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BACKGROUND: Retinoic acid-regulated nuclear matrix-associated protein (RAMP) is a WD40 repeat-containing protein that is involved
in various biological functions, but little is known about its role in human cancer. This study aims to delineate the oncogenic role of
RAMP in gastric carcinogenesis.
METHODS: RAMP expression was examined by real-time quantitative RT-PCR, immunohistochemistry and western blotting. Inhibition
of RAMP expression was performed by siRNA-mediated knockdown. The functional effects of RAMP on cell kinetics were measured
by cell viability assay, colony formation assay and flow cytometry. Cell lines stably expressing RAMP were established to investigate
the oncogenic effects of RAMP in vitro.
RESULTS: Ramp was readily expressed in all seven gastric cancer cell lines and was significantly increased in human gastric cancer tissues
when compared with their adjacent non-cancerous tissues (Po0.001). In keeping with this, expression of RAMP protein was higher in
gastric cancer tissues compared with their adjacent non-cancerous tissues, whereas moderate protein expression were noted in
intestinal metaplasia. Knockdown of RAMP in gastric cancer cells significantly reduced cell proliferation (Po0.01) and soft agar colony
formation (Po0.001), but induced apoptosis and G2/M arrest. In additional, knockdown RAMP induced cell apoptosis is dependent
on functional accumulation of p53 and p21 and induction of cleaved caspases-9, caspases-3 and PARP. Strikingly, overexpression of
RAMP promoted anchorage-independent cell growth in soft agar.
CONCLUSION: Our findings demonstrate that RAMP plays an oncogenic role in gastric carcinogenesis. Inhibition of RAMP may be a
promising approach for gastric cancer therapy.
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Retinoic acid-regulated nuclear matrix-associated protein
(RAMP), also known as human lethal 2 denticleless (L2DTL), or
DNA replication factor 2 (CDT2), was first identified to be
downregulated during retinoic acid-induced neuronal differentia-
tion of NT2 cell (Cheung et al, 2001). The ramp gene is located in
1q32.1-32.2 region, and encodes a protein containing five WD40
repeats (WDR), a double DxR box, one KEN-box signal and PEST
sequences (Pfleger and Kirschner, 2000; Cheung et al, 2001; Angers
et al, 2006). It has been reported that ramp plays a pivotal role in
embryonic development (Kurzik-Dumke et al, 1996; Liu et al,
2007). Moreover, RAMP is associated with enhanced metastatic
potential of hepatocellular carcinoma and growth of breast cancer
cells (Pan et al, 2006; Ueki et al, 2008). However, the functional

role and significance of RAMP in tumourigenesis are still largely
unknown.

Gastric cancer is the leading cause of cancer death in China and
the second most common cause of cancer death worldwide (Parkin
et al, 1999). According to the National Cancer Institute (NCI),
more than 700 000 people die of gastric cancer every year. Gastric
carcinogenesis is thought to be a multi-step process that involves
multiple genetic and epigenetic events. Although it is believed that
the oncogenic alterations are common events, the underlying
mechanisms have not yet been clarified, and further studies are
necessary to identify new aberrant genes. Therefore, we extend our
study to determine the biological role and clinical application of
RAMP in gastric cancer.

MATERIALS AND METHODS

Cell lines and primary gastric cancer tissues

Seven human gastric cancer cell lines (AGS, MKN45, KATO III,
NCI-N87, SNU16, SNU1 and MKN28) and normal rat fibroblast
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cell line (Rat2) were obtained from either the American Type
Culture Collection (Rockville, MD, USA) or RIKEN Cell Bank
(Tsukuba, Japan). All human gastric cancer cells were maintained
in RPMI 1640 medium and Rat2 cells were maintained in DMEM
medium, supplemented with 10% fetal bovine serum, 100 U ml�1

of penicillin and 100 mg ml�1 of streptomycin in humidified
atmosphere of 5% CO2 at 371C. Paired primary gastric cancer
and their adjacent non-cancerous tissues were collected from 47
gastric cancer patients for real-time RT-PCR analysis. Biopsy
tissues were obtained from 150 gastric cancer patients, 10 patients
with intestinal metaplasia and 10 healthy subjects for immuno-
histochemical studies. All gastric tissues were histologically
confirmed. All patients provided written informed consent for
the use of their tissues. This project was approved by the Joint
CUHK-NTE Clinical Research Ethics Committee, Hong Kong and
Ethics Committee at the Charité University Hospital, Germany.

Real-time quantitative RT-PCR

Total RNA was extracted from cell pellets or gastric tissues using
the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s instruction. RNA concentrations were determined
by spectrophotometry. Briefly, 1 mg of total RNA was reverse
transcribed by using M-MLV reverse transcriptase (Promega,
Madison, WI, USA). The resultant cDNA was quantified by using
ABI PRISM 7500 with Power SYBR Green PCR Master Mix
(Applied Biosystems, Foster City, CA, USA). The primer sequences
for ramp are F: 50-TGGCTCAAGTGATGAAGCTG and R:
50-GGAGCACAGTAGGAGGTTGC. The real-time quantitative PCR
was performed in a total volume of 25ml containing 0.24mM each of
primers, 12.5ml of 2�Power SYBR Green PCR Master Mix and
50 ng of cDNA template. Expression level of ramp was normalised to
b-actin mRNA (primer sequences are F: 50-GTCTTCCCCTCC
ATCGTG and R: 50-AGGGTGAGGATGCCTCTCTT). DDCt was then
calculated by subtracting DCt of the control from DCt of disease.
Fold change of gene was calculated by the equation 2�DDCt. All PCR
reactions were performed in triplicates to ensure reproducibility.
Electrophoresis of the PCR products on 1% agarose gels was
performed to validate the specific generation of the expected PCR
product.

Tissue microarray construction, immunocytochemistry
and immunohistochemistry

Tissue microarrays (TMAs) were constructed from 150 gastric
cancer patients. Sections of 5 mm were taken from each tissue array
block and affixed to 3-aminopropyl triethoxysilane (APES; Sigma,
St Louis, MO, USA) coated slides and air-dried overnight at 371C.
After dewaxing and rehydrating, endogenous peroxidase was
quenched with 0.3% hydrogen peroxide for 20 min. Immunohis-
tochemistry (IHC) on TMAs was performed on the Ventana Nex
ES automated stainer (Ventana Corporation, Tucson, AZ, USA)
using the avidin–biotin detection method. The polyclonal primary
antibody against RAMP was generated as described previously
(Cheung et al, 2001), which was used at a concentration of 1 : 500.
The histochemical score was applied to assess both the intensity of
staining and the percentage of positive cells. For the intensity, a
score of 0 to 3, corresponding to negative, weak, moderate and
strong positivity, was recorded. The percentage of positive cells at
each intensity was also estimated. A grading score was obtained
by multiplying the intensity of staining by the percentage of
positive cancer cells as reported previously (Rimm et al, 2001;
Callagy et al, 2003).

Immunocytochemistry (ICC) was performed on gastric cancer
cell lines (5� 104) seeded per poly-L-lysine-coated coverslip and
fixed with 4% paraformaldehyde solution. Immunohistochemistry
was performed on paraffin-embedded tissue sections. To improve
the permeability of antibodies, tissues were passed through a

graded series of xylene, washed by water and incubated with 3%
hydrogen peroxide in PBS for 10 min. After blocking with non-
immunised goat serum, the tissue sections were incubated for 2 h
with the RAMP antibody (1 : 500) and then goat anti-rabbit IgG
antibody (1 : 400) for 30 min and avidin–biotin complex (Dako A/S,
Glostrup, Denmark) for 30 min. After incubation with 0.02% of
diaminobenzidin (DAB), sections were stained with hematoxylin.
ICC was also performed on gastric cancer cell lines with rabbit anti-
human antibody against p53 (1 : 500; Cell Signaling, Danvers, MA,
USA).

Knockdown of RAMP, p53 and p21 by siRNAs

MKN45 cells (2� 105) and AGS cells (1� 105) were plated in six-
well plate 24 h before transfection. RAMP siRNA, which contained
a mixture of four siRNAs with concentration of 25 nM each
(Dharmacon, Chicago, IL, USA) was transfected with Oligo-
fectamine Transfection Reagent (Invitrogen) as directed by the
manufacturer’s instruction. The sense sequences of four siRNA
oligonucleotides targeting four different regions of ramp RNA are as
follows: siRAMP1, 50-ACUCCUACGUUCUCUAUUATT-30; siRAMP2,
50-GUAUGGGAUUUACGUAAGATT-30; siRAMP3, 50-AGAAGGCUU
UGUUCGAUUGTT-30; siRAMP4, 50-GCUAAUUGCACAGACGAU
ATT-30. Two predesigned siRNAs (Qiagen, Hilden, Germany) were
used to knockdown p53 or p21, with sequences as follows: sip53,
50-AAGGAAAUUUGCGUGUGGAGU-30; sip21, 50-AAGACCAUGUG
GACCUGUCAC-30. A non-silencing siRNA oligonucleotide, (sense
sequence) 50-CGUACGCGGAAUACUUCGATT-30 (Ambion, Foster
City, CA, USA), targeting the luciferase RNA was used as control.

Construction of stably RAMP-expressing stable cell lines

The entire coding sequence of RAMP cDNA was cloned into the
pcDNA3.1/V5-His-TOPO vector (Invitrogen). MKN28 and Rat2
cells (2� 105 cells each) were transfected with 2 mg of either
RAMP-expressing plasmid or empty plasmid as control using
Lipofectamine 2000 Transfection Reagent (Invitrogen). After
incubation for 48 h, 500 mg ml�1 G418 were added for selection.
After 2 weeks, G418 resistant colonies were selected as stable
transfectant cell lines.

Cell proliferation assay

Cell proliferation was measured by the 3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium
(MTS) assay according to manufacture’s instruction (Promega).
Briefly, 20 ml of reaction solution containing 333 mg ml�1 MTS and
25mM phenazine ethosulphate was added to cells in 100ml culture
medium. The mixture was incubated at 371C for 1.5 h. The optical
density (OD) was measured at a wavelength of 490 nm.

Colony formation assay

Cells (1.0� 104) were mixed with 2 ml of culture medium
containing 0.3% agar and 10% FBS and then plated on the bottom
layer containing medium, and 0.6% agar with 10% FBS in each
well of a six-well plate. After cultured for 21 days, colonies were
counted after staining with crystal violet.

Cell apoptosis assay

Cells were washed and resuspended in 100 ml of annexin-binding
buffer (1� 106 cells per ml), incubated with 5 ml of annexin V
conjugate (Invitrogen) and 100mg ml�1 of propidium iodide (PI)
for 15 min at room temperature. After adding 400 ml of annexin-
binding buffer, flow cytometry was performed by FACScan (Becton
Dickinson, Franklin Lakes, NJ, USA). The data were analysed by
WinMDI 2.8 software (http://facs.scripps.edu/software.html).
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Cell-cycle analysis

The harvested cells were fixed in 1 ml of 70% cold ethanol at
41C overnight, incubated with 10mg ml�1 RNase and stained
with 50mg ml�1 PI for 30 min in the dark at 371C. Samples were
analysed by FACScan. The cell-cycle distribution was analysed by
Modfit LT sofware.

Western blot analysis

Cell pellets were lysed with Cyto Buster Protein Extraction Reagent
(EMD Biosciences, San Diego, CA, USA). Protein concentration
was measured with the Bio-Rad Protein Assay kit (Bio-Rad,
Hercules, CA, USA). Forty mg of eachProtein samples (40mg each)
were separated by SDS–PAGE and transferred onto a nitrocellu-
lose membrane (Amersham Biosciences, Piscataway, NJ, USA).
Membranes were probed with specific antibodies including anti-
RAMP (1 : 500), anti-p53 (1 : 1000), anti-p21 (1 : 1000), anti-cleaved
caspase-3 (1 : 1000), anti-cleaved PARP (1 : 1000), anti-caspase-8
(1 : 1000), anti-caspase-9 (1 : 1000), anti b-actin (1 : 5000; Cell
Signaling) and anti-GAPDH (1 : 10 000; Santa Cruz Biotechnology,
Santa Cruz, CA, USA), respectively, and then incubated with
secondary antibodies conjugated with horseradish peroxidase after
washing. The signals were visualised with Super Signal ECL (Pierce
Biotechnology, Rockford, IL, USA).

Statistical analysis

Statistical analysis was performed using Student’s t-test, w2-test or
Wilcoxon signed-rank test where appropriate. All P values are two
sided and a value of less than 0.05 was considered statistically
significant. All statistical calculations were performed by the SPSS
software (version 13.0, Chicago, IL, USA).

RESULTS

RAMP was upregulated in human gastric cancer cell lines
and primary gastric cancer tissues

To investigate whether RAMP might be involved in gastric
carcinogenesis, the mRNA expression of ramp was first examined
in 7 human gastric cancer cell lines (MKN45, AGS, SNU1, MKN28,
NCI-N87, SNU16 and KATO III) and 47 gastric cancer tissues.
Ramp mRNA was highly expressed in all seven cell lines (Po0.05;
Figure 1A). Of the 47 paired gastric tumour tissues analysed, 38
cases (81%) showed increased ramp mRNA expression compared
with their adjacent non-cancerous tissues (Po0.001, Wilcoxon
test; Figure 1B). Consistent with the mRNA expression, strong and
dense RAMP immunoreactivity was presented in gastric tumour
tissues, whereas RAMP immunoactivity was only noted occasion-
ally in adjacent non-cancerous tissues (Figure 1C1). Ramp protein
expression was identified in both nuclear and cytoplasmic regions
of gastric cancer cells (Figure 1C3). Furthermore, moderate level of
RAMP expression was detected in precancerous gastric lesion,
intestinal metaplasia (Figure 1C2).

Association between RAMP expression and
clinicopathological characteristics of gastric cancers

Among the 150 gastric cancer tissues evaluated on tissue array
analysis, we found that RAMP protein expression was significantly
higher in intestinal type gastric cancer than in diffuse type gastric
cancer (Po0.01, w2-test; Supplementary Table 1). However, there
was no correlation between RAMP protein expression and other
clinicopathological features such as gender, H. pylori infection and
tumour stage.

Knockdown RAMP expression inhibited tumour cell
growth

Having shown that RAMP was overexpressed in gastric cancer, we
further investigated whether RAMP is casually involved in tumour
cell growth. As shown in Figure 2, knockdown RAMP expression
(Figure 2A) caused a significant decrease in cell proliferation rate
in AGS (41.7%, Po0.01, t-test) and MKN-45 cells (27.2%, Po0.05,
t-test; Figure 2B). This effect was further confirmed by colony
formation assays. RAMP knockdown significantly reduced the
colony formation efficiencies in MKN45 cells (Po0.001, t-test;
Figure 2C1) and AGS cells (Po0.001, t-test; Figure 2C2) relative to
corresponding controls, indicating that RAMP knockdown sup-
pressed tumour cell growth.

Knockdown RAMP expression caused cell cycle-arrest in
G2/M phase

Concomitant with the suppression of cell proliferation, RAMP
knockdown in AGS cells caused cell-cycle arrest in G2/M phase
from 28.18±4.14% to 38.58±3.35% (Po0.05; Figure 3).

Knockdown RAMP expression induced cell apoptosis

To investigate whether the decreased cell growth after RAMP
knockdown was associated with induction of apoptosis, cell
apoptosis was evaluated by annexin V staining followed by
flow cytometry. RAMP knockdown induced apoptosis in AGS
cells from 9.61±2.11 to 27.83%±2.69 (Po0.001; Figure 4A2).
Induction of apoptosis was further confirmed by western blot
analysis on caspase-3, a key factor in apoptosis execution, its
downstream target PARP and two upstream modulators caspase-8
and caspase-9. As shown in Figure 4B, both caspase-3 and
PARP were cleaved in RAMP knockdown AGS cells. Cleaved
caspase-9 was also observed in AGS cells after RAMP expression
was reduced, suggesting that mitochondrial death pathway was
activated to mediate the cell death (Figure 4B). However,
attenuated RAMP expression did not trigger cleavage of caspase-
8, suggesting that the observed cell death may not be induced
by the death-receptor pathway (Figure 4B). Moreover, RAMP
knockdown resulted in increase of proapoptotic proteins, p53 and
p21, in both AGS and MKN45 cells (Figure 4C). Immunocyto-
chemical staining of p53 revealed that upregulation of p53 located
in nuclear only region (Figure 4D), indicating the functional
upregulation of p53 was achieved by RAMP knockdown. In
addition, multi-nuclear giant tumour cells were also observed in
RAMP knockdown AGS cells (Figure 4D2). This finding is
consistent with a previous study suggesting that one possible
function of RAMP is to mediate cytokinesis (Ueki et al, 2008).
When we depleted RAMP expression with siRNA in AGS cells, it
caused accumulation of G2/M cells. Taken together, our observa-
tion of multi-nuclear giant tumour cells could be due to deficit in
cytokinesis. We further investigated the role of RAMP on cell
apoptosis in relation to p53 and p21, a double knockdown of
RAMP/p53, or RAMP/p21 was performed on AGS cells
(Figure 4A). We found that apoptosis induced by RAMP knock-
down was completely abolished by RAMP/p53 knockdown, but
partially abolished by RAMP/p21 knockdown (Figure 4A), sug-
gested that RAMP-mediated cell apoptosis is in p53- and p21-
dependent pathways.

Forced RAMP expression in MKN28 and Rat2 cells
increased the clonogenicity in soft agar

To further investigate the oncogenic potential of RAMP in
gastric cancer, we examined the effect of RAMP overexpression
on growth characteristics of gastric tumour cells using soft agar
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colony formation assays. RAMP expression vector was stably
transfected into MKN28 cells, which exhibits the lowest RAMP
expression among seven gastric cancer cell lines, and Rat2
cells, an immortalised normal rat fibroblast cell line. Over-
expression of RAMP in the transfected cells was confirmed
by western blotting (Figure 5). Our results demonstrated
that the colony formation efficiencies from the RAMP-transfected
MKN28 and Rat2 cells were significantly higher (Po0.05)
and larger in size than those of empty vector transfected cells
(Figure 5).

DISCUSSION

This is the first study to establish a possible link between RAMP
and gastric carcinogenesis. In this study, we found a significant
increase in the expression of RAMP mRNA and protein in human
gastric cancers compared to surrounding non-cancerous tissues.
We also found that RAMP protein was moderately expressed in
intestinal metaplasia (gastric precancerous lesion). Interestingly,
higher expression of RAMP protein was detected in intestinal-type
gastric adenocarcinoma compared to the diffuse type in our tissue
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Figure 1 mRNA expression levels of ramp in (A) human gastric cancer cell lines and (B) primary gastric cancer and their adjacent non-cancerous tissues
were determined by quantitative real-time PCR. The results were expressed as the ratio of copies of ramp relevant to b-actin from at least three
independent experiments. Data are expressed as mean±s.d.; *Po0.05, **Po0.01, ***Po0.0001. (C) Representative immunohistochemical staining
of RAMP protein expression in gastric cancer (C1) and intestinal metaplasia (C2). (C3) Subcellular localisation of RAMP protein in human cancer cells.
Black arrowheads indicate some examples of cancer cells with RAMP expression.
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array data. Intestinal-type gastric cancer usually happens at a
late age and arises from chronic gastritis and develops through
intermediate stages of atrophic gastritis, intestinal meta-
plasia, dysplasia and finally gastric cancer (Peek and Blaser,
2002). Diffuse-type gastric adenocarcinoma, on the other hand,
consists of individually infiltrating neoplastic cells that do
not form glandular structures and are not associated with
intestinal metaplasia. Our findings suggest that frequent up-
regulation of RAMP may play a pivotal role in multi-step
development of gastric cancer, and RAMP upregulation occurs
as early as intestinal metaplasia throughout the gastric carcino-
genesis.

Upregulation of RAMP in gastric cancer cells and primary
gastric cancer tissues prompted us to elucidate the role of RAMP in
gastric cancer. We therefore analysed the effects of knocking down
RAMP expression in two human gastric cancer cell lines. Knock-

down of RAMP by siRNAs inhibited cell proliferation and
anchorage-independent growth in soft agar in gastric cancer cells
(Figure 6). In accordance with our findings, other reports indicated
that RAMP plays a crucial role in cell survival, and complete
loss of RAMP is lethal in early mouse embryonic development
(Liu et al, 2007).

We further characterised the functional significance of RAMP in
cell-cycle changes and apoptosis. Our data indicated that knock-
down of RAMP markedly induced cell apoptosis and caused cell-
cycle arrest in G2/M phase. These changes are associated with
induction of caspase-9 and caspase-3 cleavage, PARP cleavage and
upregulation of p53 and its downstream target p21 (Wang and
Prives, 1995; Chavez-Reyes et al, 2003). As it was suggested that
RAMP and PCNA contribute to substrate recognition of p53 in
the DDB1/CUL4 ligase complex (Banks et al, 2006; Higa et al,
2006a, b), inhibition of RAMP largely impaired the function of

AGS

RAMP RAMP

GAPDH

Control siRNA

Control siRNA

Control siRNA

RAMP siRNA

MKN45

AGS

RAMP siRNA

RAMP siRNA
Control 
siRNA

***

120

100

80

60

40

20

0
RAMP 
siRNA

N
um

be
r 

of
 c

ol
on

ie
s 

(%
)

120

100

80

60

40

20

0

***

Control 
siRNA

RAMP 
siRNA

N
um

be
r 

of
 c

ol
on

ie
s 

(%
)

**

*

R
el

at
iv

e 
ce

ll 
pr

ol
ife

ra
tio

n 
(%

)

150

A  1 2

2

B C1

100

50

0
AGS MKN45

�-Actin

MKN-45

Control
siRNA

RAMP
siRNA

Control
siRNA

RAMP
siRNA

AGS MKN-45

Control
siRNA

RAMP
siRNA

Control
siRNA

RAMP
siRNA

Figure 2 Knockdown expression of RAMP in AGS and MKN45 cell lines was confirmed by (A1) RT–PCR and (A2) western blotting. (B) Knockdown
RAMP significantly inhibited tumour cell proliferation. (C) Knockdown RAMP significantly suppressed cell growth as determined by colony formation assay.
Values are expressed as the mean±s.d. from three independent experiments; *Po0.05, **Po0.01, ***Po0.0001.

Control siRNA

G0/G1:42.63% G0/G1:30.24%

*

G2/M:37.93%

G
2/

M
 p

ha
se

, %
 o

f t
he

 c
el

l c
yc

le

S:20.03%
G2/M:20.86%
S:29.52% 240

180

120

60

40

30

20

10

00
0 30 60 90 120 150 Control

siRNA

RAMP

siRNA

RAMP siRNA

240

320

160

80

30 60 90 120 150

PI

N
um

be
r

N
um

be
r

PI

0
0

Figure 3 Effect of knockdown RAMP on cell-cycle distribution. Knockdown RAMP increased the number of G2/M phase cells by flow cytometry. Values
are expressed as the mean±s.d. of three replicate experiments; *Po0.05.

RAMP in gastric carcinogenesis

J Li et al

695

British Journal of Cancer (2009) 101(4), 691 – 698& 2009 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



DDB1/CUL4 ligase which profoundly stabilised p53 by preventing
from ubiquitination and increased the level of p53 and its target
p21. P53 regulates apoptosis and the cell cycle through actions in
the nucleus. Altering the subcellular localisation of p53 can alter its
biological functions (Moll et al, 2005). Our results showed that p53
was mainly retained in the nucleus after RAMP knockdown,
indicating that p53 functioned as a transcription factor to increase
the expression of p21 (McKenzie et al, 1999; Jiang et al, 2001; Jing
et al, 2007) and promoted apoptosis (Yonish-Rouach et al, 1991;
Lowe et al, 1993; Tsao et al, 1999). Moreover, the apoptosis

induced by RAMP knockdown can be completely counteracted by
RAMP/p53 double knockdown, but only partially abolished by
RAMP/p21 double knockdown. These observations suggest that
RAMP-mediated apoptosis in gastric cancer cells is dependent on
p53 pathway or at least partly dependent on p21 pathway. In this
regard, knockdown of RAMP increases functional p53 and p21
protein expression and induced cleavage of caspase-9, caspase-3
and PARP, which contributes to promote apoptosis (Nicholson
et al, 1995; Oliver et al, 1998). We further classified all seven
gastric cancer cell lines based on the p53 mutation status: MKN45
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Figure 5 Overexpression of RAMP promoted cell colony formation in soft agar assay. (A) MKN28 and (B) Rat2 were stably transfected with RAMP-
expressing or empty vectors. Expression of RAMP in transfected cells was confirmed by western blotting. Assays were performed in triplicate for three times.
Quantitative analyses of colony numbers are shown as values of mean±s.d.; *Po0.05.
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(p53-wildtype), AGS (p53-wildtype), SNU1 (p53-wildtype), MKN28
(p53-mutant), NCI-N87 (p53-mutant), SNU16 (p53-mutant) and
KATO III (p53-deficient; Matozaki et al, 1992; Yokozaki, 2000;

Jiang et al, 2001). However, we could not observe obvious
correlation between RAMP expression levels and p53 mutation
status (Figure 1A). Together with the fact that it has been suggested
that RAMP regulates p53 expression, these observations further
suggest that aberrant upregulation of RAMP in gastric cancer is an
upstream event of the p53-dependent signalling.

To further characterise the functional significance of RAMP in
gastric cancer, we also examined the effect of RAMP over-
expression in gastric cancer cells. Strikingly, our results demon-
strated that stable transfection of exogenous RAMP protein in both
MKN28 and Rat2 cells promoted malignant transformation
phenotypes as featured by the anchorage-independent growth
of cancer cells in soft agar. These results provide additional
evidence that RAMP played a pivotal role in promoting gastric
cancer growth.

In conclusion, human gastric cancers exhibited higher RAMP
expression in relation to surrounding tissue. Knockdown of RAMP
inhibited cell proliferation, induced apoptosis and arrested cells
in G2/M phase. We also provided further evidence that RAMP
knockdown induced expression of cleaved caspase-9 and cleaved
caspase-3, cleaved PARP and functional p53 and p21 protein
in gastric cancer cells. On the other hand, overexpression of
RAMP increased growth capacity in gastric cancer cells (Figure 6).
Collectively, RAMP could play an important role in gastric
carcinogenesis with an oncogenic potential. Inhibition of RAMP
may be a novel approach for gastric cancer therapy that warrants
future investigation.
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