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The purpose of this work is to develop a novel feature-based registration strategy to automatically
map the rectal contours from planning computed tomography �CT� �pCT� to cone beam CT
�CBCT�. The rectal contours were manually outlined on the pCT. A narrow band with the outlined
contour as its interior surface was then constructed, so that we can exclude the volume inside the
rectum in the registration process. The corresponding contour in the CBCT was found by using a
feature-based registration algorithm, which consists of two steps: �1� automatically searching for
control points in the pCT and CBCT based on the features of the surrounding tissue and matching
the homologous control points using the scale invariance feature transformation; and �2� using the
control points for a thin plate spline transformation to warp the narrow band and mapping the
corresponding contours from pCT to CBCT. The proposed contour propagation technique is applied
to digital phantoms and clinical cases and, in all cases, the contour mapping results are found to be
clinically acceptable. For clinical cases, the method yielded satisfactory results even when there
were significant rectal content changes between the pCT and CBCT scans. As a consequence, the
accordance between the rectal volumes after deformable registration and the manually segmented
rectum was found to be more than 90%. The proposed technique provides a powerful tool for
adaptive radiotherapy of prostate, rectal, and gynecological cancers in the future. © 2008 Ameri-
can Association of Physicists in Medicine. �DOI: 10.1118/1.2975230�
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I. INTRODUCTION

Patients treated with radiotherapy for cancers such as pros-
tate, rectal, and gynecological cancers experience large day-
to-day changes in their rectal volumes due to motion, disten-
tion, and filling. Due to variations in the image content, an
exact correspondence between two image sets acquired at
different time points may not exist. Thus, any deformable
model relying on the use of information contained in the
entire image may not be adequate in dealing with these pa-
tients. The artifacts-induced disjoint between the images also
makes the autopropagation of contours outlined in one set of
images to another highly difficult with conventional strate-
gies. With continued enthusiasm for adaptive radiotherapy,
the ability to reliably and efficiently map the rectum outlined
in the planning computed tomography �CT� �pCT� to the
on-treatment cone beam CT �CBCT� images now becomes a
bottleneck and needs to be resolved in order for many pa-
tients with cancer within the pelvis to benefit from the novel
adaptive replanning strategy.1,2

The issue of rectal motion and deformation in conformal
radiation therapy is described in various publications. Lee et
al. evaluated the CBCT as a tool to quantify the accuracy and
precision of a simulated IMRT treatment delivery model for
rectal cancer when rectal motion due to filling and deforma-
tion was taken into account.3 The mean deformation varia-

tion of 0.71 and 0.94 cm in the LAT and AP directions was
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reported. Foskey et al. shrank the rectal gas region to a vir-
tual point in order to make the correspondence of the rectal
volumes in two sets of images.4 Gao et al. used an automatic
image intensity modification procedure to create artificial gas
pockets in the pCT images.5 The major drawbacks of these
types of approaches are the artificial introduction of image
features within the rectal volume and the potentially inaccu-
rate association of the artificial image features. As a conse-
quence, the accordance between the rectal volumes after de-
formable registration and the manually segmented rectum
was found to be less than 80%.

In this work, we propose to use the image information in
the neighborhood outside the rectal wall as the driving force
to guide the rectal contour propagation from the pCT to
CBCT. Because the content in the region outside the rectal
wall should be conserved, regardless of any changes in the
rectal filling and distension, this strategy seems to be physi-
cally sensible. Coupled with a powerful feature-based de-
formable registration model, which identifies homologous
tissue features shared by the pCT and CBCT images, the
novel approach captures the key issues of the system and
provides a natural solution to the above stated problem. Ap-
plication of the proposed algorithm to a number of digital
phantoms and clinical cases demonstrates that the technique
is accurate and robust and may be useful for future adaptive

therapy planning.
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II. METHODS AND MATERIALS

II.A. Software platform

The proposed contour mapping algorithm was imple-
mented using the Insight Toolkit6 and the Visualization Tool-
kit �VTK�,7 which are open source cross-platform C�� soft-
ware toolkits sponsored by the National Library of Medicine.
They are freely available for research purposes �see Refs. 34
and 35�. ITK provides various basic algorithms to perform
registration and segmentation for medical images. The pro-
grams contained in ITK are highly extendable, making it an
ideal platform for development of image registration and
processing techniques. VTK is primarily used for image vi-
sualization �including contours�.

II.B. Narrow band construction

Inconsistency in rectal contents between two input image
sets could severely reduce the performance of a deformable
registration algorithm. Coregistering an empty rectum with-
out bowel gas to a rectum filled with bowel gas using any
deformable model could be problematic, for example. A
natural strategy is to exclude the volume inside the rectal
wall. In practice, the template rectal contour in the pCT im-
age has been manually contoured as a part of the routine
treatment planning process, thus making it a straightforward
matter to exclude the volume inside the rectal wall. Figure 1
shows the proposed contour mapping process. After manual
segmentation on the pCT, a narrow band as sketched in Fig.
2 is constructed with the manually segmented rectum repre-
senting the inner surface of the band. On an axial slice, the
contour has a polygon shape and the vertices of the polygon
form the basis for constructing the narrow band. The distance
between the neighboring vertices on the contour is typically
2–10 mm depending on the shape of the contour. In gener-

Planning CT CBCT

Deformation field

CBCT contourPlanning CT contour

Auto-detected control points in two images

Determination of control points pairs using the SIFT method

TPS deformable transformation

Manual segmentation

Narrow band construction

FIG. 1. Overall process of rectal contour propagation.
ating the narrow band, we first create squares with side
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length of d for each vertex, as depicted by points A and B in
Fig. 2�b�. In order to obtain a smooth band, between A and B
three more squares, cornered at points C, D, and E, are in-
serted. Point C is chosen to be the middle point between A
and B. Point D is the point between A and C, and point E is
the point between B and C. More interpolated vertex points
can be similarly introduced to obtain a smooth band. The
principle of the narrow band diameter selection is to exclude
most bony structures outside the narrow band, since the bony
structures are rigid and heavily affect the control point selec-
tion. Meanwhile, the generated narrow band can capture suf-
ficient information to drive the finding of its counterpart in
the subsequent CBCT. In general, the size of the squares is
therefore within 1 cm, so that the diameter of the narrow
band is within 1.5 cm.

The narrow band in our approach is used as a compact
representation of the rectal surface. As will be detailed in the
next subsection, a feature-based deformable registration al-
gorithm is employed to find the correspondence of the band
in the CBCT images. Upon successful registration, the defor-
mation field is utilized to propagate the pCT contour to the
CBCT. Because only the image features outside the rectum
are used, a narrow band shown in Fig. 2 permits us to take
advantage of the regional information inside the narrow band
yet avoiding the nuisance of rectum/bladder filling.

II.C. Feature-based warping of the narrow band

As illustrated in Fig. 1, the process of contour mapping is
to warp the narrow band constructed above in such a way
that its best match in the CBCT images is found. Mathemati-
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E

(b)

FIG. 2. A sketch of narrow band. �a� A narrow band image surrounding a
manually segmented rectal contour and �b� a narrow band construction is
illustrated for two vertex points A and B.
cally, this constitutes an optimization problem, in which a
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group of transformation parameters transform the points
within the band in the pCT to their corresponding points in
the CBCT. The input to the contour mapping software in-
cludes the narrow band and the CBCT images, which are
described by the image intensity distributions Ia�x� and
Ib�x�, respectively.

To find the transformation matrix, T�x�, that maps an ar-
bitrary point in the band to the corresponding point in the
CBCT images �or vice versa�, a thin plate spline �TPS� de-
formable model is employed. But other models should also
be applicable to model the deformation of the band. We au-
tomates the control point selection by using the scale invari-
ance feature transformation �SIFT� tissue feature searching
�see next subsection for details�. Roughly, 300 control points
are selected based on the prominent tissue features.

The detailed description of the TPS transformation can be
found in Ref. 8. For two-dimensional �2D� images, a weight-
ing vector W= �w1 ,w2 , . . . ,wn� and the coefficients a1 ,au ,av
are computed from a series of matrices which are constructed
using n pairs of selected control points in the fixed image
�xi ,yi� and in the moving image �ui ,vi�, respectively. The
function transforming a pixel coordinate in the moving im-
age to a new coordinate in the fixed image is defined as

f�u�,v�� = a1 + auu + avv + �
i=0

n

wiU��pi − �u,v��� , �1�

where pi is the control points coordinate in the fixed image
and U is a basis function to measure the distance.

II.D. SIFT

The feature-based deformable registration is an essential
part of the proposed contour mapping process. Here, we au-
tomate the control point selection by using the SIFT-based
tissue feature searching. Because of the efficient use of
a priori system knowledge, the approach greatly enhances
the robustness of the narrow band warping algorithm.

The SIFT method was introduced by Lowe to characterize
the local tissue features. The method utilizes both image in-
tensity and local gradient information to characterize the
neighborhood property of a point.9 The algorithm includes
scale-space extrema detection, control point localization, ori-
entation assignment, and control point descriptor. In 2D
cases, for example, the method uses the orientation histo-
grams of the four quadrants surrounding a point �containing
64 pixels� to characterize the inherent tissue feature of the
point �see Fig. 3�. To obtain the histogram for a quadrant, as
illustrated in Fig. 3, the gradient of each of the 16 pixels in a
quadrant is computed. An eight-bin histogram, with first bin
representing the number of pixels whose gradients fall be-
tween 0° and 45°, and so forth, is then constructed. For il-
lustration, the histogram of each of the four quadrants is
displayed schematically in the right panel of Fig. 3 as an
eight-vector plot. In total, 32 vectors are calculated in 2D
case. In extending the SIFT method from 2D to three dimen-

sional �3D�, total of 192 vectors are needed. These vectors
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represent the local feature and serve as a signature of the
point. The SIFT descriptor is considered as one of the most
effective descriptors currently available.10,11

Theoretically, the SIFT descriptor can be computed for
each voxel in an image. However, this is computationally
expensive. The commonly used sampling strategy is to com-
pute the descriptor every 2–3 voxels in x, y, and z directions.
After the SIFT descriptors are computed in both input im-
ages, the points having the most similar SIFT descriptors in
the two images are then identified. For a given point, indexed
by n, in the pCT image, the least-squares difference of the
SIFT descriptor of the point and that of a potential associa-
tion point n� in the CBCT, Sn,n�, is first computed according
to

Sn,n� =��
�=1

k

���In�� − ��In����2, �2�

where I represents the image intensity. � indexes the bins of
the SIFT histogram of a point and the summation over � runs
from 1 to 32 for the 2D case, and 1 to 192 for the 3D case.
Typically, about 1000 SIFT descriptors n ,n� are computed in
the narrow band in the pCT and CBCT, respectively. It is
unnecessary to determine Sn,n� for all possible combinations
n ,n�, which may dramatically increase the calculation time.
We use a specific search radius to control the number of Sn,n�
calculation. The mapping results are more accurate with
larger search radius, however, the calculation time of SIFT
mapping becomes longer. After Sn,n� is computed, two points
n1� and n2� that have the least histogram difference with point
n are identified. If the ratio �for convenience, the ratio is
referred to as the � ratio hereafter� of these two values is less
than 80%, the point that has the least S value is chosen ten-
tatively as the correspondence of the point n, otherwise, no
association is made for the point. The � ratio varies between
0 and 1 and is an empirical measure of feature correspon-
dence between two images. The lower the � ratio, the “stron-
ger” the association of the two feature points on pCT and
CBCT. Because of the inherent difference in the textures of
the involved organs, the determination of the � ratio may be

FIG. 3. A sketch of orientation histogram in SIFT method. The gradient of
each of the 16 pixels in a quadrant is computed. An eight-bin histogram,
with first bin representing the number of pixels whose gradients fall between
0° and 45°, and so forth, is then constructed. The histogram of each of the
four quadrants is displayed schematically in the right panel as an eight-
vector plot.
organ specific. Typically, it is determined by a tradeoff be-
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tween the number of associated point pairs and the reliability
of the associations. For a bone, the feature is clear and hun-
dreds point pairs can be associated under a threshold of 50%.
On the other hand, for the rectum, the feature is not as ob-
vious as bone. If we still use this low � ratio, the number of
association pairs may be very limited. In this situation, a
higher threshold, say 80%, is usually used to increase the
number of associated point pairs.

To further increase the accuracy of feature point associa-
tion, a bidirectional mapping strategy is developed based on
the fact that if a point in the pCT is mapped correctly to the
CBCT, it will be default to be mapped back to the original
point in the pCT when an inverse map is applied to the
corresponding point in the CBCT. Therefore, after the origi-
nal association of feature points as described above, the
mapped points in CBCT are inversely coregistered to the
pCT. If the correspondence still exists, the associated point
pair is labeled a match. Otherwise, they are considered as a
mismatch and deleted from the list of correspondence points.
Upon the association of the feature points, the associated
points are employed as control points. The control point in
pCT and CBCT corresponds each other, thus the numbers of
control points in the two input images are the same. It was
noticed that, when the CBCT region of interest �ROI� is ex-
panded, the increase of feature point generation does not
affect the control point association and final contour map-
ping. The coordinates of an arbitrary point on the contour in
CBCT are obtained by interpolating the displacement vectors
of the control points using TPS transformation after the con-
trol point association is established.

II.E. Evaluation of the models using digital phantom
and existing patient data

The performance of the above model is evaluated by a
number of 2D digital phantoms and archived clinical cases.
In the digital phantom experiments, two deformations are
introduced. A virtue of this approach is that the “ground
truth” solutions exist and the transformation matrices are
known, thus making the evaluation straightforward. The
mathematical transformations used to deform the phantom
are generated using a formula12

x��x,y� = �1 + b cos m��x , �3�

y��x,y� = �1 + b cos m��y . �4�

Here, �=tan−1 y /x. Two parameters, m and b, are used to
characterize a deformation. Generally, they describe the
complexity and magnitude of a deformation, respectively.
The contour outlined in the original image is then mapped to
the deformed image. The accuracy of the contour mapping
calculation is assessed by comparing directly with the de-
formable mapping from the known transformation matrix.

Contour propagation from pCT to CBCT is studied by
using three prostate cancer patients and two rectal cancer
cases. The pCT is acquired with a GE Discovery-ST CT
scanner �GE Medical System, Milwaukee, WI� approxi-

mately two weeks prior to the initiation of the radiotherapy.
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The on-treatment CBCT images are acquired using the
Varian Trilogy™ �Varian Medical Systems, Palo Alto, CA�.
Each slice of pCT or CBCT is discretized into 512�512
voxels. The images are transferred through DICOM to a
high-performance personal computer with a Xeon �3.6 GHz�
processor for image processing. The manually outlined con-
tours in the pCT images are mapped to CBCT images using
the proposed technique. For the cases studied here, the ac-
cordance between the rectal volumes after deformable regis-
tration and the manually segmented rectum is employed to
assess the success of the proposed algorithm.

To quantitatively evaluate the result of contour propaga-
tion, the accordance value between the automapped contour
and manually outlined contours were calculated. In general,
suppose A and B are two contours, the accordance value r is
defined as

r =
VA � VB

VA � VB
, �5�

here, V is the containing volume of A or B.

III. RESULTS

III.A. 2D digital phantom experiment

The proposed algorithm is first tested using a 2D digital
phantom �Fig. 4�a�� with two intentionally introduced defor-
mations of the image shown in Figs. 4�b� and 4�c�, respec-
tively. The rectal contour is manually outlined and shown in
Fig. 4�a�. The deformation shown in Figs. 4�b� and 4�c� are
obtained by setting the parameters b and m in Eqs. �3� and
�4� to �b=2, m=2� and �b=2, m=3�, respectively. The curves
close to the interior surface of the rectum in Figs. 4�b� and
4�c� represent the automapped contour. For comparison, the
original contour in Fig. 4�a� is also mapped rigidly to Figs.
4�b� and 4�c�. Overall, the mapped contours can capture the
main features of the two dramatic deformations, and conform
to the boundary of the rectum in both cases.

In obtaining the result shown in Fig. 4�b�, a total of 200
control points were identified by the bidirectional SIFT cal-
culation as described in method. Note that the bony structure
in the image has been excluded in this calculation by setting
an intensity threshold of 300 CT number. In this way, any
unphysical bony structure deformation is avoided. For clar-
ity, a selection of the SIFT-identified control point associa-
tions are displayed in Fig. 5. The superior contour represents
the superior surface of narrow band. The total number of
control points identified here are far more than that com-
monly used in TPS calculation,13 allowing an improved de-
formable warping of the narrow band. We should notice that
the control points 2, 3, 4, 5, and 9 in Fig. 5 are relatively far
away from the rectum wall compared to control points 6 and
10. Since the TPS interpolation is used after SIFT mapping,
every control point including points 2, 3, 4, 5, and 9 will
affect the deformable warping and therefore the contour
shape, although the weights of points 2, 3, 4, 5, and 9 are
smaller than points 6 and 10. The displacement field derived

by using TPS method is shown in Fig. 6�a�. For comparison,
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the known displacement field from Eqs. �3� and �4� is plotted
in Fig. 6�b�. The subtraction between the TPS-derived dis-
placement field and the known field is shown in Fig. 6�c�. It
is found that the average deviation of the SIFT-TPS displace-
ment from the known solution is less than 1.2 mm.

III.B. Clinical case study

The contour propagation study from pCT to CBCT for the
first prostate case is presented in Fig. 7. The top row shows
the pCT image with manually outlined contours. The au-
tomapped contours overlaid on the CBCT are displayed in
the bottom row. For comparison, the manually outlined con-
tours on the CBCT are also plotted in the bottom row. As
mentioned in Sec. I, the propagation of rectum wall is often
complicated by the fact that the physical one-to-one corre-
spondence may not exist due to the addition or subtraction of
some contents within the rectum. Figure 8 exemplifies this
and shows that the rectal filling at the time of CBCT acqui-
sition is quite different from that of pCT. As can be intu-

FIG. 4. Rectal contour propagation from the 2D pCT slice to two dramati-
cally deformed images. �a� Original contour, �b� and; �c� its optimal map-
ping in the two deformed images.
itively conceived, this image content change could severely

Medical Physics, Vol. 35, No. 10, October 2008
reduce the performance of a conventional deformable
registration.14 The narrow band approach described in this
work circumvents the problem by excluding the rectal vol-
ume affected by the rectum/bladder filling. Accuracy was
evaluated by comparison with manually outlined contours on
the CBCTs.15–17 It is clear that the mapped contours closely
conform to the rectal wall change. The accordance between
the rectal volume extended by the automapped contour and
the manually segmented rectal volume was found to be more
than 90%.

In practice, rectal volume motion and deformation can
cause large uncertainties pertaining to the adequacy of actual
dose delivered to the gross tumor volume as well as to the
surrounding normal structures. This issue has been a major
obstacle in the implementation of IMRT in rectal cancer. In
Fig. 8 six axial pCT and CBCT images of a rectal cancer
patient acquired in an interval of two weeks are shown.
Large target volume motion and deformation are observed
from Fig. 8. The rectal volume in the pCT is found to be
three times more than that of the rectal volume in the CBCT
and thus represents a challenging situation for any deform-
able model. The rectal contours are manually outlined in the
pCT and mapped to the subsequent CBCT using the pro-
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FIG. 5. Control points in the 2D contour mapping.
posed method. The first and second rows of Fig. 8 show six
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axial slices of the pCT with manually outlined contours. The
results of contour propagation from the pCT to the CBCT are
shown in the third and fourth rows of Fig. 8. As the same as
in Fig. 7 the manually outlined contours on the CBCT are
also plotted. The accordance between the rectal volume ex-
tended by the automapped contours and the manually seg-
mented rectal volume was found to be more than 95%. The
rectal deformations in Fig. 8 are quite large and thus present
challenges to any deformable model or contour mapping

FIG. 6. Displacement fields. �a� TPS-derived displacement field for the 2D
digital phantom study; �b� intentionally introduced displacement field; and
�c� subtraction of TPS derived and the known displacement fields.
technique. It is impressive that a simple approach with a
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narrow band and SIFT descriptor can capture the main fea-
ture of the rectal contour and help to find the correspondence
contours in the CBCT images.

To further examine the performance of the proposed tech-
nique, the method was also applied to three additional pa-
tients �Fig. 9�. The automapped contours are plotted together
with the manually outlined contour on the CBCT. For com-
parison, the original contours on pCT are also mapped rig-
idly to the CBCT. The accordance values between the pCT
and CBCT contours, as well as between the automapped and
manually segmented CBCT contours for these three patients
are listed in Table I. In these cases, the accordance values are
increased from around 75% to over 90% after contour map-
ping. The influence of the � ratio on the contour propagation
is illustrated by the data listed in Table II, where the accor-
dance values for a few different � ratios for the three patients
are shown. The accordance reached its peak value when the
� ratio is between 0.8 and 0.9 for all these three cases. When
the � ratio is lower than 0.8, the accordance decreases with
the decrease of the � ratio because less control points are
selected. The accordance also decreases with the increase of
the � ratio for the � ratio higher than 0.9. The accordance
value is stable for � ratios between 0.8 and 0.9. The data also
indicate that the � ratio is generally organ specific and is
insensitive for different patients.

IV. DISCUSSION

In this work, an effective feature-based rectal contour
mapping algorithm has been described. An indispensable
step toward online or offline adaptive replanning with con-
sideration of the patient’s dose delivery history and on-
treatment anatomy is the expedite organ segmentation of
CBCT images. While this task is, in principle, achievable
using deformable registration of the pCT and CBCT images,
the accuracy of the registration and therefore the contour
mapping, is often adversely affected by the presence of im-
age contents in one image that do not have correspondence
in the other image. The propagation of rectum wall is an
example of this. For prostate, rectal, or gynecological cancer
patients for example, the presence and absence of bowel gas
can vary daily. Coregistering an empty rectum without bowel
gas to a rectum filled with bowel gas �or vice versa� using
any deformable model could be problematic and large errors
could occur.

We describe a regional contour propagation algorithm tak-
ing into account possible organ deformation and anatomic
changes. Because the narrow band contains only the image
features outside the rectum, this method is not affected by
the rectum filling changes. The use of SIFT descriptor en-
hances our ability to find the correspondence of the narrow
band because of the effective utilization of image intensity
and gradient information. In contrast to the conventional
intensity-based image registration, which only uses intensity
information of the voxels, the feature-based registration ex-
tracts information regarding image structure, including

shape, texture, etc. Therefore, the feature-based image regis-
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tration is generally more effective in correctly identifying
corresponding voxels compared to the intensity-based image
registration.

In this study, a bidirectional SIFT descriptor is employed
to examine the reliability and robustness of the calculations.
The bidirectional mapping further enhances the degree of
success of a contour propagation algorithm. It is useful to
note that the bidirectional mapping is a necessary �but not
Medical Physics, Vol. 35, No. 10, October 2008
sufficient� test. In a rare but possible situation, the bidirec-
tional mapping may not be able to find an error occurred in
the contour mapping process.

Because the iterative procedure in the B-spline is not
needed in our method, the calculation speed is at least ten
times faster than B-spline registration. Typically the total cal-
culation time of SIFT-TPS mapping with about 1000 SIFT
descriptors is less than 2 min. Several parameters influence

FIG. 7. 3D contour mapping for the
rectum of a man with prostate cancer.
The top row is the three transactions in
the planning CT image, the bottom
row is corresponding transactions in
the CBCT image. The left column is
the axial plane, the middle column is
the coronal plane, and the right col-
umn is the sagittal plane.

FIG. 8. Rectal contour mapping for a
rectal cancer case. The first and second
rows show six axial slices in the pCT
image. The third and fourth rows are
the corresponding slices in the CBCT
image.
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calculation time. For example, larger narrow-band will result
in longer calculation times. The number of control points
also affects calculation time quite nonlinearly as well. For
most cases, 300 control points are enough for accurate con-
tour mapping. Due to the tight clinical timeframes �espe-
cially for real-time adaptive schemes�, 1 or 2 min calculation
time allows the use of the contour mapping tool between
acquiring the verification images and delivering the dose
fraction for online corrections.18

In some cases, no corresponding feature is found by SIFT
in a certain area close to the rectal wall. For instance, no
control point was found in the upper part of Fig. 5. Since no
large local deformation was in these regions, the result was
all right. However, it would have lead to larger errors in case

(a) (b)

(d) (e)

(g) (h)

TABLE I. Accordance values between the pCT and C
manually segmented CBCT contours for three patien

Accordance values between pCT and
CBCT contours �%�
Accordance values between auto-mapped
and manually segmented CBCT contours �%�
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of large deformations plus low feature density, which may
happen in smooth soft tissues. We will improve it in our
future work.

One of the practical concerns is that the relatively low
quality of CBCT images may influence the accuracy of im-
age registration and thus the contour mapping. Paquin et al.
quantitatively studied the influence of different types of
noises on deformable registration and found that the accu-
racy of image registration does not depend on the global
noise unless the noise reaches a certain threshold value.19

Murphy et al. also demonstrated that noise levels in cone-
beam CTs that might reduce manual contouring accuracy do
not reduce image registration and automatic contouring
accuracy.20

(c)

(f)

(i)

FIG. 9. Automatic contour propaga-
tion for three additional patients.

contours, as well as between the auto-mapped and

Patient 1 Patient 2 Patient 3

73.7 76.5 76.3

93.3 91.3 91.4
BCT
ts.
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Deformable model plays an important role in automated
contour propagation. Numerous approaches have been devel-
oped for different applications. Most popular deformable
registration methods for medical images include the thin
plate splines �TPS�,8 B-splines,21,22 and finite element
method �FEM�.23 TPS is less sensitive to noise because of its
global calculation nature.24 It relies on the use of homolo-
gous control points in the two input image sets to be coreg-
istered. Control points are manually selected for many TPS
applications.13,25,26 This may introduce interuser variability
and is a major source of error. Malsch et al. presented an
automatic block matching method,18 which is similar to the
control volume based approach proposed by Schreibmann
and Xing.27 Kim et al. presented an automated TPS, where
an arbitrary set of control points is supplied initially and then
is iteratively repositioned until the resulting warp optimizes
some measure of registration.28–30 The convergence of the
iterative calculation is slow because each control point influ-
ences the transformation in a global fashion. An alternative is
to use B-splines. In contrast to TPS, which allows arbitrary
configurations of the control points, B-spline requires a regu-
lar mesh of control points with uniform spacing. Unlike
spline-based registration methods, FEM models the deform-
ing image as an elastic body subject to external forces which
drive the deformation and internal forces �stresses� which
impose smoothness constraints.31,32 FEM may fail to model
highly localized deformations, since the deformation energy
caused by stress increases proportionally with the strength of
the deformation.33

V. CONCLUSION

Large interfractional patient setup uncertainty and
anatomy changes have been reported in numerous studies
and are widely recognized as one of the major limiting fac-
tors for maximum exploitation of modern radiation therapy
techniques such as IMRT and IGRT. The advent of onboard
volumetric imaging devices promises to improve the situa-
tion by providing valuable 3D �or even possibly four-
dimensional� geometric data of the patient in the treatment
position and allows for the adaptive modification of treat-
ment plan during a course of treatment.

In this work, an effective feature-based rectal contour
mapping algorithm has been described. The method yielded
satisfactory mapping for both digital phantom and clinical
cases. It is impressive that the algorithm is able to success-
fully map the contours from pCT to CBCT even for some

TABLE II. Accordance values between the auto-mapp
�-ratios for three patients.

� ratio 0.7 0.75

Patient 1 �%� 81.5 88.4
Patient 2 �%� 76.3 82.1
Patient 3 �%� 67.5 86.6
very challenging cases in which the deformation and/or im-
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age content change are dramatic. The two salient features of
the described algorithm are: �1� the use of inherent tissue
feature for control point selection as a priori knowledge for
deformable registration; and �2� limiting the ROI to exclude
the volume inside the rectum and focusing on the adjacent
neighborhood of the rectal contour. The algorithm should be
extendable for contour propagation of organs with similar
features, such as the bladder and stomach.
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