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A B S T R A C T

Purpose
To identify children with acute lymphoblastic leukemia (ALL) at initial diagnosis who are at risk for
inferior response to therapy by using molecular signatures.

Patients and Methods
Gene expression profiles were generated from bone marrow blasts at initial diagnosis from a
cohort of 99 children with National Cancer Institute–defined high-risk ALL who were treated
uniformly on the Children’s Oncology Group (COG) 1961 study. For prediction of early response,
genes that correlated to marrow status on day 7 were identified on a training set and were
validated on a test set. An additional signature was correlated with long-term outcome, and the
predictive models were validated on three large, independent patient cohorts.

Results
We identified a 24–probe set signature that was highly predictive of day 7 marrow status on the
test set (P � .0061). Pathways were identified that may play a role in early blast regression. We
have also identified a 47–probe set signature (which represents 41 unique genes) that was
predictive of long-term outcome in our data set as well as three large independent data sets of
patients with childhood ALL who were treated on different protocols. However, we did not find
sufficient evidence for the added significance of these genes and the derived predictive models
when other known prognostic features, such as age, WBC, and karyotype, were included in a
multivariate analysis.

Conclusion
Genes and pathways that play a role in early blast regression may identify patients who may be at
risk for inferior responses to treatment. A fully validated predictive gene expression signature was
defined for high-risk ALL that provided insight into the biologic mechanisms of treatment failure.

J Clin Oncol 26:4376-4384. © 2008 by American Society of Clinical Oncology

INTRODUCTION

The current management of children with acute
lymphoblastic leukemia (ALL) modulates treatment
intensity according to the risk of relapse, which
thereby maximizes opportunities for cure and min-
imizes adverse effects.1

A number of variables have been shown to be
predictive of outcome in childhood ALL, including
clinical and laboratory features, cytogenetic charac-
teristics of the blast, and early response to chemo-
therapy.2 These variables are routinely used for
treatment assignment, but approximately 20% of
children unpredictably suffer a relapse.3

Global gene expression profiling has facil-
itated the discovery of biologic subgroups in a
variety of cancers.4,5 This technique has been
shown to accurately classify ALL into cohorts
that correspond to known biologic sub-
groups.6,7 However, it has proved more difficult
to identify signatures that are globally predic-
tive of outcome. In the present study, we per-
formed gene expression profiles on leukemic
blasts from children who were treated on a
single, contemporary Children’s Oncology
Group (COG) protocol for high-risk (HR) ALL
to discover gene expression signatures that are
predictive of early response and outcome.
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PATIENTS AND METHODS

Diagnostic marrow samples from 99 children (age 1 to 18 years) with
National Cancer Institute–defined HR B-precursor ALL (age �10
years and/or presenting WBC � 50,000/�L) who were treated on the
COG 1961 protocol were analyzed.8 We focused on this particular
group of patients, because many lack known genetic subtypes predic-
tive of outcome. All patients received a standard four-drug induction
and were further classified as slow early responders (SER)—day 7
marrow was M3 (� 25% blasts)—or rapid early responders (RER)—
day 7 marrow was M1 (� 5% blasts) or M2 (5% to 25% blasts).

To determine genetic profiles associated with early response to
therapy, we analyzed 82 of 99 patients: 42 patients who had M1
marrow on day 7 were compared with 40 patients who had M3
marrow on day 7. Patients with M2 marrow (n � 17) were excluded to
maximize the distinction between responders. To study the genes
associated with long-term outcome, we analyzed expression profiles
of 59 patients who fulfilled the following criteria: 28 patients who
remained in complete continuous remission (CCR) for at least 4 years
and 31 patients with marrow relapse within the first 3 years of initial
diagnosis. Forty-two samples were common to both the early response
and outcome analyses. Patient characteristics are listed in Appendix
Table A1 (online only).

RNA Extraction and Amplification and DNA Arrays

Total RNA was extracted from cryopreserved blasts from the
COG cell bank by using RNeasy Midi kits (Qiagen, Valencia, CA)
followed by the MinEluate kit (Qiagen). Fifty nanograms of total RNA
were used as template in a double-amplification protocol by using the
RiboAmp OA kit (Arcturus, Mountain View, CA) according to the
manufacturer’s recommendations. In vitro transcription was com-
pleted with biotinylated UTP and CTP for labeling by using the Enzo
BioArray HighYield RNA Transcript Labeling kit (Enzo Diagnostics,
Farmingdale, NJ). Twenty micrograms of labeled cRNA were frag-
mented and hybridized to Affymetrix U133Plus2.0 microarrays (Af-
fymetrix, Santa Clara, CA). These arrays contain 54,675 probe sets,
which represented approximately 38,500 genes.

Screening Analysis for Cytogenetic Risk Group

Patients were tested by reverse transcriptase polymerase chain
reaction (RT-PCR) for the presence of each of four common prognos-
tic translocations: t(1;19), t(4;11), t(9;22), and t(12;21). The t(1;19),
t(4;11), and t(12;21) fusion products were assayed by qualitative RT-
PCR, whereas the t(9;22) analysis was done quantitatively by using
TaqMan technology (Applied Biosystems, Foster City, CA). Primers
are listed in Appendix Table A2 and methods for the assays detailed in
the Appendix (online only).

Table 1. Significant Probe Sets Predictive of Early Response

Rank by
Response

Type

Training Set P
Adjusted for

Clinical Covariates

Test Set

Affymetrix
Identification Gene Symbol Gene DescriptionP of t Test

P Adjusted
for Clinical
Covariates

RER
1 .001 .066 .252 219489_s_at RHBDL2 Rhomboid, veinlet-like 2 (Drosophila)
2 � .001 .232 .208 228346_at Transcribed sequence with strong similarity to protein sp:P00722

(Escherichia coli) BGAL_ECOLI �-galactosidase
3 .002 .008� .035� 225606_at BCL2L11 BCL2-like 11 (apoptosis facilitator)
4 � .001 .300 .885 203588_s_at TFDP2 Transcription factor Dp-2 (E2F dimerization partner 2)
5 � .001 .391 .889 203505_at ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1
6 .001 .001� .004� 1555372_at BCL2L11 BCL2-like 11 (apoptosis facilitator)
7 .007 .019� .018� 1569110_x_at PDCD6 Programmed cell death 6

SER
1 � .001 .064 .083 227353_at EVER2 Epidermodysplasia verruciformis 2
2 .001 .158 .670 214255_at ATP10A ATPase, Class V, type 10A
3 .004 .173 .740 219667_s_at BANK1 B-cell scaffold protein with ankyrin repeats 1
4 .001 .023� .028� 206940_s_at POU4F1 POU domain, class 4, transcription factor 1
5 .002 .346 .863 223562_at PARVG Parvin, �

6 .001 .059 .378 203373_at SOCS2 Suppressor of cytokine signaling 2
7 � .001 .324 .707 226869_at Full-length insert cDNA clone ZD77F06
8 .015 .013� .110 211675_s_at HIC I-mfa domain-containing protein
9 � .001 .432 .799 232614_at MRNA; cDNA DKFZp686K02231 (from clone DKFZp686K02231)
10 .005 .121 .208 242644_at EVER2 Epidermodysplasia verruciformis 2
11 .017 .292 .590 205290_s_at BMP2 Bone morphogenetic protein 2
12 .001 .505 .306 223451_s_at CKLF Chemokine-like factor
13 .030 .139 .418 207339_s_at LTB Lymphotoxin beta (tumor necrosis factor superfamily, member 3)
14 .023 .015� .043� 229390_at Full length insert cDNA clone ZA84A12
15 .014 .017� .087 212070_at GPR56 G protein–coupled receptor 56
16 .016 .030� .044� 204198_s_at RUNX3 Runt-related transcription factor 3
17 .008 .129 .184 227013_at LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila)

Abbreviations: RER, rapid early responder; SER, slow early responder.
�Statistically significant in the test set.
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Data Analysis

Data generated from the COG 1961 samples discussed in this
publication have been deposited in the National Center for Bio-
technology Information Gene Expression Omnibus (http://www
.ncbi.nlm.nih.gov/geo) and are accessible through series accession
number GSE7440.

Gene expression values were generated by using Affymetrix MAS
5.0 Software. Expression levels were scaled to an average value of 1,000
per gene chip9 and were log transformed. In each analysis, the probe
sets of 53 nonhuman genes and those that did not receive present calls
in at least 30% of the samples were removed from the study.

For prediction of early response, the samples (n � 82) were
randomly divided into a training set (28 RER, 26 SER) and a test set
(14 RER, 14 SER). A nearest shrunken centroids prediction model
with a subset of genes that were best associated with early response
(RER v SER) was determined by utilizing Prediction Analysis of
Microarrays (PAM)10 packaged in R (Stanford University Labs,
Palo Alto, CA; www.r-project.org/) with a 200 � 10-fold cross
validation procedure on the training data set. This model was used
to make predictions on the test set. Logistic regression was utilized
to test the significances of the subset of genes and the class predictor
when analysis was adjusted for clinical covariates, such as age and
presenting WBC.

For long-term outcome prediction, t test and adjusted P value (or
false discovery rate [FDR]), as proposed by Benjamini and Hoch-
berg,11 were utilized to select a subset of probe sets that were statisti-
cally associated with outcome. A logistic regression12 model was used
to test whether each of the genes added prognostic value beyond that
of known clinical covariates. Logistic regression with various variable
selection options11 was utilized to build the best models for predicting
outcome on the basis of clinical covariates and the genes identified by
the t test with the adjusted P value (or FDR). Prediction accuracies of
these models were estimated by using an unbiased, leave-one-out
cross validation (LOOCV).

Three independent microarray data sets of childhood B-precursor
ALL were used for validation of the outcome signature: a set of 220
patients treated on Pediatric Oncology Group (POG) trials,13 145
patients treated on German Cooperative Study Group for Child-
hood ALL (COALL) protocols,14 and 92 patients from Dutch
Childhood Oncology Group (DCOG) protocols.15 The samples of
the POG, COALL, and DCOG data sets were hybridized to Af-
fymetrix U95Av2, U133A, and U133Plus2.0 arrays, respectively.
Logistic regression was used to determine the association of the
significant probe sets in the POG data set, and Cox regression was
used in the COALL and DCOG data sets. We next built models for
outcome prediction. Of the 47 probe sets identified in the COG
1961 data set, 18 could be matched by 20 probe sets of the U95Av2
microarrays. We constructed logistic regression models with these
20 probe sets and with three clinical covariates (sex, age, and WBC)
as predictors of outcome. Briefly, model I (LP1) was based on three
genes, model II (LP2) on five genes, and model III (LP3) on four
genes. Receiver operating characteristic (ROC) accuracy, t test,
Mann-Whitney U test, Cox proportional hazards regression, and
logistic regression were used to validate these predictive models on
the independent data sets. In addition to the three statistical mod-
els mentioned above, we considered a simple linear combination of
the expression values of the probe sets that match the 47 probe sets
in each of the three validation cohorts (LPV).

RESULTS

Prediction of Early Response

Analysis with PAM on the training set (n � 54) led to a model
comprised of 24 probe sets with a minimal average cross validated
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              Y > c     Y ≤ c    Total
RER        10         4         14
SER         3         11        14
Total       13        15        28
c = 0.4690 (Y = predicted score)
sensitivity = 0.7143
specificity = 0.7857
success rate = 0.7500

Fig 1. Receiver operating characteristic (ROC) curve of the predicted score of
early response on the test set. The model that comprised 24 probe sets that
were derived from the training set was used for the prediction of early response
on the test set. The ROC accuracy (ie, the area under the curve) is A � 0.77,
which is significantly larger than that of noninformative prediction (P � .006). By
using a threshold of C � 0.4 (determined in training set), the model correctly
predicted 21 of 28 patient cases (success rate, 0.75). RER, rapid early responder;
SER, slow early responder.

Table 2. Enrichment Analysis of Genes Associated With Early Response

GeneOntology Term
GeneOntology

Number P

Hemocyte development GO:0007516 .00007
Vesicle targeting GO:0006903 � .001
Intercellular junction assembly GO:0007043 .001
Induction of apoptosis GO:0006917 .003
Cytoplasm organization and biogenesis GO:0007028 .004
Hemopoiesis GO:0030097 .005
Membrane fusion GO:0006944 .005
Hemopoietic or lymphoid organ

development
GO:0048534 .005

Nucleotide catabolism GO:0009166 .00004
Growth GO:0040007 � .001
Hormone-mediated signaling GO:0009755 � .001
Cellular morphogenesis GO:0000902 .002
Leukotriene biosynthesis GO:0019370 .002
Regulation of neuron differentiation GO:0045664 .003
Alkene biosynthesis GO:0043450 .004
Nucleosome assembly GO:0006334 .006
Cell growth GO:0016049 .007
Alkene metabolism GO:0043449 .007
Chromatin assembly GO:0031497 .009
Phospholipase C activation GO:0007202 .009

NOTE. The pathways upregulated in rapid early responders are hemocyte
development through hematopoietic or lymphoid organ development; those
upregulated in slow early responders are nucleotide catabolism through
phospholipase C activation.
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Table 3. Probe Sets Differentially Expressed Between Patients in CCR and Those Who Experienced Relapse

Rank

t Test Likelihood Ratio Test (P)

Affymextrix Probe
Set Identification Gene Name Gene DescriptionP FDR

Response
Associated With
High Expression

Significance
of Gene

Significance
of Clinical
Variables

1 � .001 .013 CCR � .001 � .001 35666_at SEMA3F SEMA domain, immunoglobulin domain (Ig), short basic
domain, secreted, (semaphoring) 3F

2 � .001 .015 Fail � .001 � .001 227877_at Similar to annexin II receptor (LOC389289), mRNA
3 � .001 .015 CCR � .001 � .001 227131_at MAP3K3 Mitogen-activated protein kinase kinase kinase 3
4 � .001 .015 Fail .004 .001 205401_at AGPS Alkylglycerone phosphate synthase
5 � .001 .028 Fail .001 � .001 208687_x_at HSPA8 Heat shock 70 kDa protein 8
6 � .001 .028 CCR .002 � .001 212229_s_at FBXO21 F-box only protein 21
7 � .001 .028 CCR .001 � .001 212576_at MGRN1 Mahogunin, ring finger 1
8 � .001 .028 CCR .004 � .001 225446_at C21orf107 Chromosome 21 open reading frame 107
9 � .001 .031 CCR .004 � .001 224793_s_at TGFBR1 Transforming growth factor, � receptor I (activin A

receptor type II–like kinase, 53 kDa)
10 � .001 .033 CCR .001 � .001 221840_at PTPRE Protein tyrosine phosphatase, receptor type, E
11 � .001 .033 CCR � .001 � .001 203514_at MAP3K3 Mitogen-activated protein kinase kinase kinase 3
12 � .001 .034 CCR .003 � .001 1559018_at PTPRE Protein tyrosine phosphatase, receptor type, E
13 � .001 .034 Fail � .001 � .001 217499_x_at OR7E47P Olfactory receptor, family 7, subfamily E, member 47

pseudogene
14 � .001 .034 Fail .007 � .001 224187_x_at HSPA8 Heat shock 70 kDa protein 8
15 � .001 .034 Fail .007 � .001 221891_x_at HSPA8 Heat shock 70 kDa protein 8
16 � .001 .034 CCR � .001 � .001 201642_at IFNGR2 Interferon � receptor 2 (interferon gamma transducer 1)
17 � .001 .034 CCR .002 � .001 218418_s_at ANKRD25 Ankyrin repeat domain 25
18 � .001 .034 Fail � .001 � .001 242305_at cDNA FLJ42757 fis, clone BRAWH3001712
19 � .001 .034 CCR .002 � .001 216035_x_at TCF7L2 Transcription factor 7-like 2 (T-cell specific, high mobility

group box)
20 � .001 .034 CCR .001 � .001 1556321_a_at MRNA full length insert cDNA clone EUROIMAGE

283668
21 � .001 .034 Fail � .001 � .001 235014_at LOC147727 Hypothetical protein LOC147727
22 � .001 .034 CCR .002 � .001 208820_at PTK2 protein tyrosine kinase 2
23 � .001 .034 CCR .004 � .001 212231_at FBXO21 F-box only protein 21
24 � .001 .034 CCR .004 � .001 229618_at SNX16 Sorting nexin 16
25 � .001 .034 CCR .005 � .001 209033_s_at DYRK1A Dual-specificity tyrosine-(Y)-phosphorylation regulated

kinase 1A
26 � .001 .034 CCR � .001 � .001 200641_s_at YWHAZ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase

activation protein, zeta polypeptide
27 � .001 .034 Fail .015 � .001 202657_s_at SERTAD2 SERTA domain containing 2
28 � .001 .034 CCR .015 � .001 201099_at USP9X Ubiquitin specific protease 9, X-linked (fat facets-like,

Drosophila)
29 � .001 .034 CCR .004 � .001 201542_at SARA1 SAR1a gene homolog 1 (S. cerevisiae)
30 � .001 .034 CCR .005 � .001 227068_at PGK1 Phosphoglycerate kinase 1
31 � .001 .037 CCR � .001 � .001 213944_x_at GNA11 Guanine nucleotide binding protein (G protein), �-11 (Gq

class)
32 � .001 .039 CCR .015 � .001 201472_at VBP1 von Hippel-Lindau binding protein 1
33 � .001 .039 CCR .018 � .001 202806_at DBN1 Drebrin 1
34 � .001 .039 CCR .022 � .001 221918_at PCTK2 PCTAIRE protein kinase 2
35 � .001 .039 Fail � .001 � .001 214585_s_at VPS52 Vacuolar protein sorting 52 (yeast)
36 � .001 .039 Fail � .001 � .001 219078_at GPATC2 G patch domain containing 2
37 � .001 .039 Fail � .001 � .001 219133_at FLJ20604 Hypothetical protein FLJ20604
38 � .001 .040 Fail � .001 � .001 1558111_at MBNL1 Muscleblind–like (Drosophila)
39 � .001 .040 CCR .001 � .001 221773_at ELK3, ETS-domain protein (SRF accessory protein 2)
40 � .001 .040 CCR .003 � .001 1558732_at MAP4K2 mitogen-activated protein kinase kinase kinase kinase 4
41 � .001 .043 CCR .032 � .001 212441_at KIAA0232 KIAA0232 gene product
42 � .001 .045 CCR .015 � .001 226775_at e(y)2 e(y)2 protein
43 � .001 .045 Fail .001 � .001 208498_s_at AMY2B Amylase, � 2B; pancreatic
44 � .001 .049 CCR .016 � .001 201121_s_at PGRMC1 Progesterone receptor membrane component 1
45 � .001 .049 CCR .004 � .001 202984_s_at BAG5 BCL2-associated athanogene 5
46 � .001 .049 Fail .032 � .001 210338_s_at HSPA8 Heat shock 70 kDa protein 8
47 � .001 .049 CCR .002 � .001 206548_at FLJ23556 Hypothetical protein FLJ23556

Abbreviations: CCR, complete continuous remission; fail, relapse.
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error rate of 0.38 that best characterized early response (FDR, 3.6%).
The Affymetrix probe set identifications and gene descriptions in rank
order can be found in Table 1.

To validate the significance of the 24 probe sets, we performed t
test and logistic regression analyses on the expression values in the test
data set (n � 28). Although there was a positive trend of association
between all probes in the test and training sets, eight reached statistical
significance. The estimated ROC accuracy of the predicted score on
the test set was 0.7755 (P � .0061; Fig 1). The overall misclassification
rate was 0.25 (sensitivity � .7143 and specificity � .7857). The ob-
served and predicted early responses significantly correlated with each
other (odds ratio, 8.33; P (one-sided Fisher’s exact test) � .011).

Functional Analysis of Genes Related

to Early Response

A list of 188 differentially expressed probe sets (RER v SER) that
were selected by PAM on the entire data set (N � 82; FDR � 10%) was
used for the detection of the relative enrichment of genes according
to GeneOntology15a terms with the help of the L2L tool.16 Genes
significantly over-represented in RER patients included those in-
volved with induction of apoptosis and hematopoeitic development,
whereas genes involved with cell growth and metabolism were over-
represented in SER patients (Table 2).

Prediction of Long-Term Outcome

Gene expression profiles from 59 patients (28 CCR; 31 relapse)
were analyzed to identify genes related to long-term outcome. By
using a threshold FDR of 5%, we identified 47 probe sets (which
represented 41 unique genes) that were significantly associated with
outcome. The Affymetrix identifications, which are descriptions for
the genes, are listed in rank order in Table 3 with t test P values that
compare CCR and relapse on the selected genes. Figure 2 represents
the heatmap of the expression values.

To get an unbiased estimate for the prediction accuracy of each of
the three models (LP1 through 3), we performed LOOCV. The mis-
classification rates for the three models were 0.2542, 0.3051, and
0.2881, respectively (sensitivity�0.643, 0.642, and 0.643, respectively;
specificity � 0.839, 0.742, and 0.774, respectively). The ROC accura-
cies were 0.8065, 0.7154, and 0.7316 (P � .0001, � .002, and � .001,
respectively). These LOOCV results indicated that the three models
were significantly predictive of outcome.

Validation of Outcome Prediction Models on

Independent Patient Cohorts

Three large patient cohorts—POG, COALL, and DCOG—were
used as independent sets for validation of the 47–probe set signature.
Notably, the trend in the DCOG and COALL data sets of the associa-
tion of the matched probe sets all agree with that observed in the 1961
data set, and this was also true of the POG data set with three excep-
tions (Appendix Table A2, online only).

The POG data set consisted of 220 patient cases (4-year CCR,
n � 95; relapse, n � 125) of childhood B-precursor ALL. The esti-
mated ROC accuracies for the three prediction models were 0.6119,
0.5820, and 0.5674, respectively. By using the one-sided Mann-
Whitney U test, the P values were .00226, .0187, and .0436, respec-
tively, which indicated that each of the predicted LP values of the three
models were significantly predictive of outcome in the independent
POG set. To further validate the predictive value of the three models,

we fit the univariate and multivariate logistic regression models (Table
4). The LPs of all the three models were significantly associated with
outcome (P� .05 for all). However, we did not find statistical evidence
for the prognostic significance of the majority of the models when
analysis was adjusted for age and WBC or for karyotype. Only model I
retained prognostic significance when age, WBC, and karyotype were
considered. Models II and III were significant after analysis was ad-
justed for karyotype but not for age and WBC. Similar results were
obtained when only the HR subset of patients was analyzed (data not
shown). Logistic regression with LPV (ie, the weighted sum of expres-
sion values of 20 probe sets common in the COG 1961 and POG
datasets) as the explanatory variable indicated that LPV also was asso-
ciated with a good outcome; P (one-tailed Wald test) � .007.

We next validated the three prediction models by using COALL
data with Cox proportional hazards regression (Table 5). We again
noted that the predicted LP values of all three models were signifi-
cantly associated with outcome (P � .05), and they remained signifi-
cant after analysis was adjusted for age and WBC but not for
karyotype. Cox regression with LPV was significantly associated with
outcome (P � .0002). The DCOG data set comprised of 92 (4-year
CCR, n � 67; relapse, n � 25) B-lineage diagnostic samples. By using
the one-sided Wilcoxon rank sum test, the P values were .030, .020,
and .0635, respectively, which provided a significant or marginal as-
sociation with outcome. Cox PH regression was performed to addi-
tionally validate the association of the predicted values with outcome
(Table 6). We noted again that the hazard ratios were all less than 1,
which indicated a consistent trend that the high predicted values were
associated with good outcome. In the DCOG data set, the three mod-
els were statistically significant when considered on their own (univar-
iate analysis) but were not after analysis was adjusted for WBC, age,
and karyotype. Logistic regression yielded similar results (Appendix
Table A3, online only). LPV with all 47 probe sets was significant
(P � .02, Appendix Table A5, online only).

DISCUSSION

The goal of our study was to identify gene expression signatures in
diagnostic samples that are predictive of early response to therapy and
overall outcome in children with National Cancer Institute–defined
HR ALL. All samples studied in these experiments were from patients
who were treated on a single, contemporary protocol and who re-
ceived intensified therapy according to a COG-modified Berlin-
Frankfurt-Munster backbone, which thus minimized the effects of
treatment variables.

Early response to therapy has proven to be one of the strongest
predictors of outcome and now is routinely used to stratify patients
according to the risk of relapse.17 We were able to identify and validate
a gene expression signature that correlated with the kinetics of regres-
sion of tumor burden, as assessed by the bone marrow blast content on
day 7. Apoptosis-facilitating genes, such as BIM and PDCD6, were
upregulated in RER patients, whereas multiple genes involved in cell
adhesion (eg, GPR56, PARVG), cell proliferation (eg, CKLF, BMP2),
and antiapoptosis (eg, BCL2, SOCS2) were upregulated in SER
patients. If this signature is validated with additional research, more
rapid approaches to assessment of gene expression could be used so
that augmented therapy might be deployed early—within the first few
days of diagnosis—to overcome slow response and possibly the emer-
gence of drug-resistant clones and, ultimately, to improve outcome.
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Other investigators also have sought to identify gene expression
profiles associated with early response to therapy. Two recent publi-
cations from Flotho et al18,19 have portrayed signatures that correlated
with minimal residual disease at day 1918 and at day 4619 of induction.
Though only five of 44 probe sets from the day 19 signature reached
statistical significance in our data set of day 7 response, the trend of
association for all the probe sets was remarkably strong. Not surpris-
ingly, this trend was not observed with the day 46 signature (data not
shown). Previous studies show that the kinetics of blast reduction is
quite steep in the first 2 weeks of induction and is much slower
thereafter.20 Thus, although day 7 bone marrow morphology and end
induction minimal residual disease may correlate,21 it is likely that
fundamental differences exist in the mechanisms of leukemia cell
death that occurs in early compared with late induction.

Though various groups have performed microarray experiments
on childhood ALL samples, it has proved difficult to identify a prog-

nostic signature at diagnosis. For example, Yeoh et al7 were able to
detect distinct expression profiles that predicted relapse in T-cell acute
lymphoblastic leukemia and hyperdiploid ALL but not in other sub-
types.7 Although expression of OPAL1 predicts ALL in some studies, it
has not been validated in others, which suggests that differences in
treatment may influence the prognostic impact of expression pro-
files.22 Other investigators have correlated gene expression sig-
natures with in vitro drug response.14,23 However, this drug
resistance profile was not selected for its prognostic value and,
hence, may not represent the best selection of outcome-
predictive genes. Despite these challenges, we have identified a
gene expression signature that was predictive of long-term out-
come and was validated in three independent cohorts of diag-
nostic samples from children who were treated on different
protocols, which thus yielded an accurate perspective on the
validity and reproducibility of the results.
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Fig 2. Genes differentially expressed in patients that remained in complete continuous remission v in those that relapsed. Heatmap of the 47–probe set signature
that was predictive of outcome (which represented 41 unique genes).
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Almost all of the genes that comprised our predictive sig-
nature were not identified in the studies mentioned above that
looked at drug resistance and/or outcome. However, studies
that have used microarray methodology to discover predictive
signatures in other cancers also have shown little overlap in gene
lists. Although these gene lists may not always be concordant
between data sets, each signature still may be significantly pre-
dictive across the data sets. For example, five recently published
predictive gene sets for outcome in breast cancer showed little
overlap between sets.24 However, four of five were predictive of
outcome in a single data set of 295 women, which emphasizes
that, despite the lack of overlap, the signatures are reflective of
common biologic subsets. This is consistent with our findings
that demonstrated the ability of individual gene expression
signatures and the derived models by using the COG samples to
predict outcome on three different cohorts of patients.

The utilization of predictive signatures in clinical cancer
trials is eagerly awaited. The application of array technology to
define additional patients with ALL who have a poor outcome
may be more difficult given the high cure rate of ALL and the
elucidation of many well-established risk factors to date. One of
the most crucial findings of our study was that, although gene
expression signatures correlated with outcome in univariate
analyses in multiple data sets, they lost much significance when
well-known outcome predictors, like age, initial WBC, and
genotype, were taken into account. A logical interpretation of
these findings is that the most important variables associated
with treatment failure in ALL have been identified already.
However, the inability to accurately predict outcome uniformly

by using these conventional variables may be related in many
instances to host factors. In addition, measurements of gene
expression do not take into account important events, such as
post-translational modifications. Another explanation is that
prognostic signatures may exist within biologic subtypes of ALL
only. It has been established that gene expression profiles cor-
relate with ALL cohorts defined by molecular changes, such as
translocations and ploidy. We specifically focused our efforts on
National Cancer Institute– defined HR ALL, because known
genetic subtypes account for only a minority of patients in this
cohort, and we sought to identify novel biologic subtypes asso-
ciated with outcome by using gene expression profiling. Our
inability to define such a group might reflect the existence of
smaller biologic subsets within this population that may not be
possible to detect with the number of patient cases studied here.
However, our study and similar ones by others, even if not
predictive in multivariate analysis, are likely to lead to a biologic
understanding of why certain clinical and laboratory variables
are associated with clinical outcome. Such information is essen-
tial to derive more effective, tumor-specific therapies.

In summary, we have identified a gene expression signature
that is significantly predictive of outcome in childhood ALL, but
it does not seem to provide additional information beyond that
contained in already established prognostic variables. The anal-
ysis of a larger number of samples may allow investigators to
discover gene signatures that provide additional prognostic infor-
mation. Strict adherence to uniform protocols for sample acquisition,
processing, and array experimentation may facilitate comparison be-
tween data sets.25 In addition, analysis of gene expression profiles

Table 4. Validation of the Outcome Signature on POG Data Set

Model

Analyses

Univariate
Multivariate Adjusted for Age

and WBC
Multivariate Adjusted for ALL

Subtype�

Odds Ratio P Odds Ratio P Odds Ratio P

I (LP1) 1.468 .004 1.311 .035 1.314 .033
II (LP2) 1.363 .016 1.242 .070 1.346 .026
III (LP3) 1.312 .029 1.202 .105 1.281 .048

NOTE. Total number of patients in data set � 220. Data were analyzed with the U95Av2 microarray.
Abbreviations: POG, Pediatric Oncology Group; ALL, acute lymphoblastic leukemia.
�Analysis was adjusted for TEL/AML1.

Table 5. Validation of the Outcome Signature on COALL Data Set

Model

Analyses

Univariate
Multivariate Adjusted for Age and

WBC
Multivariate Adjusted for ALL

Subtype�

Hazard Ratio P Hazard Ratio P Hazard Ratio P

I (LP1) 0.898 .015 0.917 .041 0.934 .135
II (LP2) 0.993 .009 0.994 .017 0.997 .17
III (LP3) 0.961 .020 0.967 .036 0.983 .23

NOTE. Total number of patients in data set � 145. Data were analyzed with the U133A microarray.
Abbreviations: COALL, German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia; ALL, acute lymphoblastic leukemia; MLL, mixed lineage

leukemia; BCR, break point cluster region; ABL, Abelson murine leukemia viral oncogene; TEL, translocation ETS leukemia, AML, acute myeloid leukemia.
�Analysis was adjusted for MLL, BCRABL, TEL/AML1, hyperdiploid, and E2A subtypes.
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may lead to a biologic understanding of why clinical and laboratory
variables are associated with outcome, and this information poten-
tially may be exploited therapeutically.
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