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The environmental pollutant 2,3,7,8-tetra
chlorodibenzo-p-dioxin (TCDD) is implicated 
in a variety of metabolic and endocrine tox-
icities ranging from body weight changes and 
type II diabetes to altered puberty and breast 
cancer risk (Brown et al. 1998; Fujiyoshi et al. 
2006; Zhu et al. 2008). Much of this toxic-
ity is ascribed to the nuclear receptor activity 
of TCDD. Polyhalogenated aromatic hydro-
carbons (PHAHs) and polycyclic aromatic 
hydrocarbons (PAHs), such as TCDD and 
7,12-dimethylbenz[a]anthracene (DMBA), 
respectively, bind the aryl hydrocarbon receptor 
(AHR) to induce cytochrome P450, polypep-
tide 1 (CYP1) enzymes (Nebert et al. 2004; 
Postlind et al. 1993). The differential activ-
ity of Ahr alleles influences the level of CYP1 
induction and the sensitivity to many toxicities. 
Induction of CYP1A1 by TCDD is approxi-
mately 10 times lower when the Ahrd allele 
is activated compared with the Ahrb allele 
(Poland and Glover 1980). These allelic differ-
ences likely correlate to structural differences 
that cause lower ligand affinity of the AHRd 
peptide (Chang et al. 1993). When AHRd is 
bound by less potent ligands, such as DMBA, 

no CYP1A1 induction occurs, and levels of 
CYP1B1 are lower than found in the presence 
of AHRb (Galvan et al. 2003, 2005). It is these 
allelic differences in Ahr that are believed to 
underlie the differential sensitivity of C57BL/6J 
(B6) mice (Ahrb1 allele) to TCDD and DMBA 
toxicities compared with DBA/2J (D2) mice 
(Ahrd allele), which are resistant to TCDD 
toxicity and lack a DMBA response (Sato and 
Tomita 1998; Weber et al. 1995). Although 
much of the research on AHR ligands has been 
conducted in B6 mice, evidence from CYP1A1 
induction suggests that the Ahrd allele of D2 is 
more comparable to the Ahr allele of humans 
(Moriguchi et al. 2003).

Because TCDD is lipophilic and persis-
tent, the rise of obesity prevalence may lead 
to an increased risk of TCDD exposure. 
Diets that contribute to obesity, such as con-
sumption of high-fat, animal-based foods, 
are positively correlated with human serum 
and milk levels of dioxins (Goldman et al. 
2000; LaKind et al. 2004). Consequently, 
increased food intake, particularly from a 
high-fat diet (HFD), may also increase risk 
of dioxin toxicities through higher intakes of 

TCDD. Furthermore, elimination of TCDD 
is slowed significantly with increasing adipos-
ity (Michalek and Tripathi 1999) because of 
a larger adipose volume for TCDD distri-
bution (Emond et al. 2006). This effect has 
been recapitulated in B6 mice, which when 
fed an HFD have a TCDD elimination half-
life 2.4 and 1.4 times longer in liver and adi-
pose, respectively, compared with those on a 
normal diet (DeVito et al. 2003). However, 
it is unclear whether obese individuals that 
are AHR ligand resistant, like D2 mice 
(Moriguchi et al. 2003), are susceptible to 
lipophilic AHR ligand toxicities.

Endocrine disruption by dietary fat and 
obesity, or exposure to AHR ligands can alter 
mammary gland development during puberty. 
Dietary fat induces early breast development 
(Britton et al. 2004), and girls with higher 
body fat have earlier breast development 
than do their lean counterparts (Carmichael 
2006; Himes et al. 2004; Ogden et al. 2006). 
Conversely, as serum dioxin concentrations 
increase in girls, their pubertal breast develop-
ment is delayed (Den Hond et al. 2002).

Address correspondence to D. Threadgill, Department 
of Genetics, CB#7614, North Carolina State 
University, Raleigh, NC 27695 USA. Telephone: (919) 
515-2292. Fax: (919) 515-3355. E-mail: Threadgill@
ncsu.edu

*Current address: National Institute of Environ
mental Health Sciences, Research Triangle Park, 
North Carolina, USA.

We thank K. Hua of the Animal Metabolism 
Phenotyping Core for assistance with the dual-energy 
X-ray absorptiometry, C. Wiesen of the Odum 
Institute for assistance with statistical analysis, and 
S. Fenton and M. DeVito of the U.S. Environmental 
Protection Agency (EPA) for discussion and comments 
on the manuscript. 

This work was supported by research grants from 
the National Institutes of Health (U01CA105417, 
U01CA134240, P30CA016086, T32ES007126, 
P30ES010126, R01DK56350, and P30DK056350) 
and the U.S. Department of Defense (BC050873). 

This document has been reviewed in accordance 
with U.S. EPA policy and approved for publication. 
Approval does not signify that the content necessarily 
reflects the view and policies of the agency, nor does 
mention of the trade names or commercial products 
constitutes endorsement or recommendation for use.

The authors declare they have no competing 
financial interests.

Received 30 December 2008; accepted 14 May 2009.

Dietary Fat Alters Body Composition, Mammary Development, and 
Cytochrome P450 Induction after Maternal TCDD Exposure in DBA/2J  
Mice with Low-Responsive Aryl Hydrocarbon Receptors
Michele La Merrill,1 Bittu S. Kuruvilla,1 Daniel Pomp,1 Linda S. Birnbaum,2,* and David W. Threadgill1,3

1Department of Genetics, Curriculum in Toxicology, Center for Environmental Health and Susceptibility, Clinical Nutrition Research Unit, 
Lineberger Cancer Center and Carolina Genome Sciences Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 
USA; 2Experimental Toxicology Division, U.S. Environmental Protection Agency, Office of Research and Development/National Health 
and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, USA; 3Department of Genetics, North Carolina 
State University, Raleigh, North Carolina, USA

Background: Increased fat intake is associated with obesity and may make obese individuals 
uniquely susceptible to the effects of lipophilic aryl hydrocarbon receptor (AHR) ligands.

Objectives: We investigated the consequences of high-fat diet (HFD) and AHR ligands on body 
composition, mammary development, and hepatic P450 expression.

Methods: Pregnant C57BL/6J (B6) and DBA/2J (D2) dams, respectively expressing high- or 
low-responsive AHR, were dosed at mid-gestation with TCDD. At parturition, mice were placed 
on an HFD or a low-fat diet (LFD). Body fat of progeny was measured before dosing with 7,12-
dimethylbenz[a]anthracene (DMBA). Fasting blood glucose was measured, and liver and mammary 
glands were analyzed.

Results: Maternal TCDD exposure resulted in reduced litter size in D2 mice and, on HFD, 
reduced postpartum survival in B6 mice. In D2 mice, HFD increased body mass and fat in off-
spring, induced precocious mammary gland development, and increased AHR expression compared 
with mice given an LFD. Maternal TCDD exposure increased hepatic Cyp1a1 and Cyp1b1 expres-
sion in offspring on both diets, but DMBA depressed Cyp1b1 expression only in mice fed an HFD. 
In D2 progeny, TCDD exposure decreased mammary terminal end bud size, and DMBA exposure 
decreased the number of terminal end buds. Only in D2 progeny fed HFD did perinatal TCDD 
increase blood glucose and the size of mammary fat pads, while decreasing both branch elongation 
and the number of terminal end buds.

Conclusions: We conclude that despite having a low-responsive AHR, D2 progeny fed a diet simi-
lar to that consumed by most people are susceptible to TCDD and DMBA exposure effects blood 
glucose levels, mammary differentiation, and hepatic Cyp1 expression.
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In this study, we sought to examine how 
dietary fat modifies the influence of AHR 
ligands on pubertal body composition and 
P450 expression. To account for the role of 
AHR ligand affinity, in this study we evalu-
ated female B6 mice, which express high- 
affinity AHRb1, making them sensitive to AHR 
ligands, and D2 mice, which express low-
affinity AHRd, making them less sensitive to 
TCDD and nonresponsive to DMBA induc-
tion (Chapman and Schiller 1985; Moriguchi 
et al. 2003). We determined the effects of 
maternal TCDD exposure and dietary fat on 
survival, body mass, body fat composition, 
and fasting glucose levels in offspring. We fur-
ther addressed to what extent dietary fat and 
developmental TCDD exposure affect mam-
mary gland development during puberty. In 
AHR-responsive B6 mice, TCDD and DMBA 
can influence mRNA expression involved with 
mammary gland differentiation as well as genes 
involved with AHR ligand and estrogen metab-
olism; because D2 mice express the low-affinity 
AHR but are susceptible to diet-induced obe-
sity, we further examined whether HFD-fed 
D2 mice exposed to TCDD and/or DMBA 
would be responsive to AHR-ligand–induced 
expression changes.

Materials and Methods
Chemicals. TCDD (99.9% pure; Ultra 
Scientific, North Kingstown, RI) and DMBA 
(98% pure; Sigma Chemical Company, St. 
Louis, MO) were obtained commercially. 
Both chemicals were dissolved in 95%/5% 
olive oil/toluene by volume (Sigma). DMBA 
and TCDD were dosed from 25 mg/mL and 
500 ng/mL stock concentrations, respectively, 
corresponding to 2.4 µL DMBA solution/g 
mouse and 1.8–1.9 µL TCDD solution/g 
mouse.

Mice and dosing. B6 and D2 nulliparous 
female mice (Jackson Laboratory, Bar Harbor, 
ME) were mated with B6 and D2 males, 
respectively, and dosed with 1 µg/kg TCDD 
or vehicle control by oral gavage at 12.5 days 
postcoitus (dpc), corresponding to the time 
when fetal mammary fat pads are developing 
(n = 24 dams per strain and treatment group). 
On postnatal day (PND) 0, dams were changed 
from 5058 chow (Purina, St. Louis, MO) to 
an HFD (45% total kilocalories from fat and 
35% total kilocalories from carbohydrate; 
D12451, Research Diets, New Brunswick, 
NJ; n = 12 dams) or a matched control low-fat 
diet (LFD; 10% total kilocalories from fat and 
70% kilocalories from carbohydrate; D12450B, 
Research Diets; n = 12 dams) (Figure 1). Diets 
had the same percentage of protein, with fat 
differences being achieved through increased 
maltodextrin and lard and decreased cornstarch 
and sucrose in HFD compared with LFD (400, 
1,598, 291, and 691 kcal vs. 140, 180, 1,260, 
and 1,400 kcal, respectively). The LFD has fat 

levels that fall into the range often found in 
standard rodent chows. Mice had ad libitum 
access to feed and water. Female pups were 
weaned at PND21, ending any lactational 
exposure to TCDD but continuing their 
respective HFD or LFD exposures. Female D2 
offspring were dosed with 60 mg/kg DMBA 
(n = 12 litters) or vehicle (n = 12 litters) by oral 
gavage on PND35, when developing pubertal 
mammary glands are known to be sensitive to 
DMBA exposure. Mice were euthanized 24 hr 
later by carbon dioxide asphyxiation. All ani-
mal experiments were performed humanely 
using protocols to alleviate suffering and were 
approved by the University of North Carolina 
at Chapel Hill Institutional Animal Care 
and Use Committee and were performed in 
a vivarium accredited by the Association for 
Assessment and Accreditation of Laboratory 
Animal Care. Because survival of B6 offspring 
was greatly reduced in the HFD group treated 
with TCDD, B6 offspring were not analyzed 
further.

Metabolic end points. On PND0, body 
weights of D2 progeny were assessed by weigh-
ing the entire litter and determining the aver-
age pup weight. Individual D2 body weights 
were measured at PNDs 4, 7, 10, 14, 18, 21, 
and 35. On PND35, D2 percent body fat was 
measured with a Lunar PIXImus dual-energy 
X-ray absorptiometry scanner (GE Lunar 
Corp., Madison, WI) using isoflurane anesthe-
sia. Blood glucose levels were measured from 
tail blood on PND36 using a FreeStyle blood 
glucose kit (Abbott Laboratories, Abbott Park, 
IL) after a 24-hr fast.

Histology. Inguinal mammary glands 
from D2 progeny were fixed and stained with 
carmine alum at PND36 to detect terminal 
end buds and branch elongation according to 
published methods (Fenton et al. 2002).

Molecular analysis. At PND36, median 
liver lobes and inguinal mammary glands of 
D2 mice were dissected and homogenized, 
and RNA was extracted. We used the High-
Capacity cDNA Archive Kit (Applied 
Biosystems, Foster City, CA) to generate cDNA 
for polymerase chain reaction (PCR) analysis. 
Real-time PCR was performed to assess relative 
transcript levels of Cyp1a1, Cyp1a2, Cyp1b1, 
Areg (amphiregulin), Ereg (epiregulin), Egf 
(epidermal growth factor), Rac1 (Ras related 
C3 botulinum substrate 1),Tgfb (transforming 
growth factor beta), Bax (BCL-2 associate X 
protein), Ccnd1 (cyclin d1), Mki67 (antigen 
identified by monoclonal antibody Ki 67), Igf1 
(insulin-like growth factor 1), Fgf2 (fibroblast 
growth factor 2), Ahr, Egfr (epidermal growth 
factor receptor), and Esr1 (estrogen receptor, 
alpha) using Assays-on-Demand (Applied 
Biosystems), with Gusb (glucuronidase, beta) 
and Actb (actin, beta) as endogenous controls 
in hepatic and mammary tissues, respectively. 
Endogenous controls were selected based on 

serial titration performance and lack of treat-
ment-specific expression variance.

Statistical analysis. All analyses were per-
formed using SAS, version 9.1.3 (SAS Institute 
Inc., Cary, NC). The litter median of female 
progeny traits was used as the unit of TCDD 
analysis to control for potential bias within 
litters due to maternal effects, although the 
result trends were identical when analyzing 
data for each pup individually. Three D2 lit-
ters (LFD + vehicle + vehicle, LFD + vehicle + 
DMBA, and HFD + TCDD + DMBA) had 
no females. Because of this imbalance in the 
design, Student’s t-test was not appropriate. 
Instead, we used the more conservative gener-
alized linear model (Proc GLM; SAS Institute 
Inc.) to evaluate the effect of TCDD, DMBA, 
and diet on phenotypes (body weight, per-
cent body fat, fasting blood glucose, branch 
elongation, fat pad length, number of termi-
nal end buds, size of terminal end buds, and 
fold change) (Livak and Schmittgen 2001) of 
Cyp1a1, Cyp1a2, Cyp1b1, Areg, Ereg, Egf, Rac1, 
Tgfb, Bax, Ccnd1, Mki67, Igf1, Fgf2, Ahr, Egfr, 
and Esr1 levels. All Proc GLM analyses mod-
eled phenotypes with additive main effects 
(diet, TCDD, DMBA), along with all two-way 
interactions and the three-way interaction of 
the main effects. Any significant interactions 
were explored with stratified analyses. Using 
the LSMEANS option of Proc GLM, the 
multivariate geometric means were determined 
to be significantly different at unadjusted 
p < 0.05 across a limited number of a priori 
contrasts. We took this conservative analysis 
approach because of the small sample size and 
the imbalance between some contrasts (e.g., 
fewer exposed to DMBA than to vehicle).

Figure 1. Schematic of treatment groups (A) and 
time line (B). Impregnated B6 and D2 nulliparous 
mice were treated with 1 µg/µL TCDD or 95%/5% 
olive oil/toluene (vehicle) at 12.5dpc. Dams received 
HFD or LFD at parturition, and pups were weaned 
onto the same diets.
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Results
Variable progeny survival caused by maternal 
TCDD exposure. Effects of TCDD on survival 
have been well characterized in adult mice. To 
examine the sensitivity to maternal TCDD 
exposure, we used TCDD doses that are < 200- 
and < 2,600-fold than the adult half-maxi-
mal lethal dose (LD50) of B6 and D2 mice, 
respectively (Chapman and Schiller 1985). The 
two mouse strains appeared to have different  
periods of sensitivity to maternal TCDD; D2 
mice were more sensitive to transplacental 
TCDD exposure, whereas B6 mice were more 
sensitive to lactational TCDD exposure. At 
PND0, B6 litter size was not affected by mater-
nal TCDD exposure. However, D2 females 
had a mean litter size of 4.7 when exposed to 
TCDD compared with a mean litter size of 6.3 
pups when exposed to the vehicle (p < 0.05; 
Figure 2A). Lactational TCDD exposure 
did not reduce postnatal pup survival in D2 
mice, and we observed no interaction between 
TCDD exposure and diet in D2 survival (data 
not shown). As opposed to their prenatal resis-
tance to TCDD-induced mortality, B6 survival 
was diminished postnatally by maternal expo-
sure to TCDD (p < 0.0001; Figure 2B). Most 
B6 pup mortality occurred during the period 
of lactation, and the decline in survivorship 
was most pronounced during the first post-
natal week. Coexposure to perinatal TCDD 

and HFD significantly reduced B6 pup sur-
vival compared with all other treatment groups 
(p < 0.0001; Figure 2B); however, HFD did 
not appear to prolong the window in which 
TCDD reduced B6 pup survival. Because of 
low B6 survival, no additional end points were 
examined in B6 mice.

Maternal TCDD exposure raises glucose 
levels in HFD-fed D2 progeny. Body composi-
tion and glucose in D2 female progeny were 
analyzed for susceptibility to maternal TCDD 
exposure and diet. HFD increased postnatal D2 
progeny growth compared with LFD as early as 
PND4 (p < 0.05; Figure 3A). Concordantly, 
pubertal D2 adiposity was 28.9% higher among 
D2 progeny fed HFD (25.6%) relative to those 
fed LFD (19.9%; p < 0.0001; Figure 3B). 
Although D2 progeny weigh more and have 
more body fat on an HFD than LFD, HFD 
did not significantly alter blood glucose com-
pared with progeny fed LFD. Only in HFD-
fed D2 progeny did maternal TCDD exposure 
heighten fasting blood glucose, by 59.3% 
over vehicle-treated D2 progeny (p < 0.05; 
Figure 3C). However, TCDD had no effect on 
either body mass or adiposity on D2 progeny 
fed either diet (data not shown).

Pubertal mammary gland growth in D2 
progeny is suppressed by maternal TCDD 
exposure. Mammary glands from pubertal D2 
female progeny were analyzed for susceptibility 

to maternal TCDD exposure and diet. D2 
female mice maintained on HFD showed sig-
nificant increases in branch elongation and 
number of terminal end buds compared 
with those maintained on LFD (p < 0.01; 
Figure 4A,B). However, relative to LFD, HFD 
was not associated with any changes in fat pad 
length or terminal end bud size in D2 female 
progeny (Figure 4C,D). TCDD primarily 
influenced mammary gland growth only in D2 
progeny fed HFD, significantly increasing fat 
pad length (p < 0.05; Figure 4C) and signifi-
cantly decreasing branch elongation (p < 0.05; 
Figure 4A), the number of terminal end buds 
(p < 0.05; Figure 4B), and the size of termi-
nal end buds (p < 0.01; Figure 4D) relative to 
vehicle-treated D2 progeny fed HFD. In D2 
progeny fed LFD, only terminal end bud size 
was significantly affected by maternal TCDD 
exposure (p < 0.05; Figure 4D). Similar to the 
effect of maternal TCDD, pubertal DMBA 
exposure reduced the number of terminal end 
buds to < 50% the number seen in vehicle-
treated control D2 progeny (mean ± SE, 2.4 
± 0.8 and 5.0 ± 0.6, for n = 10 and 11 litters, 
respectively; p < 0.05; data not shown).

Pubertal hepatic Cyp1 expression is ele-
vated by maternal TCDD exposure. Maternal 
TCDD exposure increased hepatic Cyp1a1 and 
Cyp1b1 expression at puberty in D2 female 
progeny relative to vehicle exposure, indepen-
dent of diet (p < 0.01; Figure 5A,B), whereas 
only HFD increased hepatic Ahr expression 
significantly compared with LFD at the same 
time point irrespective of TCDD exposure 
(p < 0.05; Figure 5C). Although DMBA and 
diet had no significant main additive effect on 
hepatic Cyp1b1 expression, their interaction 
term was significant in the generalized linear 
model for hepatic Cyp1b1 expression; when 
D2 female mice were maintained on HFD, 
DMBA induction of hepatic Cyp1b1 expres-
sion was significantly reduced in progeny from 
the maternally exposed TCDD group rela-
tive to the maternal vehicle controls (p < 0.05; 
Figure 5D). When D2 female progeny were 
maintained on LFD, maternal TCDD expo-
sure had no effect on hepatic Cyp1b1 induction 
after DMBA exposure.

Pubertal mammary gland fgf2 expres-
sion is elevated by LFD. Hepatic AHR activa-
tion indicates a liver response to xenobiotics, 
whereas mammary AHR appears to play a role 
in mammary gland development. Although 
interaction of AHR, EGFR, and ESR1 signal-
ing in mammary glands has been suggested to 
be involved in both mammary morphogenesis 
and carcinogenesis (Buters et al. 1999; Ciarloni 
et al. 2007; Patel et al. 2006), we observed no 
effects of maternal TCDD exposure or diet 
on the expression of Egfr, or its ligand Egf, 
Areg, and Ereg, or of AHR activation indica-
tors Cyp1a1, Cyp1b1, or Esr1 in mammary 
glands of D2 female progeny (data not shown). 

Figure 2. Treatment with TCDD or vehicle at 12.5dpc reduced D2 litter size and B6 early-life survival. 
(A) TCDD (n = 13 litters) reduced D2 litter size compared with oil vehicle (n = 14 litters; mean + SE). (B) B6 
survival (n = 37 litters) expressed as the fraction of pups present at birth; 1.0 corresponds to 100% survival. 
*p < 0.05. #p < 0.0001.

7

6

5

4

3

2

1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
Oil TCDD

*

N
o.

 o
f D

2 
pu

ps
/li

te
r

 S
ur

vi
va

l

0 5 10 15
PND

20

#

3025 35

HFD + vehicle
HFD + TCDD
LFD + vehicle
LFD + TCDD

Figure 3. Diet and maternal TCDD exposure effects on body composition and fasting blood glucose. (A) HFD 
increased postnatal D2 body weights (mean ± SE; n = 27–31 at PNDs 0–26 for HFD, and n = 28 at PND35 
for LFD). (B) HFD (n = 26 mice) increased percent fat at PND35 relative to LFD (mean ± SE; n = 28 mice). 
(C) Fasting blood glucose was increased by HFD and maternal TCDD-treated (black bars; n = 5 litters) com-
pared with HFD and maternal vehicle-treated (n = 6 litters) female progeny at PND36 (means ± SE). Because 
diet, but not TCDD, changed body weight and percent body fat, these analyses were done on individual D2 
mice, with TCDD- and vehicle-treated D2 mice pooled within diet.
*p < 0.05. #p < 0.0001.

25

20

15

10

5

0

30

20

10

0

B
od

y 
w

ei
gh

t (
g)

D
2 

%
 fa

t a
t P

N
D

 3
5

D
2 

bl
oo

d 
gl

uc
os

e 
(m

g/
dL

)

0 10 20

*

****
**

*

PND
30 40 LFD LFDHFD

120
100

80
60
40
20

0

#
*

HFD

HFD
LFD

Vehicle
TCDD



Dietary fat and TCDD

Environmental Health Perspectives  •  volume 117 | number 9 | September 2009	 1417

Among additional growth factors involved in 
mammary morphogenesis (Igf1, Rac1, and 
Fgf2) only Fgf2 gene expression was altered 
in mammary glands of D2 female progeny 
(Silberstein 2001). D2 mice fed LFD had 2.8-
fold higher mammary Fgf2 expression than did 
D2 mice HFD (p < 0.001; data not shown). 
All two-way and three-way interactions among 
diet, TCDD, and DMBA were statistically sig-
nificant in Fgf2 expression (p < 0.05). Markers 
of proliferation (Mki67 and Ccnd1) and of 
apoptosis (Bax) were unaltered by all exposures 
in D2 mammary glands.

Discussion
TCDD causes a broad range of toxic effects, yet 
its mechanisms are only partially understood 
and likely depend on many variables, such as 
dose, developmental stage of exposure, diet, and 
Ahr allele. The Ahr allele of D2 mice, like that 
of humans, codes for a receptor that weakly 
induces CYP1A (Moriguchi et al. 2003). In the 
present study, we treated D2 and B6 dams with 
1 µg/kg TCDD, considered to be a low dose 
for mice (Poland and Glover 1980).

We demonstrate that B6 and D2 strains 
have different windows of reduced progeny 
survival in response to maternal TCDD expo-
sure, with the severity being enhanced by 
HFD diet also in a strain-dependent man-
ner. Although B6 litter size was unaffected 
by maternal TCDD exposure here and else-
where (Vorderstrasse et al. 2004), postpartum 
B6 pup survival was greatly diminished by 
lactational exposure to TCDD and HFD. 
Postpartum D2 pups were relatively resis-
tant to TCDD. However maternal TCDD 
exposure in D2 dams, as in Ahr null mice 
(Abbott et al. 1999), produced smaller litters. 
The strain-specific shift in timing of suscepti-
bility to the effects of TCDD and HFD may 
be mediated by differences in the Ahr alleles 
between B6 and D2 mice.

The amount of TCDD that might accu-
mulate in mice fed HFD is likely influenced 
by several factors. Increased adiposity slows 
TCDD elimination, extending its half-life 
(DeVito et al. 2003; Michalek and Tripathi 
1999). Thus, upon TCDD exposure, larger 
fat depots of mice on HFD may seques-
ter a higher cumulative dose of TCDD than 
in those on LFD (Hoppe and Carey 2007). 
Consequently, the higher target-organ dos-
age and slower elimination of TCDD in D2 
progeny on HFD may exceed the minimum 
TCDD dose required to activate signaling. We 
focused on two variables potentially affecting 
susceptibility to this early-life TCDD expo-
sure, DMBA and diet, because it is likely that 
an individual’s susceptibility to the effects of 
TCDD exposure is influenced by interactions 
with other environmental factors and body 
composition (Hakkak et al. 2007; Han et al. 
2004; Thomsen et al. 2006). We found that 

maternal TCDD exposure and diet interact 
nonadditively to significantly alter both fasting 
blood glucose and mammary development of 
D2 female progeny at puberty.

The risk of insulin resistance, type II dia-
betes, and associated mortality has been linked 
to low levels of TCDD exposure in several 
epidemiologic studies (Consonni et al. 2008; 

Figure 4. Alteration of mammary gland morphology by maternal TCDD exposure and HFD. Inguinal mam-
mary whole mounts were made of glands removed at PND36 from progeny of vehicle- and TCDD-treated 
D2 mice fed HFD or LFD since weaning. Whole mounts were stained with carmine alum and measured 
for branch elongation (A), number of terminal end buds (B), fat pad length (C), and largest terminal end 
bud (D). Mean ± SE are shown for LFD groups: vehicle (n = 4 litters) and TCDD (n = 6 litters); and for HFD 
groups: vehicle (n = 6 litters) and TCDD (n = 5 litters). 
*p < 0.05 for diet effects and TCDD × diet effects. 
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Cranmer et al. 2000; Henriksen et al. 1997). 
Furthermore, a study of Vietnam veterans 
demonstrated an interaction between over-
weight and TCDD on type II diabetes risk 
(Fujiyoshi et al. 2006). Our analysis of fasting 
blood glucose levels after maternal TCDD 
exposure supports the reported interaction 
between adiposity and TCDD.

Similarly, our results are consistent with 
recent suggestions that a link between obesity 
and puberty may exist in girls (Slyper 2006); 
pubertal breast development is enhanced in 
overweight girls who eat diets high in poly-
unsaturated fats (Britton et al. 2004). We 
found HFD caused precocious mammary 
development in female D2 mice. Yet the 
precocious gland development was substan-
tially reduced by a combination of HFD and 
maternal TCDD exposure in the same female 
offspring that had elevated fasting blood glu-
cose. Mammary growth from the combined 
TCDD and HFD exposure was equivalent 
to that seen in vehicle-treated D2 mice on 
LFD, where TCDD had less impact on gland 
morphology. TCDD may have influenced 
puberty mammary growth of HFD-fed mice 
more than that of LFD-fed mice because the 
reduced mammary development in LFD-fed 
mice may have masked detection of mam-
mary growth hindrance by TCDD. These 
results are consistent with delayed adolescent 
breast development that is correlated with 
increased serum TCDD levels in peripubertal 
girls (Den Hond et al. 2002).

Gestational, but not lactational, TCDD 
exposure imprints on rat mammary gland epi-
thelial morphology at least as early as PND4 
and into adulthood (Fenton et al. 2002), which 
suggests that gestational exposure to TCDD 
had already begun modifying the offspring 
mammary bud by the time HFD was adminis
tered at birth. In humans, rats, and now mice, 
evidence supports that prepubertal TCDD 
exposures delays mammary differentiation.

Ahr transcription is down-regulated dur-
ing adipogenesis (Shimba et al. 2003). The 
fact that basal hepatic Ahr transcript levels are 
higher in D2 female progeny maintained on 
HFD indicates that elevation of Ahr expres-
sion is likely a consequence of weight gain. 
AHR signaling can cross-talk with ESR1 and 
EGFR, two receptors that are up-regulated in 
overweight individuals (Lorincz and Sukumar 
2006; Moral et al. 2003). AHR-mediated sig-
naling pathways also interact with mammary 
morphogenesis during puberty (Howlin et al. 
2006). Although several groups demonstrated 
a role for EGFR and its ligands both in mam-
mary morphogenesis and in AHR-mediated 
TCDD activity (Ciarloni et al. 2007; Howlin 
et  al. 2006; Patel et  al. 2006), we found 
no maternal TCDD-, HFD-, or DMBA-
mediated changes in expression of Esr1, Egfr 
genes or the EGFR ligand genes Egf, Areg, and 

Ereg in the mammary glands of D2 female 
progeny. Branching and ductal morpho
genesis are regulated by Tgfb, Rac1, Igf1, and 
Fgf2 (Ewald et al. 2008; Korah et al. 2007; 
Silberstein 2001). Of these, only Fgf2, which 
initiates and elongates ducts, was altered, sug-
gesting that mammary glands of LFD-fed D2 
mice were poised to have increased branching 
and elongation. Further, we found no evidence 
that proliferation and apoptosis influenced D2 
mammary morphogenesis. Together, these 
findings suggest that mechanisms at a differ-
ent developmental stage may be responsible 
for the effects of maternal TCDD and diet on 
mammary gland development.

In addition to cross talk with estrogen-
mediated pathways, AHR mediates Cyp1a1 
and Cyp1b1 induction by TCDD. Although 
neither Cyp1a1 nor Cyp1b1 transcripts were 
altered in the mammary gland after mater-
nal TCDD exposure, we did observe a mod-
est increase in hepatic Cyp1a1 and Cyp1b1 
expression at puberty. Maternal TCDD could 
indirectly decrease estrogen by increasing its 
metabolism. In the liver and mammary glands, 
CYP1A1 and CYP1B1 generate the catechols 
2-hydroxyestradiol and 4-hydroxyestradiol 
from estrogen, respectively (Tsuchiya et al. 
2005). Recent evidence suggests that TCDD-
stimulated production of these catechols is 
increased further in mice fed HFD (Zhu et al. 
2008). If up-regulation of hepatic Cyp1a1 
and Cyp1b1 transcripts by maternal TCDD 
in D2 female progeny translates to increased 
hepatic CYP1A1 and CYP1B1 protein, this 
should reduce mammary estrogen levels. 
Consequently, increased estrogen metabolism 
and less estrogen may be the mechanism that 
by which TCDD decreases mammary growth 
(Ciarloni et al. 2007; Howlin et al. 2006).

Because D2 mice have the Ahrd allele, 
they are considered nonresponsive to DMBA 
induction (Galvan et al. 2003, 2005). Thus, 
without maternal TCDD exposure, DMBA 
would not be metabolically activated in D2 
female progeny (Chapman and Schiller 1985; 
Moriguchi et al. 2003). However, increased 
Cyp1a1 and Cyp1b1 transcripts caused 
by maternal TCDD exposure may lead to 
metabolic activation of DMBA in D2 mice 
(Chapman and Schiller 1985; Moriguchi et al. 
2003). An important implication of these 
results is that maternal exposure to TCDD 
may increase susceptibility to DMBA-induced 
mammary carcinogenesis in mice typically 
having no susceptibility to DMBA. Because 
human AHR has similar activity as AHRd 
of D2 mice (Moriguchi et  al. 2003), this 
TCDD-increased susceptibility to DMBA 
may extend to humans. Thus, the potential 
interaction of maternal or low-level TCDD 
exposure, pubertal PAH exposure, and HFD 
on the risk of breast cancer incidence in 
humans should be investigated.

Conclusions
DMBA and TCDD represent PAHs and 
PHAHs, respectively, that are ubiquitous 
chemical classes in the environment that 
frequently occur as mixtures in human and 
environmental samples. Because of the preva-
lence of TCDD exposure and elevated adipos-
ity in modern society, most people have some 
TCDD tissue burden. Women that have been 
exposed to TCDD can expose their children 
to TCDD through maternofetal transfer  
and/or breast-feeding, further increasing the 
risk of exposure to environmental mediators 
of breast cancer during key developmental 
windows of susceptibility. Our data from D2 
mice, with similar AHR activity as humans 
(Moriguchi et al. 2003), suggest that increased 
adiposity may increase susceptibility to the 
effects of aromatic hydrocarbons among sub-
populations perceived to have minimal health 
risk of such exposures. Low-dose TCDD 
exposure can alter pubertal mammary growth 
under distinct environmental and genetic con-
texts, which may alter risk to cancer-causing 
exposures. Our data suggest that greater focus 
needs to be placed on modeling all aspects of 
people in modern society to accurately reflect 
potential health effects of chemical exposures.
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