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Abstract
Over the past three decades there has been a substantial increase in the amount of fructose consumed
by North Americans. Recent evidence from rodents indicates that hippocampal insulin signaling
facilitates memory and excessive fructose consumption produces hippocampal insulin resistance.
Based on this evidence, the present study tested the hypothesis that a high fructose diet would impair
hippocampal-dependent memory. Adult male Sprague-Dawley rats (postnatal day 61) were fed either
a control (0 % fructose) or high fructose diet (60 % of calories). Food intake and body mass were
measured regularly. After 19 weeks, the rats were given 3 days of training (8 trials/day) in a spatial
version of the water maze task, and retention performance was probed 48 h later. The high fructose
diet did not affect acquisition of the task, but did impair performance on the retention test.
Specifically, rats fed a high fructose diet displayed significantly longer latencies to reach the area
where the platform had been located, made significantly fewer approaches to that area, and spent
significantly less time in the target quadrant than did control diet rats. There was no difference in
swim speed between the two groups. The retention deficits correlated significantly with fructose-
induced elevations of plasma triglyceride concentrations. Consequently, the impaired spatial water
maze retention performance seen with the high fructose diet may have been attributable, at least in
part, to fructose-induced increases in plasma triglycerides.
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Introduction
Over the past three decades there has been a substantial increase in the amount of fructose
found in the North American diet. Several factors have contributed to the increase in the
availability and per capita consumption of fructose (Hein, Storey, White, and Lineback,
2005; Sigman-Grant and Morita, 2003); most notably, technological advances in the late 1960s
led to the development of a cost-effective method for producing large amounts of extremely
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sweet corn-based syrups containing high concentrations of fructose (high fructose corn syrup,
HFCS; either 42 or 55 % fructose; Hanover & White, 1993). Between 1970 and 1990, the
consumption of HFCS increased by 20-40 %, surpassing consumption increases in any other
foods, (Bray, Nielsen, and Popkin, 2004; Havel, 2005), and by the year 2000, 42 % of added
sweeteners were corn syrups (Putnam and Allshouse, 1999). In addition, fructose is added to
food in the form of fruit juice concentrates (over 60 % of calories in apple juice), crystalline
fructose (almost 100 % fructose), and sucrose (50 % fructose; Hanover & White, 1993).
Fructose, in many forms, is added to countless foods including carbonated beverages, fruit
products, baked goods, cereals, and dairy products (Hanover and White, 1993). Indeed, North
Americans would be greatly challenged to purchase processed foods not containing some form
of fructose.

A high fructose diet causes numerous pathological changes, including oxidative stress, glucose
intolerance, insulin resistance, type 2 diabetes, liver disease, hypertension, and cardiovascular
disease (Busserolles, Gueux, Rock, Mazur, and Rayssiguier, 2002; Elliott, Keim, Stern, Teff,
and Havel, 2002; Hwang, Ho, Hoffman, and Reaven, 1987; Montonen, Jarvinen, Knekt,
Heliovaara, and Reunanen, 2007; Nandhini, Thirunavukkarasu, Ravichandran, and Anuradha,
2005; Zavaroni, Sander, Scott, and Reaven, 1980). Furthermore, a study from one of the present
investigators showed that the damaging effects of a high fructose diet extend directly to the
brain (Mielke, Taghibiglou, Liu, Zhang, Jia, Adeli, and Wang, 2005). Specifically, placing
male Syrian hamsters on a 60 % fructose diet for 6 weeks produced hippocampal insulin
resistance. This finding is particularly significant given that the hippocampus is integral to
many forms of learning and memory (Ergorul and Eichenbaum, 2004) and that converging
lines of evidence indicate that neural insulin signaling facilitates hippocampal-dependent
memory (Park, 2001). For instance, extensive evidence suggests that peripheral insulin
resistance and type 2 diabetes are associated with deficits in hippocampal-dependent
declarative memory (Convit, 2005; Messier, 2005; Stewart and Liolitsa, 1999; Strachan, Deary,
Ewing, and Frier, 1997; Zhao, Chen, Xu, Moore, Meiri, Quon, and Alkon, 1999). Moreover,
learning and memory of a spatial water maze experience are correlated with activation of the
hippocampal insulin signaling pathway (Dou, Chen, Dufour, Alkon, and Zhao, 2005; Zhao et
al., 1999). Most importantly, direct infusions of insulin into the hippocampus enhance
performance in a variety of memory tasks, and the memory-enhancing effects of hippocampal
insulin administration are not observed in diabetic rats (Babri, Gholamipour, Rad, and
Khameneh, 2006; McNay, Herzog, McCrimmon, and Sherwin, 2005; Moosavi, Naghdi,
Maghsoudi, and Zahedi Asl, 2006).

Given that fructose is preferentially metabolized by the liver into lipids (Havel, 2005; Topping
and Mayes, 1971) and produces large increases in plasma triglyceride (TG) concentrations
(Basciano, Federico, and Adeli, 2005; Havel, 2005; Kelley, Allan, and Azhar, 2004; Le, Faeh,
Stettler, Ith, Kreis, Vermathen, Boesch, Ravussin, and Tappy, 2006; Park, Cesar, Faix, Wu,
Shackleton, and Hellerstein, 1992), a high fructose diet is analogous to a high fat diet in many
metabolic ways. Importantly, rats fed a diet high in saturated fatty acids exhibit impaired
performance on a number of hippocampal-dependent memory tasks (Greenwood and Winocur,
1990; 1996; McNay et al., 2005). Moreover, high fat diets produce insulin resistance in the
brain (Banas, Rouch, Kassis, Markaki, and Gerozissis, 2008), and injecting TGs directly into
the brain ventricles impairs memory (Farr, Yamada, Butterfield, Abdul, Xu, Miller, Banks,
and Morley, 2008). Collectively, the reviewed evidence led us to hypothesize that a high
fructose diet would impair hippocampal-dependent memory, and that the deficits would be
attributable, at least in part, to fructose-induced increases in plasma TGs. Consequently, the
present experiment tested the effects of feeding rats a high fructose diet on hippocampal-
dependent spatial water maze learning and memory, and sought to determine whether any
deficits would be correlated with fructose-induced increases in plasma TGs.

Ross et al. Page 2

Neurobiol Learn Mem. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Materials and Methods
Animals

Male Sprague-Dawley rats (Charles River, Wilmington, MA) aged 53 days upon arrival were
used. Rats are an excellent animal model to study the effects of fructose intake because their
metabolism of fructose closely resembles that of humans (Bar-On and Stein, 1968; Mayes,
1993; Van Den Berg, 1986). The present research focused on male rats, given that men are the
greatest consumers of fructose (French, Lin, and Guthrie, 2003; Park and Yetley, 1993; Vos,
Kimmons, Gillespie, Welsh, and Blanck, 2008).

The rats were weighed the day they arrived and again during each of the 3 days before the diet
change, which occurred one week after their arrival. Rats were matched on absolute body mass
and percent body mass change during the habituation week and assigned to either the control
(0 % fructose; n = 14) or fructose-fed (60 % fructose; n = 15) group. In order to measure food
intake, the animals were housed in suspended cages with wire mesh bottoms (Hazelton
Systems, Aberdeen, MD). All procedures were approved by the Georgia State University
Institutional Animal Care and Use Committee and are in accordance with PHS guidelines.

Diets
The fructose-fed group was provided ad libitum with a diet that consisted of 60 % fructose
(Research Diets, New Brunswick, NJ). The 60 % fructose concentration was chosen because
this amount produces hippocampal insulin resistance in hamsters (Mielke et al., 2005), leads
to peripheral pathology in rats similar to the pathology associated with fructose consumption
in humans (Elliott et al., 2002; Montonen et al., 2007), and is the amount used most extensively
in rodent studies (de Moura, Ribeiro, de Oliveira, Stevanato, and de Mello, 2008; Kelley et al.,
2004; Shapiro, Mu, Roncal, Cheng, Johnson, and Scarpace, 2008; Suga, Hirano, Kageyama,
Osaka, Namba, Tsuji, Miura, Adachi, and Inoue, 2000; Taghibiglou, Rashid-Kolvear, Van
Iderstine, Le-Tien, Fantus, Lewis, and Adeli, 2002; Tobey, Mondon, Zavaroni, and Reaven,
1982). The control group was fed a diet of standard rat chow (60 % vegetable starch; Research
Diets, New Brunswick, NJ) ad libitum. Both diets contained equal percentages of
carbohydrates (70 %), proteins (20 %), and lipids (10 %), and both diets were also isocaloric
on a weight basis (kcal/gm). The rats were fed the diets for 18 weeks, and behavioral testing
was performed during the nineteenth week.

Body Mass and Food Intake
Rat body mass and food intake were recorded for 1 week out of every 3 weeks until behavioral
tests were performed. To measure food intake, pellets in each hopper and dried spillage from
under each cage were weighed and then subtracted from the amount placed in the hopper the
previous day. Average daily kcal consumption was calculated by multiplying the average
grams of food consumed daily by kcal per gram of food.

Spatial Water Maze
The spatial water maze task was used to assess learning and memory for several reasons. First,
the task is dependent on the integrity of the hippocampus for successful performance (Bolhuis,
Stewart, and Forrest, 1994; Clark, Broadbent, and Squire, 2005; Korol, Abel, Church, Barnes,
and McNaughton, 1993; Martin, de Hoz, and Morris, 2005; Morris, Garrud, Rawlins, and
O’Keefe, 1982; Mumby, Astur, Weisend, and Sutherland, 1999; Sutherland, Weisend, Mumby,
Astur, Hanlon, Koerner, Thomas, Wu, Moses, Cole, Hamilton, and Hoesing, 2001). Secondly,
spatial water maze training increases hippocampal insulin signaling (Zhao et al., 1999). Third,
hippocampal infusions of insulin enhance spatial water maze performance (Choopani,
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Moosavi, and Naghdi, 2008; Moosavi, Naghdi, and Choopani, 2007; Moosavi et al., 2006;
Zhao et al., 1999).

For water maze acquisition, the rats were trained to locate a submerged platform (26 cm in
height and 10 cm in diameter) in a circular pool (0.46 m in depth and 1.35 m in diameter).
Acquisition consisted of 8 training trials per day for 3 consecutive days. Immediately before
the first training trial of each day, rats were placed on the platform for 30 s and were then placed
in the water facing the wall of the pool in one of three randomly determined quadrants. The
fourth quadrant contained the platform and was referred to as the target quadrant. If the rats
did not reach the platform within 60 s, then they were guided by hand to the platform. Rats
were allowed to remain on the platform for 15 s at the end of each trial and were then placed
in an empty cage for a 30 s inter-trial interval. Latency to reach the platform was used as the
measure of acquisition. Retention of the training was tested 48 h after the last training day.
Rats were placed in the pool facing the wall in a randomly determined quadrant and allowed
to swim for 20 s. The platform was not present, and retention measures during the probe test
included: 1) time spent in the target quadrant, 2) latency to cross the platform location (target),
and 3) number of target approaches. Swim speed was also measured.

Postmortem Measures
Two to three days after the retention test, the rats were fasted for 4 h then anesthetized with
isoflurane gas (5 % in 95 % oxygen) and euthanized by decapitation. Trunk blood was collected
immediately in heparinized tubes and centrifuged to collect plasma, which was then stored at
-80° C until the assays were performed. Given that the liver is the primary site of fructose
metabolism (Havel, 2005; Topping and Mayes, 1971), the liver was also extracted and weighed.

Using spectrophotometry, plasma samples were assayed for TGs (Sigma, St. Louis, MO), free
fatty acids (FFA; Wako Chemicals, Richmond, VA), leptin (ELISA, St. Charles, MO), and
insulin (ELISA, St. Charles, MO). Glucose was measured using an Accu-Chek glucose meter
(Roche, Indianapolis, IN). Samples were run in duplicate. All assays were performed according
to the manufacturers’ instructions.

Data Analysis
The data were stored and analyzed using Microsoft Excel, Version 5.0 and Statistical Package
for the Social Sciences (SPSS), Version 15.0. A two-tailed Student’s t-test was performed to
determine whether there were differences between the means of the control and fructose-fed
rats for percent change in body mass, kcal consumed, plasma assays (TG, FFA, leptin, insulin,
glucose), liver mass, time spent in the target quadrant, and swim speed. Latency to cross the
target and the number of target approaches were not normally distributed. As a result, a Mann-
Whitney U-test was used to analyze these scores. A mixed analysis of variance (ANOVA) was
performed to determine whether there were differences between control and fructose-fed rats
(between factor) in time to reach the platform across water maze acquisition trials (within
factor). To determine if there was an association between the peripheral and cognitive effects
of the high fructose diet, Pearson correlation coefficients were computed for the plasma and
liver measures and any of the behavioral scores that were significantly different between the
two groups. Differences among groups were considered statistically significant if p < 0.05.
Exact probabilities and test values have been omitted for simplification and clarity of the
presentation of the results.
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Results
Chronic, High Fructose Consumption did not Alter Body Mass

Average daily kcal consumption was slightly, but significantly, greater in fructose-fed rats than
in control rats [p < 0.05; Figure 1A]; however, the groups did not significantly differ in percent
change in body mass [Figure 1B].

The High Fructose Diet Impaired Retention Performance in a Spatial Water Maze
The high fructose diet did not affect water maze acquisition, but did impair retention tested 48
h after the last training trial. During acquisition the latency to reach the platform was
significantly decreased [p < 0.05; Figure 2] and was comparable in both control and fructose-
fed rats. Fructose-fed rats, however, displayed significantly longer latencies to reach the target
on the retention test [p < 0.05; Figure 3A], made significantly fewer target approaches [p <
0.05; Figure 3B], and spent significantly less time in the target quadrant [p < 0.05; Figure 3C]
than did control rats. Swimming speed did not differ significantly between the two groups on
the probe test [Figure 3D].

High Fructose Consumption Caused Hepatomegaly and Elevated Plasma Triglycerides
The high fructose diet significantly increased liver mass [p < 0.05; Figure 4A], circulating TGs
[p < 0.05; Figure 4B], and glucose concentrations [p < 0.05; Figure 4C]. Plasma leptin, insulin,
and FFA concentrations did not significantly differ between the two groups [p > 0.05; Figures
4D, 4E and 4F].

Spatial Memory Impairments are Correlated with Altered Liver Function
The effects of fructose on plasma TG concentrations were associated with the fructose-induced
retention deficits in the spatial water maze task. Specifically, plasma TG concentrations were
positively correlated with latencies to reach the target [r (28) = 0.53, p < 0.05; Figure 5A] and
negatively correlated with target approaches [r (28) = -0.34, p < 0.05; Figure 5B]. Target
approaches also were negatively correlated with liver mass [r (33) = -0.44, p < 0.05; Figure
5C].

Discussion
The present study demonstrates for the first time that a high fructose diet impairs hippocampal-
dependent memory in rats. Our results show that consuming a 60 % fructose diet for 19 weeks
impairs retention performance in a spatial water maze probe test. Specifically, elevated dietary
fructose increased latency to reach the target and decreased time spent in the target quadrant
and the number of target approaches. The diet did not impair acquisition performance during
training, which suggests that the fructose diet did not influence navigational ability and that
the rats were able to learn and retain the location of the platform for short periods of time.
Deficits were observed exclusively on the retention test given 48 h after training, which
indicates that the diet specifically impaired long term storage and/or retrieval. Accordingly,
one would expect a deficit on the first trial of the second and third training days, given the 24
hr interval between training days. It is likely that a deficit was not observed, however, because
the rats were placed on the platform for 30 sec before training on all of the three training days.

The present findings are inconsistent with a previous report showing that consuming fructose
enhances performance in an operant learning task in C57BL/6 mice (Messier, Whately, Liang,
Du, and Puissant, 2007). It is difficult to interpret what these contrasting findings may mean
because of key differences in dietary protocol, cognitive task, and species. For instance, the
fructose concentration was lower (15%) and delivered in water (although actual amount
consumed was not verified), and the cognitive measure (lever press for food on a continuous
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reinforcement schedule) does not likely depend as much on the hippocampus. In addition, they
also examined the effects of a high fat diet and contrary to previous findings the high fat diet
did not impair learning and memory.

Our findings provide indirect support for the hypothesis that the retention deficits produced by
the fructose diet are mediated through a process involving hepatic metabolism of fructose into
TGs. The terminal measures indicated that high dietary fructose significantly increased plasma
TGs and glucose concentrations along with liver mass, which is consistent with previous reports
(Ackerman, Oron-Herman, Grozovski, Rosenthal, Pappo, Link, and Sela, 2005; Cave, Deaciuc,
Mendez, Song, Joshi-Barve, Barve, and McClain, 2007; Zavaroni et al., 1980). Furthermore,
the fructose-induced retention deficits were significantly correlated with fructose-induced
increases in liver mass and, more directly, circulating TG concentrations. Specifically, as TG
concentrations increased, the latency to reach the target increased and the number of target
approaches decreased. The number of target approaches also varied inversely with liver mass.
Moreover, the retention deficits were not correlated with plasma concentrations of insulin,
glucose, FFA, or leptin.

Our working hypothesis is that fructose, via increases in TGs, impairs memory by producing
hippocampal insulin resistance. Supporting our hypothesis are previous studies showing that
application of TGs to liver cells decreases the ability of insulin to activate its signaling cascade
(Kim, Jeong, Kim, Kim, Chae, and Chae, 2007) and TGs can penetrate the blood brain barrier
(Drew, Smith, and Thomas, 1998). Furthermore, diets high in either fructose or fat produce
insulin resistance in the brain (Banas et al., 2008; McNay et al., 2005; Mielke et al., 2005;
Posey, Clegg, Printz, Byun, Morton, Vivekanandan-Giri, Pennathur, Baskin, Heinecke,
Woods, Schwartz, and Niswender, 2009; but see also Mielke, Nicolitch, Avellaneda, Earlam,
Ahuja, Mealing, and Messier, 2006 wherein a high fat diet did not affect brain insulin signaling,
perhaps because the effects were measured in mice at a time point (12 months of age) when
the insulin system was likely to have been diminished by aging). Moreover, high fat diets
impair memory (Greenwood and Winocur, 1990; 1996; McNay et al., 2005) and administration
of TGs directly into the ventricles produces hippocampal-dependent memory deficits (Farr et
al., 2008). Another possibility is that leptin resistance plays a part in the effects of fructose and
TGs on brain function and behavior. For instance, TGs interfere with leptin transport across
the blood brain barrier (Banks, Coon, Robinson, Moinuddin, Shultz, Nakaoke, and Morley,
2004). Peripheral and central administration of leptin enhances memory (Paz-Filho, Esposito,
Hurwitz, Sharma, Dong, Andreev, Delibasi, Erol, Ayala, Wong, and Licinio, 2008), including
hippocampal-dependent memory (Farr, Banks, and Morley, 2006; Oomura, Hori, Shiraishi,
Fukunaga, Takeda, Tsuji, Matsumiya, Ishibashi, Aou, Li, Kohno, Uramura, Sougawa, Yada,
Wayner, and Sasaki, 2006). Moreover, leptin receptors are typically found on the same neurons
that express high densities of insulin receptors (Hakansson, Brown, Ghilardi, Skoda, and
Meister, 1998; Mercer, Hoggard, Williams, Lawrence, Hannah, and Trayhurn, 1996; Shioda,
Funahashi, Nakajo, Yada, Maruta, and Nakai, 1998), and leptin and insulin often have common
effects on brain function (Baskin, Figlewicz Lattemann, Seeley, Woods, Porte, and Schwartz,
1999; Paulus, Schulz, and Lehnert, 2005; Shanley, Irving, and Harvey, 2001). To test the
hypothesis that the effects of fructose are mediated by TGs, it would be interesting to determine
whether combining fructose with a treatment that lowers lipid levels (e.g., gembifrozil) also
would prevent the memory impairments induced by fructose.

Although the correlations between plasma TG concentrations and memory are significant, the
correlational data are scattered, there is not a clear relation between the correlates, and we have
accounted for only a small proportion of the variance. This suggests that other effects of
fructose also contribute to the diet-induced changes in brain function. One possibility is that
fructose directly influences neural tissue. Unfortunately, whether fructose can penetrate the
BBB is still not known definitively (Funari, Crandall, and Tolan, 2007). Some early studies
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suggested that fructose cannot penetrate the blood brain barrier in any appreciable amount
(Klein, Hurwitz, and Olsen, 1946; Thurston, Levy, Warren, and Jones, 1972). In contrast,
evidence is accumulating that neuronal cells can metabolize fructose (Funari et al., 2007) and
that fructose-feeding increases the expression of fructose sensitive glucose transporters in the
hippocampus (i.e., glut5; Shu, Isenberg, Cormier, Benz, and Zorumski, 2006). Thus, it is
possible that fructose or one of its brain metabolites directly induced the memory deficits that
were observed here.

Although deriving 60 % of calories from fructose produces pathology in rodents that is similar
to that experienced by humans, the level consumed is outside the current range of the human
diet (Vos et al., 2008; Wells and Buzby, 2008). Notably, determining what concentration would
be comparable between humans and rats is difficult, given that a rat is expected to metabolize
fructose at a different rate than a human (Truswell, 1994) and because rats typically require
higher doses of drugs than humans to observe an effect. The 60 % fructose concentration,
however, produces hippocampal insulin resistance in hamsters (Mielke et al., 2005) and is the
amount that is used most extensively in current rodent studies (Behr-Roussel, Oudot,
Compagnie, Gorny, Le Coz, Bernabe, Wayman, Alexandre, and Giuliano, 2008; de Moura et
al., 2008; Tsai, Wu, and Hwang, 2008), which greatly facilitates comparison across studies.

In summary, the present findings indicate that feeding male rats a high fructose diet impairs
hippocampal-dependent spatial water maze retention performance, but does not affect
acquisition. The pattern of behavioral deficits produced by fructose suggests a specific effect
on long term storage and/or retrieval processes. Moreover, the retention deficits produced by
fructose are correlated with fructose-induced increases in circulating TG concentrations and
liver mass, which raises the possibility that fructose may influence brain function, at least in
part, via its effects on TGs.
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Figure 1.
Mean (+/-) SEM (a) kilocalories of food consumed per day and (b) percent change in body
mass of rats fed a control or high fructose (60% of calories) diet for 138 days (*p < 0.05 vs.
control rats).
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Figure 2.
The effects of eating a control or high fructose (60%) diet for 138 days on the mean (+/-) SEM
latency to reach the platform during spatial water maze training.
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Figure 3.
The effects of eating a control or high fructose (60%) diet for 138 days on the mean (+/-) SEM
(a) latency to reach the target, (b) number of target approaches, (c) amount of time spent in
the target quadrant and (d) swimming speed during the spatial water maze retention test (*p <
0.05 vs. control rats).
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Figure 4.
Mean (+/-) SEM (a) liver mass, (b) plasma TG concentrations, (c) plasma glucose
concentrations, (d) plasma leptin concentrations, (e) plasma insulin concentrations and (f)
plasma FFA concentrations of rats fed a control or high fructose (60%) diet for 138 days (*p
< 0.05 vs. control rats).
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Figure 5.
Scatterplots illustrating the association between (a) postmortem plasma TG concentrations and
latency to reach the target and (b) the number of target approaches and (c) postmortem liver
mass and the number of target approaches during spatial water maze retention (*p < 0.05 vs.
control rats).
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