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Breast density, the percentage of glandular breast tissue, has been identified as an important yet
underutilized risk factor in the development of breast cancer. A quantitative method to measure
breast density with dual energy imaging was investigated using a computer simulation model. Two
configurations to measure breast density were evaluated: the usage of monoenergetic beams and an
ideal detector, and the usage of polyenergetic beams with spectra from a tungsten anode x-ray tube
with a detector modeled after a digital mammography system. The simulation model calculated the
mean glandular dose necessary to quantify the variability of breast density to within 1

3%. The breast
was modeled as a semicircle 10 cm in radius with equal homogenous thicknesses of adipose and
glandular tissues. Breast thicknesses were considered in the range of 2–10 cm and energies in the
range of 10–150 keV for the two monoenergetic beams, and 20–150 kVp for spectra with a tungsten
anode x-ray tube. For a 4.2 cm breast thickness, the required mean glandular doses were 0.183 �Gy
for two monoenergetic beams at 19 and 71 keV, and 9.85 �Gy for two polyenergetic spectra from
a tungsten anode at 32 and 96 kVp with beam filtrations of 50 �m Rh and 300 �m Cu for the low
and high energy beams, respectively. The results suggest that for either configuration, breast density
can be precisely measured with dual energy imaging requiring only a small amount of additional
dose to the breast. The possibility of using a standard screening mammogram as the low energy
image is also discussed. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3002308�
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I. INTRODUCTION

According to the WHO, as of 2005, breast cancer is the fifth
most common cause of cancer death, responsible for over
half a million deaths per year worldwide and the leading
cause of all cancer deaths in women.1 Breast density, the
percentage of glandular breast tissue, has been shown to be a
strong indicator of breast cancer risk.2–10 The positive asso-
ciation between breast density and subsequent breast cancer
risk originally reported by Wolfe used a qualitative classifi-
cation scheme where images of the breast were visually as-
sessed and assigned to one of four empirically derived cat-
egories: N1–primarily fat, P1�25% prominent ducts, P2
�25% prominent ducts, and DY dense fibroglandular tissue.
He reported a progressive stepwise increase in future breast
cancer risk: N1–lowest risk, P1–low risk, P2–high risk, and
DY–highest risk.2,3

Since the Wolfe report, a variety of approaches for mea-
suring breast density, both areal and volumetric, have subse-
quently been described. Areal-based techniques have in-
cluded qualitative and quantitative classification
schemes,2,11,12 and also quantitative numerical estimations
derived from manual and automatic segmentation of a digital
image histogram and pixel values.11,13–19 Although most of
these quantitative measures provide a continuous measure of
breast density, a notable limitation is the binary classification
of a pixel into either 100% fibroglandular or 100% adipose

tissue. Additionally, an areal measurement ignores the physi-
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cal 3D character of a real breast. Breasts of different thick-
nesses can potentially all yield the same measurement of
areal breast density yet correspond to widely varying volu-
metric breast density values. Volume-based techniques are
able to overcome these limitations. These techniques have
included attempts to standardize20,21 and calibrate22–24 mam-
mographic image data. However, these techniques require
certain assumptions to be made in order to measure two in-
dependent quantities �e.g., breast density, and thickness�
from a single image. A common limitation of such tech-
niques is the assumption of uniform breast thickness.

Dual energy imaging can also be used to quantify breast
density and has the advantage of measuring thicknesses of
adipose and glandular tissues separately. While the female
breast is composed largely of glandular and adipose tissue,
dual energy imaging in mammography25–41 has primarily fo-
cused on the imaging of a third material such as
calcium,25,26,28,32–34,37,40,41 iodine,29,30,35,42 or neoplastic
breast tissue.27,38,39,43 In the above cases, information about
the two primary tissues is often ignored, either by eliminat-
ing their contrast,26,27,38,39,43 considering them as a single
tissue,33 or shifting focus to a third material.25,31,44 There are
a small number of reports on the use of dual energy imaging
to measure breast density. Early simulation work by Breiten-
stein and Shaw36 predicted dual energy SNR tissue compo-
sition values at a fixed level of exposure for selected dual
kVp and single kVp techniques with spectra from a molyb-

denum target x-ray tube. Dual energy x-ray absorptiometry
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�DXA� has previously been applied to the measurement of
breast density.6 However, the clinical application of this tech-
nique was hampered by the beam spectra of the DXA sys-
tem, which are not optimal for measuring breast density.
Dual energy mammography is not currently being used for
breast density measurement.

The purpose of this simulation study is to investigate the
use of dual energy imaging for the quantification of breast
density. Two cases were evaluated. The first case considered
the use of monoenergetic beams and an ideal photon count-
ing detector, designed to predict the peak performance pos-
sible when using dual energy imaging to quantify breast den-
sity. The second modeled x-ray spectra from an
investigational mammography system with an energy inte-
grating detector, a tungsten target, and rhodium and copper
beam filters for the low and high energy images. The two
techniques were studied and the effects of varying beam en-
ergies, dose ratios, and prepatient filtration on breast density
are presented for a range of breast thicknesses.

II. THEORY

The basis for dual energy imaging is the differential at-
tenuation of glandular and adipose tissues as a function of
energy. Mass attenuation curves for the two tissues are
shown in Fig. 1. The figure shows that in order to maximize
the differential attenuation, the mean energy of the low en-
ergy beam needs to be as low as possible and the mean
energy of the high energy beam needs to be as high as pos-
sible. An analytical computer simulation model modeling
x-ray photon transport was developed to investigate the tech-
nique feasibility over the range of expected breast densities
and thicknesses encountered in clinical mammography.

II.A. Calculation of breast density

The low and high energy detector signals are functions of

FIG. 1. Plot showing the energy dependence of x-ray attenuation for glan-
dular and adipose tissue.
glandular and adipose tissue thicknesses:
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Si = Si�tg,ta�, i = l,h . �1�

The tissue thicknesses can be determined by inverting the
system of equations:

tj = tj�Sl,Sh�, j = g,a . �2�

Each pixel provides a measurement of each tissue thickness.
The breast density d for a pixel can be expressed

d =
tg

tg + ta
. �3�

The total breast density, D, is then defined as the average
over all pixel measurements within the breast shadow �N�:

D =
�i=1

N d

N
. �4�

II.B. Breast density measurement uncertainty

The measurement uncertainty in breast density for the
whole breast �D� can be written using propagation of error:

�D
2 = � �D

�tg
�2

�tg
2 + � �D

�ta
�2

�ta
2 + 2� �D

�tg
�� �D

�ta
��tgta

. �5�

After substituting in expressions for the partial derivatives,
the uncertainty can be written as

�D
2 = � ta

�tg + ta�2�2

�tg
2 + � − tg

�tg + ta�2�2

�ta
2

+ 2� ta

�tg + ta�2�� − tg

�tg + ta�2��tgta
. �6�

Expressions for �tg
2 , �ta

2 , and �tgta
are functions of the detec-

tor signals Sl and Sh. Their derivation follows from a similar
analysis, presented in the Appendix, and can be written as

�tg
2 =

��a�Eh��2

SNRSl

2 +
��a�El��2

SNRSh

2

��a�El��g�Eh� − �g�El��a�Eh��2 , �7�

�ta
2 =

�g
2�Eh�

SNRSl

2 +
�g

2�El�
SNRSh

2

��a�El��g�Eh� − �g�El��a�Eh��2 , �8�

�tgta
=

�a�Eh��g�Eh�
SNRSl

2 +
�a�El��g�El�

SNRSh

2

− ��a�El��g�Eh� − � f�El��a�Eh��2 , �9�

where SNRSi

2 is the squared signal to noise ratio of the de-
tector signal Si and � j�Ei� is the mean attenuation of material
j for detector signal i. Combining all of the above terms, the
breast density measurement uncertainty can be written in fi-

nal form as
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�D
2 = � 1

��a�El��g�Eh� − �a�Eh��g�El��2�� 1

�ta + tg�2�2

���ta�2��a
2�Eh�
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2�El�
SNRSh

2 � + �− tg�2��g
2�Eh�

SNRSl

2

+
�g

2�El�
SNRSh

2 ��2tatg���g�Eh��a�Eh�
SNRSl

2 +
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SNRSh

2 �	 .

�10�

Given a known breast density, D, it is possible to express the
percent relative standard deviation �%RSD� as

%RSDD =
�D

D
� 100. �11�

III. MATERIALS AND METHODS

III.A. Simulation input functions and parameters

III.A.1. Detector signals

The detector signal S is given by

S =
 f2N0�E�e−��f�E�tf�e−��g�E�tg+�a�E�ta�W�E�Q�E�G�E�dE ,

�12�

where f is the aperture size. The square of the aperture is the
effective measurement area and was set at 0.0049 mm2 to
correspond with an aperture size of 70 �m, which is the
same as one aperture used in digital mammography �Selenia,
Hologic Inc., Bedford, MA�. The fill factor was set to be
unity.

N0�E� is the incident x-ray spectrum �photon fluence per
energy�. For the case of two monoenergetic beams, beam
spectra were simulated from 10 to 150 keV.

For the case of two polyenergetic beams, the XCOMP5R
code of Nowotny and Hoofer45 was used to simulate x-ray
photons generated from a tungsten anode x-ray tube. A typi-
cal effective anode angle in mammography is 24 deg.46 This
effective angle was also used as the inherent anode angle for
simulations. A comparison of the XCOMP5R, at an anode
angle of 24 deg, and TASMIP �Ref. 47� spectral models
showed only a small difference ��3% � in incident mean
beam energy. Typically, however, the inherent anode angle is
between 0 and 16 deg with the remaining angulation pro-
vided by titling the x-ray tube. The x-ray tube filtration was
set at 1 mm Be. Beam spectra were simulated from
20 to 150 kVp.

The term e−��f�E�tf� corresponds to the prepatient filtration.
Spectra from the tungsten anode x-ray tube were filtered by
50 �m rhodium for the low energy image and 300 �m cop-
per for the high energy image. The filter in the low energy
image corresponds to what would be expected in a screening
mammogram. The purpose of a high energy filter is to in-
crease the mean beam energy. Numerous options spanning
the periodic table are available yielding similar increases.

The best choice is a compromise between increasing beam
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energy and minimizing tube loading. The selection of a
300 �m copper filter provides excellent beam filtration and
does not increase the resultant tube loading to prohibitively
high levels.

� j�Ei� is the attenuation coefficient of material j at energy
E. Elemental attenuation coefficients were obtained from a
previous report by Boone.48 Values spanned the full periodic
table and energies extended below and above the range nec-
essary for applications in medical imaging. The chemical
compositions of glandular and adipose tissues were from the
data of Hammerstein.49 Combined, the data defined the func-
tions �g�E� and �a�E�.

tj is the corresponding tissue thickness. Breast thicknesses
were considered in a range of 2–10 cm.

W�E� is an energy weighting factor used to describe the
detector type, and Q�E� is the quantum detection efficiency
of the detector. An ideal photon counting detector was simu-
lated in the first case and, for this case, W�E� and Q�E� were
both set to 1. The second case simulated the detection prop-
erties of the amorphous selenium photoconductor in a digital
mammography system. W�E� in this case was set to E and
Q�E� was calculated for a 200 �m selenium absorber �mass
thickness of 85.6 mg /cm2�.

G�E� is the absorption due to the presence of the cellular
x-ray scatter grid. The transmission of the grid was measured
at several energies and the data were empirically fit and ex-
trapolated for all remaining higher energies. The grid has
30 �m copper septa with 640 �m air interspaces.50,51

III.A.2. Noise sources

Noise was considered similar to other cascaded system
models52 but due to the size of the whole breast, frequency
dependent effects were ignored and the propagation of noise
was considered in the spatial domain. When considering the
ideal detector, only quantum x-ray noise was included. When
considering the detector in the digital mammography system,
variances of quantum x-ray noise, gain �i.e., Swank� noise,
digitization error, additive electronics noise, and the addi-
tional noise imparted due to x-ray scatter were included:

�S
2 = �Q

2 + �G
2 + �DQ

2 + �E
2 + �SC

2 , �13�

where �Q
2 is the quantum x-ray noise. The quantum noise

was calculated from the mean number of photons per unit
area per energy. After transmission through material and ab-
sorption in the detector, the noise is expressed as

�Q
2 =
 f2N0�E�e−��f�E�tf�e−��g�E�tg+�a�E�ta�W2�E�Q�E�G�E�dE .

�14�

The gain noise, �G
2 , was modeled with an energy dependent

Swank factor with data from previous work on amorphous
selenium.53 The gain noise is itself proportional to the quan-
tum noise and not a completely independent term.

The digitization error, �DQ
2 , was estimated given the mean

entrance exposure necessary to generate one gray level. The
2
additive electronics noise, �E, was determined by a logarith-
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mic fit of noise as a function of signal. The offset of the fit
corresponded to the additive electronics noise in pixel
counts. These last two values were determined, in part, with
data provided by the manufacturer of our digital mammog-
raphy system.54

The noise due to x-ray scatter, �SC
2 , was estimated from

measurements of scatter-to-primary ratio �SPR� with the
digital mammography system using lead beam stops at BR12
phantom thicknesses of 0.5, 1, 2, 4, 6, and 8 cm at three
different energies. The data were empirically fit and extrapo-
lated for all higher energies. The added noise variance due to
x-ray scatter was equal to the calculated SPR.

III.A.3. Mean glandular dose

Values for the mean glandular dose �MGD� per photon
were calculated with Monte Carlo simulations.55,56 Dose data
were available for breast thicknesses of 2–10 cm, densities
of 0%, 50%, and 100%, and energies of 5–150 keV.

IV. THE OPTIMIZATION PROBLEM

The breast was modeled as a semicircle 10 cm in radius
and composition was set to 50% glandular and 50% adipose
tissue by volume �homogenous equal thicknesses of adipose
and glandular tissues�, consistent with the FDA definition of
the standard breast.46 A thickness of 4.2 cm was selected to
be representative of the set. The size of the breast is inversely
related to the total required dose due to statistical pixel av-
eraging and occupies an area equivalent to 3 205 704 pixels
�at a pixel pitch of 70 �m�. We require the precision of
greater than 99% of all breast density measurements to fall
within 1%. Thus, for a normal distribution, a particular simu-
lation was considered a success if the %RSD for the whole
breast was less than 1

3%. For a given beam pair and breast
thickness, the %RSD was calculated at a particular dose and
dose ratio �i.e., the relative allocation of available dose for
the low and high energy images�. The dose ratio was varied
from 0 to 1 with a step size of 0.1. If no ratio passed the
tested %RSD criteria, the particular dose was incremented
and the process repeated until success. In addition, to test the
effect of glandularity on the required dose, compositions of
10% and 90% glandularity were also simulated at 4.2 cm for
the tungsten anode beam. To test the effect of heterogeneity,
two samples, each 1000 points in length, were compared.
The first had a heterogeneous distribution, uniformly distrib-
uted, of glandularities evenly spaced from 0% to 100% with
an effective mean glandularity of 50%. The second was a
completely homogenous distribution, with the glandularity
fixed at 50%. The mean variances were compared for the two
distributions at an equal fixed mean glandular dose for the
tungsten anode beam.

V. RESULTS

V.A. Two monoenergetic beams

Shown in Fig. 2 is a dose contour plot for the two mo-
noenergetic beams at a breast thickness of 4.2 cm. The mini-

mal required MGD of 0.183 �Gy was obtained at low and
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high beam energies of 19 and 71 keV. The optimal relative
dose allocation between the low and high energy images was
0.6:0.4.

V.B. Tungsten anode spectra

The dose contour plot for the dual energy case using x-ray
beam spectra from a tungsten anode for a 4.2 cm breast is
shown in Fig. 3. The minimal required MGD was 9.85 �Gy
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FIG. 2. Dose contour plot expressing the required MGD as a function of the
two monoenergetic beams and a 4.2 cm breast. Minimal MGD was
0.183 �Gy at 19 and 71 keV.
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and obtained at beam spectra of 32 and 96 kVp. The optimal
dose allocation ratio was 0.7:0.3.

Additionally, the minimal required MGD for glandulari-
ties of 10% and 90% were 39.90 and 7.52 �Gy, respectively.
The relative increase in the mean variance for the heteroge-
neous data set relative to the homogenous data set was 6.6%.

V.C. The effect of dose allocation

The effect of varying the dose allocation ratio is seen in
Fig. 4, where the required dose is shown as a function of the
low energy dose ratio for the two configurations: at 19 and
71 keV and at 32 and 96 kVp beam pair for a 4.2 cm breast.

V.D. Summary of results

Optimal beam energies, dose ratios, and required MGD
data for each technique and all thicknesses are shown in
Table I.
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FIG. 4. Required MGD as a function of the relative low energy dose for the
two configurations and a 4.2 cm breast. Energies were 19 and 71 keV, and
32 and 96 kVp.

TABLE I. Minimal dose values, dose allocation ratios

Breast
thickness

�cm�

Monoenergetic beams

Beam energy
�keV�

�low, high�
Dose ratio
�low:high�

2 16, 70 0.6:0.4
3 17, 70 0.6:0.4
4 19, 71 0.6:0.4
5 20, 74 0.6:0.4
6 21, 74 0.7:0.3
7 22, 79 0.7:0.3
8 23, 79 0.7:0.3
9 24, 84 0.7:0.3

10 25, 85 0.7:0.3
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VI. DISCUSSIONS

The major limitation of dual energy application for micro-
calcification detection has been the low signal to noise ratio
of the desired signal in the subtracted image.57 This is in part
due to the small area occupied by the object of interest. On
the other hand, this is not the case for breast density quanti-
fication as the whole breast is used for measurement. This
suggests that dual energy imaging is well suited to quantify
breast density with respect to mean glandular dose.

Of the cases considered, as expected, the use of two mo-
noenergetic beams showed the lowest dose requirement. The
simulation of monoenergetic beams also provides physical
insight and sets upper limits on the theoretical peak perfor-
mance. In Fig. 2, for the 4.2 cm breast thickness, the ideal
low energy beam was centered at 19 keV, coinciding with
the first simulation study of dual energy mammography for
imaging calcium by Johns and Yaffe25 while the ideal high
energy of 71 keV was slightly higher than the previously
reported 68 keV. However, as the imaging tasks were differ-
ent, it was not expected that the energies would be the same.
The result for the ideal low beam energy is convenient as it is
near the mean energy of most clinical mammographic spec-
tra and suggests that a dual energy measurement of breast
density can make use of an existing mammogram as the low
energy image. This is further substantiated by the fact that
the optimal low energy beam for tungsten anode is 32 kVp,
which is within the clinical range. The tungsten anode beam
spectra, however, did require substantially more dose than
the monoenergetic beams. It is clear, however, that regardless
of the technique, the overall predicted required dose is rela-
tively low when compared to the dose of 1.6 mGy for a
standard screening mammogram.58 As an example, consider
the case of spectra from the tungsten anode and a 4.2 cm
breast thickness. The required dose is only 9.85 �Gy, which
is a small fraction of the dose from a standard screening
mammogram. Furthermore, it is possible to use the standard
screening mammogram itself as the low energy image. In

energies for each technique, and thickness.

configuration

Polyenergetic beams
�W anode�

�

Beam spectra
�kVp�

�low, high�
Dose ratio
�low:high�

MGD
��Gy�

1 29, 87 0.6:0.4 10.39
8 29, 86 0.7:0.3 9.33
6 31, 94 0.7:0.3 9.59
2 33, 102 0.7:0.3 10.36
7 35, 110 0.7:0.3 12.10
7 37, 116 0.7:0.3 13.64
2 37, 103 0.7:0.3 16.12
9 37, 104 0.7:0.3 19.48
9 41, 137 0.7:0.3 22.66
and

Beam

MGD
��Gy

0.30
0.21
0.18
0.17
0.16
0.16
0.17
0.17
0.18
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this case, the relative dose allocation between the low and
high energy image would not be optimal as the dose in the
low energy image would far exceed what is required. How-
ever, this is not a hindrance as the required additional dose
from the high energy image would remain low. The added
dose for the tungsten spectra would be 2.96 �Gy. Currently,
the optimal kVp predictions are outside the range of current
clinical mammography systems. However, the x-ray tube
simulated in this study is based on a tungsten anode. Stan-
dard tungsten anode x-ray tubes are capable of imaging at
high kVps and it is not difficult to conceive that a tungsten
tube designed for mammography could be modified for us-
age at higher kVps. Alternatively, it is still possible to mea-
sure breast density if the system is limited to a certain maxi-
mum kVp, which will increase the required dose. Our digital
mammography system is limited to maximum beam energy
of 49 kVp. In this case the added dose from the high energy
image would increase to 3.93 �Gy for a 4.2 cm breast. In
either case, the expected added dose from the additional high
energy image is less than 1% of the dose for one view in the
case of standard mammography �1.6 mGy�.

The first breast DXA reported that the technique was
highly repeatable. The mean energies for the 100 and
140 kVp broad beam spectra used in the DXA system were
estimated to be approximately 52 and 64 keV, respectively.59

The 100 kVp low energy beam is far above the optimal beam
energy predicted in this study for quantifying breast density.

The study indicated that the clinical value of the DXA
images was limited for quantifying breast tissue densities
and choosing alternative �i.e., lower� beam energies might
improve the tissue selectivity of the technique. As seen from
Eqs. �7�–�10� above, the noise variance in dual energy imag-
ing is a strong function of the two materials’ combined at-
tenuation coefficient separation and a reduction in dose for a
given SNR is, in general, possible by increasing the spectral
separation between the two beams.60 At energies of 52 and
64 keV, the combined differential attenuation was relatively
low.

An important source of error in quantification of breast
density is x-ray scatter. It causes both random and systematic
error in breast density measurements. The random error,
which is caused by the additive stochastic noise due to x-ray
scatter, has been included in the noise analysis. However, the
systematic error, which is caused by the offset to the pixel
signal due to x-ray scatter, has not been included in this
simulation. Previous simulation studies involving dose re-
quirements in dual energy imaging have also not included
x-ray scatter in the simulation.25,31,36 Therefore, scatter cor-
rection in the low and high energy images is necessary for
accurate breast density measurement. There are a number of
previously reported scatter correction techniques that can be
used for this purpose.61–63 Future experimental implementa-
tion of the technique will address the systematic error caused
by x-ray scatter. The current study has focused on the mini-
mum required patient dose for reliable breast density mea-
surement assuming that the systematic error due to x-ray

scatter can be corrected.
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For the model used in this study, the effect of heteroge-
neity was determined to yield a relatively small increase in
the average variance, and hence required mean glandular
dose. This increase is likely due to reduced x-ray transmis-
sion and a loss of quantum statistics in regions of high breast
density. It will be useful to include further simulations of
different mean glandularities and heterogeneous breast tissue
distributions in future studies.

The data presented here suggest that a new technique can
be developed to reliably measure breast density. The tech-
nique can optionally make use of a standard screening mam-
mogram in conjunction with a second high energy image
exposure. In either case, a relatively small amount of dose
would be imparted to the patient in comparison to a standard
screening mammogram. A recent report64 has called into
question the validity of any areal measure of breast density
and a technique like the one presented here is able to incor-
porate the needed three-dimensional information when deter-
mining breast density.
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APPENDIX: DUAL ENERGY NOISE PROPAGATION

Using propagation of errors, the variance of function in
Eq. �6� can be written as
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and rewritten65–67 as
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where J2, the squared Jacobian determinant, is equal to

J2 = �� �Sh

�tg
�� �Sl

�ta
� − � �Sl

�tg
�� �Sh

�ta
��2
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The partial derivatives are calculated according to the fol-
lowing with an added step of defining the final quantity as
the product of the mean attenuation and detector signal from

Eq. �12�:
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�Si
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�
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J2 can then be written as

J2 = �SlSh�2��a�El��g�Eh� − �g�El��a�Eh��2. �A9�

Combining the above terms and rewriting expressions with
the form Si

2 /�Si

2 as SNRSi
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2 , and �tatf

reduce to
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Details here are consistent with previous derivations that
have been presented elsewhere in the literature.60,65–70
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