simulation
results in metabolic models has been described earlier (Gutenkunst
et al, 2007; Piazza et al, 2008). An SBML format of the model is
included in the Supplementary information. All simulation and
parameter search code was originally written in Cþ þ and is available
on request.

Sensitivity analysis

Simulations were conducted in which one parameter was increased
or decreased by a power of 2 from its value in the standard set, up to
a maximum of 16-fold in either direction. The simulation was then
allowed to reach nitrogen-limited steady state (i.e., equivalent to t¼0
in Figures 3, 4, and 7).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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