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Abstract

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Ori-
ginally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte
peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPARg appears to be
highly expressed during atherosclerotic lesion formation, suggesting that increased PPARg expression may be a
vascular compensatory response. Also, ligand-activated PPARg decreases the inflammatory response in car-
diovascular cells, particularly in endothelial cells. PPARa, similar to PPARg, also has pleiotropic effects in the
cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPARa activation inhibits
vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However,
PPARd overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPARd
ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation
and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation.
Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in
terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of
PPAR-dependent and -independent signaling will provide the foundation for future research on the role of
PPARs in human cardiovascular biology. Antioxid. Redox Signal. 11, 1415–1452.

I. Introduction

Peroxisomes are organelles that participate in fatty
acid metabolism. Clofibrate analogues, hypolipidemic

agents that control plasma cholesterol and triglyceride lev-
els, can induce proliferation of liver cell peroxisomes
(300, 301). In addition, two lipid-lowering compounds struc-
turally different from clofibrate, [4-chloro-6-(2,3-xylidino)-2-
pyrimidinylthio]acetic acid (Wy-14,643) and 2-chloro-5-(3,
5-dimethylpiperidino-sulfonyl)benzoic acid (tibric acid), also
were found to stimulate hepatocyte peroxisome proliferation
(302). Although hypolipidemic drugs were demonstrated to
activate peroxisome proliferation, these studies did not es-
tablish a mechanism. Subsequent studies identified a protein
whereby peroxisome proliferators bind with affinity (196,
197), and this protein was later identified as a member of the
nuclear hormone-receptor superfamily that includes steroid,
retinoid, and thyroid hormone receptors (104). The name
peroxisome proliferator-activated receptor took origin from
the cloning by Issemann et al. (172) to identify possible endog-
enous mediators of peroxisome proliferation–induced gene
transcription in rodent livers. The peroxisome proliferator–
activated receptors (PPARs) consist of three related tran-
scription factors: PPARalpha (PPARa), PPARbeta=delta
(PPARb=d), and PPARgamma (PPARg), encoded by the genes
PPARA, PPARD, and PPARG, respectively (96). In addition to
the role in peroxisome proliferation, these nuclear transcrip-
tion factors are involved in numerous cellular functions, in-
cluding insulin sensitivity, glucose homeostasis, fatty acid
oxidation, cytokine production, and vasculoprotection.

II. PPAR and the Mechanism of Action

PPARs were initially shown to recognize and bind a DNA
sequence upstream of the PPAR target gene. This sequence
was termed the peroxisome proliferator response element
(PPRE) (251, 362) (Fig. 1). Acyl-CoA oxidase is a peroxisomal
enzyme involved in fatty acid oxidation. The promoter of this
enzyme was found to contain a DNA sequence that was re-
sponsive to stimulation by Wy-14,643, and this stimulatory

response was mediated by PPAR. Of great importance, PPAR
was shown to bind to this 5’ flanking portion, or peroxisome
proliferator response element of the acyl-CoA oxidase gene
(362). PPARs, on activation, heterodimerize with the retinoic
X receptor (RXR)-a (22, 121, 182, 190), and this is followed by
coactivator recruitment, which eventually leads to transcrip-
tional regulation of gene expression (85, 312) (Fig. 1). Besides
being involved in transactivation, PPARs also participate in
the negative regulation of certain genes by recruiting co-
repressors (233) (Fig. 1). In addition, other molecular mecha-
nisms are found by which PPARs can inhibit gene expression.
First, transrepression can be caused by physical interaction
with other transcription factors, including nuclear factor-
kappa B (NF-kB), Smad-3, activator protein-1 (AP-1), and
signal transducers and activators of transcription (STAT)
proteins (80, 114, 217, 307). Second, PPARs can modulate
transrepression through the mitogen-activated protein kinase
(MAPK) pathway (157). Coactivators and co-repressors, in
addition to regulating transcriptional activation, are critical
for the repression of certain genes (85, 305, 312). Third, PPARs
recruit coactivator proteins and often compete with NF-kB
and AP-1 for binding to these co-regulators (305). Thus, NF-
kB and AP-1 target gene expression is attenuated because of
competition with PPARs for coactivator binding.

Finally, PPARs can contribute to transrepression by either
inhibiting clearance of co-repressor complexes (123, 287) or
releasing co-repressors, which could allow co-repressor bind-
ing to NF-kB, eventually inhibiting NF-kB target gene expres-
sion (305).

The phosphorylation of PPARs is critical to regulating
many of the biologic functions of these nuclear receptors. In-
itially, insulin-induced phosphorylation of PPARawas shown
to increase transcriptional activity (322). Also, stress-activated
p38 MAPK has been shown to phosphorylate PPARa and
enhance target gene expression in myocardiocytes (24). Sev-
eral studies demonstrate that MAPK phosphorylation deac-
tivates PPARg and reduces basal and ligand-dependent
transcriptional activity (5, 51, 52, 157). However, one study
shows that PPARg is activated by ERK5 in endothelial cells
(ECs), and this particular MAPK does not phosphorylate
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PPARg (7). A recent report demonstrates that PPARg is under
the control of Bcr, a serine=threonine kinase that phosphory-
lates PPARg and prevents transcriptional activity (9). PPARd
is also considered to be a phosphoprotein because protein
kinase A (PKA)-induced phosphorylation of PPARd, similar
to PPARa and PPARg, has a stimulatory effect on transcrip-
tion (200). These are just a few of many examples that dem-
onstrate how PPAR signaling may be affected because of
phosphorylation by protein kinases.

PPARg is most abundantly expressed in adipose tissue,
with less expression in the colon and immune system. PPARg
has been shown to facilitate differentiation of fibroblasts into
adipocytes (59). PPARg is also involved in the regulation of
lipid metabolism, as ligand-dependent activation leads to an
increase in genes that regulate fatty acid uptake and storage
(320). Furthermore, PPARg plays a role in glucose homeosta-
sis and insulin sensitivity (110). Although PPARg was initially
found to be critical for adipocyte differentiation and function,
over time, PPARg was discovered to play an important role in
the cardiovascular system. As well as in adipocytes and T
cells, PPARg is also expressed in endothelial cells, vascular
smooth muscle cells (VSMCs), and macrophages.

III. PPARc Ligands

PPARs possess varying degrees of responsiveness to cer-
tain peroxisome proliferating agents (188). Although several
compounds were demonstrated to activate PPARs, initially
no reports confirmed direct binding to this receptor. How-
ever, in 1995, evidence was provided that thiazolidinediones
(TZDs), a class of antidiabetic drugs that improve insulin
sensitivity, bind to and activate PPARgwith high affinity (209)
(Fig. 2). Furthermore, PPARg was shown to be the major
target of these insulin-sensitizing agents (110).

Troglitazone (Rezulin), the first FDA-approved TZD used
in the clinical setting, was discontinued from the market in
2000 because of reports of liver toxicity (125, 206, 259). Ro-
siglitazone (Avandia) and pioglitazone (Actos), subsequent
TZD agents currently approved for clinical use, are not as-
sociated with severe hepatotoxicity (357), although weight
gain and edema have been reported as side effects (263). Also,

rosiglitazone has been reported to be associated with in-
creased risks of myocardial infarction and mortality due to
cardiovascular complications (265); however, the results are
controversial (155, 369). Clinical data from the PROactive
study found that pioglitazone reduces the risk of secondary
end points, including all-cause mortality, nonfatal myocardial
infarction, and stroke in diabetic patients but nonsignificantly
decreases the composite primary end-point risk (95). How-
ever, a recent meta-analysis that included 19 clinical trials
found that pioglitazone reduces primary end-point compo-
nents, including risk of death, myocardial infarction, and
stroke (225).

GW1929 and GW7845 are examples of non-TZD high-
affinity ligands for PPARg (39, 344) (Fig. 2). In addition,
PPARa=g dual and PPARa=g=d pan agonists have been
developed to promote synergistic antidiabetic and cardiovas-
cular protective effects. Muraglitazar, naveglitazar, tesaglita-
zar, and netoglitazone are several examples of PPARa=g dual
agonists (296) (Fig. 2). GW409544 has been shown to be a
potent activator of both PPARa and PPARg (390) (Fig. 2).
Bezafibrate, a lipid-lowering drug that reduces the risk of
myocardial infarction in patients with metabolic syndrome, is
a PPARa=g=d pan agonist (353) (Fig. 2).

Several natural PPARg ligands have been identified and
can be classified into two major groups of compounds, fatty
acids and phospholipids. PPARg ligands consist of polyun-
saturated fatty acids, including linoleic acids (36), linolenic
acid (175), arachidonic acid (192), and eicosapentaenoic acid
(159) (Fig. 2). Monounsaturated fatty acid compounds that
bind PPARg include oleic acid (317) (Fig. 2). Oxidatively
modified lipids also bind PPARg (Fig. 2). 15-Deoxy-d 12,14-
prostaglandin J2 (15d-PGJ2) and other J2 series prostaglandins
were identified as natural ligands for PPARg (110, 189) (Fig.
2). TZDs were demonstrated to be synthetic analogues of
15d-PGJ2 (110). Other natural PPARg ligands include 12- and
15-hydroxyeicosatetraenoic acid (HETE) (159) and 9- and 13-
hydroxyoctadecadienoic acid (HODE) (254) (Fig. 2), oxidized
metabolites of arachidonic and linoleic acids, respectively. 1-
O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC),
an oxidized phospholipid, is also a PPARg ligand (78) (Fig. 2).
In addition, lysophosphatidic acid (LPA) and its naturally

FIG. 1. Schematic view of PPAR action.
After a ligand binds to PPAR, PPAR hetero-
dimerizes with the retinoid X receptor (RXR)
and then binds to the PPRE. Recruiting
coactivators and co-repressors leads to acti-
vation and repression of PPAR target genes,
respectively.
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occurring analogue, 1-O-octadecenyl-2-hydroxy-sn-glycero-
3-phosphate (AGP) also have affinity for PPARg (361, 406)
(Fig. 2).

Finally, our research group identified nitroalkenes 9-, 10-,
12-, and 13-nitro-9,12-cis-octadecadienoic acid (LNO2) (319)
and 9- and 10-nitro-9-cis-octadecenoic acid (OA-NO2) (19) as
natural PPARg ligands (Fig. 2). We recently reported the
crystal structure of the PPARg ligand-binding domain bound
to LNO2 and found that LNO2 promotes PPARg interaction
with coactivator motifs of transcriptional coactivators (218).
The two charged residues R288 and E343 of PPARg that make
specific contacts with the NO2 are not conserved in PPARa
and PPARd (218), explaining why LNO2 preferentially acti-
vates PPARg rather than the other two PPAR subtypes (319).
LNO2 isomers bind to the two electrostatic regions of the li-
gand-binding pocket, and these electrostatic clusters allow
binding of different ligands at the same time (218, 258). Our
studies provide further evidence regarding the interaction
between PPARg and LNO2 and serve as a basis for the de-
velopment of novel PPARg ligands that could not only mimic
the interactions of LNO2 on PPARg but also extend beyond
the current TZD-induced PPARg-mediated effects in the car-
diovascular system.

PPARg ligands can also participate in signaling indepen-
dent of PPARg. Several studies have shown that PPARg li-
gands can directly interact and inhibit transcription factors in
a PPARg-independent manner. First, although we have
shown that nitroalkenes are PPARg ligands, nitroalkene-
induced inhibition of macrophage proinflammatory cytokine
secretion is regulated through nitroalkylation of the p65
subunit, repressing NF-kB transcriptional activity (76) (Fig. 3).

Second, 15d-PGJ2 inhibits NF-kB transcriptional activity by
inhibiting IkB kinase (IKK) (54, 314, 342) and the DNA bind-
ing domains of NF-kB (342). In all likelihood, the effects of

15d-PGJ2 on IKK activity result in the inhibition of IKK-
induced Ser32 and Ser36 phosphorylation of IkappaB-a (IkBa)
(54) (Fig. 3). Compound G, a non-TZD agonist, also inhibits
NF-kB activation by decreasing IKK activity (55). Further-
more, the administration of TZD at higher concentrations at-
tenuates NF-kB target-gene expression in macrophages
lacking PPARg (56, 249).

Pioglitazone can bind to mitoNEET, an integral protein
located in the outer mitochondrial membrane that regulates
oxidative capacity (71) (Fig. 3). MitoNEET received its name
because of the Asn-Glu-Glu-Thr (NEET) sequence located in
the carboxyl-terminal domain. Isolated mitochondria from
the hearts of mitoNEET-null mice display an overall wors-
ening of complex 1–dependent oxygen consumption (384).
Because mitoNEET is an iron-sulfur cluster containing pro-
tein, and pioglitazone has been shown to increase mitoNEET
2Fe-2S stability (279), it is possible that pioglitazone could
regulate the redox potential or function of the mitoNEET iron-
binding CDGSH domain [C-X-C-X(2)-(S=T)-X(3)-P-X-C-D-G-
(S=A=T)-H] (385).

PPARg antagonists are also ligands that can be used as
important tools in determining PPARg signaling and function
in basic science. The safety concerns and adverse side effects
of TZDs have spurred an increased effort to study possible
therapeutic benefits of administering PPARg antagonists in
the clinical setting. Bisphenol A diglycidyl ether (BADGE) is
often considered to be the first PPARg ligand known to inhibit
transcriptional activity (386). A potent PPARg antagonist is
GW9662, a compound that covalently modifies the Cys286
residue of the ligand-binding domain (207). Other examples
of PPARg antagonists include LG100641 (252), PD068235 (50),
and SR-202 (308).

The use of different methods for studying and screening
novel PPAR modulators is an important concept of drug

FIG. 2. PPARc ligands. Natural and synthetic
agonists bind and activate PPARg. Natural PPARg
agonists include 15d-PGJ2, fatty acids, oxidatively
modified lipids, hydroxyeicosatetraenoic acid, hydro-
xyoctadecadienoic acid, oxidized phospholipids, lyso-
phosphatidic acid, and nitroalkenes. Synthetic PPARg
agonists include TZDs, GW1929, GW7845, PPARa=g
dual agonists, and PPARa=g=d pan agonists. Examples
of PPARg antagonists include BADGE, GW9662,
LG100641, PD068235, and SR-202.
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discovery. Several examples are known by which cell-free
assays can be used for PPAR-modulator screening. A cell-free
competition radioreceptor assay uses recombinant PPAR
along with a radioisotope-labeled ligand and competitor
ligands (110, 400). The premise of coactivator-dependent re-
ceptor ligand assays (CARLAs) includes coactivator recruit-
ment and the use of a pull-down approach to determine the
amount of ligand-bound PPAR-coactivator complex. The
practice of radioactive labeling is not a requirement in CAR-
LAs, allowing a large, quantitative screening of PPAR com-
pounds (68, 192). The scintillation proximity assays (SPAs)
measure receptor–ligand interaction. Beta emission from the
radioactively labeled ligand is measured, and this is advan-
tageous because of high sensitivity, high reliability, and the
lack of a required separation step (100, 262).

The use of radioisotope-free assays is an alternative
approach to previous cell-free methods. Surface plasmon
resonance (SPR) techniques can be beneficial for detecting
ligand–nuclear receptor interactions (401) and ligand-binding
effects on nuclear-receptor dimerization (402), as well as
screening for ligands from ligand-bound nuclear receptor–
coactivator interactions (116). Fluorescence resonance energy
transfer (FRET) is a radioisotope-free assay that is used to
detect and quantitate PPAR ligand binding. A ligand-induced
PPAR conformational change results in coactivator recruit-
ment, allowing the fluorescence donor indirectly linked to
PPAR and the fluorescence acceptor indirectly linked to the
coactivator to draw into close proximity as the excited fluo-
rescence donor transfers energy to the acceptor (68, 411). A
simple ELISA has been developed in which unliganded PPAR
weakly binds to the coactivator LXXLL motifs, while ligand-
bound PPAR strongly binds to these LXXLL peptides. This
radioisotope-free assay uses a specific anti-PPAR antibody to
detect PPAR binding (69).

IV. PPARc and Endothelial Cells

The first evidence of PPARg expression in endothelial cells
(34, 179, 235, 387) came from several studies examining the
interaction of PPARg and plasminogen activator inhibitor
type-1 (PAI-1). The expression of PAI-1 in both endothelial
cells and adipoctyes is involved in limiting fibrinolysis in
humans. Elevated PAI-1 has been associated with myocardial
ischemia and thrombosis in mice (228). PPARg agonists are
generally found to increase PAI-I expression in endothelial
cells (235, 387), although one study suggests the opposite
(179). A later study provided evidence that PPARg1 and not
PPARg2 mRNA is present in human umbilical vein endo-
thelial cells (HUVECs) (198).

A. PPARg and the regulation of EC inflammatory
response

Adhesion molecules can bind to inflammatory cells in-
volved in signaling and regulation on the surface of endo-
thelial cells. These adhesion molecules include vascular cell
adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule-1 (ICAM-1), platelet–endothelial cell adhesion
molecule (PECAM-1), E-selectin, and integrins. Along with
monocyte chemoattractant protein-1 (MCP-1) and other che-
moattractant molecules, adhesion molecules are responsible
for attachment of immune cells to the endothelial layer, fol-
lowed by eventual immune cell migration across the endo-
thelium (313).

Much evidence demonstrates PPARg inhibitory and anti-
inflammatory effects in endothelial cells. Several studies have
reported that activation of PPARg inhibits expression of
cellular adhesion molecules, including VCAM-1, ICAM-1,
PECAM, and E-selectin, in addition to inflammatory cell mi-
gration and adhesion to atherosclerotic plaques (87, 173, 241,

FIG. 3. Schematic view of PPARc-dependent and -independent signaling pathways. PPARg ligands can exert their effects
in cardiovascular cells through PPARg-dependent and -independent mechanisms. PPARg-mediated increases in IRF-1 and
GADD45 result in greater VSMC apoptosis. PPARg-dependent decreases in c-fos expression attenuate VSMC proliferation.
Ligand-activated PPARg inhibits NF-kB transcriptional activity and inflammation in cardiovascular cells. PPARg ligand–
independent signaling can decrease IkB kinase activity, leading to decreased IkBa phosphorylation, NF-kB transcriptional
activity, and inflammation. Another example of PPARg ligand signaling that occurs independent of PPARg involves ni-
troalkylation of the p65 subunit and eventual reduction in NF-kB activity and inflammation. Pioglitazone can regulate
mitochondrial oxidative capacity and normalize lipid oxidation through direct binding to the mitoNEET protein, indepen-
dent of PPARg.
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257, 286, 378) (Fig. 4). NF-kB plays an important role in reg-
ulating leukocyte adhesion molecule expression. Cytokines
activate NF-kB in endothelial cells, thereby allowing NF-kB
binding to promoters of adhesion molecule genes. Through
NF-kB binding, cytokine-induced gene expression of ICAM-1,
VCAM-1, and E-selectin occur in the endothelium (73). Con-
stitutively active PPARg inhibits NF-kB– and AP-
1–regulated gene expression and binding activity in ECs, and
PPARg activation inhibits adhesion molecule expression by
inhibiting NF-kB and AP-1 signaling, considered the most
important transcription factors in endothelial cell signaling
(378). Another mechanism that may suppress endothelial cell
inflammatory signaling is the inhibition of the diacylglycerol-
protein kinase C (PKC) pathway (368). A study examined the
effects of PPAR-g ligands on chemokine expression that is
induced by interferon-gamma (IFN-g) in cultured human
endothelial cells. PPARg activators decrease IFN-inducible
protein of 10 kDa (IP-10), monokine induced by IFN-g (Mig),
and IFN-inducible T-cell a-chemoattractant (I-TAC) expres-
sion through the likely inhibition of NF-kB (237) (Fig. 4).
However, expression of MCP-1 is not changed in this study
(237), in contrast to a previous report showing that TZDs
inhibit tumor necrosis factor-alpha (TNF-a)- and interleuken-
1beta (IL-1b)-induced MCP-1 mRNA expression and secre-
tion (253).

In cultured endothelial cells, TZDs may reduce superoxide
production and inflammation (162, 244) by suppressing ex-
pression of NAD(P)H oxidase subunits that are critical for
superoxide generation (162). Furthermore, a recent study
found that mice expressing a dominant negative PPARg
mutation show elevated oxidative stress and impaired en-
dothelial function in cerebral arteries (32). Next, in cultured
endothelial cells, TZDs, along with 15d-PGJ2, attenuate IFNg-
induced major histocompatibility complex class II (MHC-II),
a protein involved in regulating immune responses and T-cell
activation (194). Finally, in HUVECs, TZDs promote expres-

sion of heme-oxygenase 1 (HO-1), a PPARg target gene with
antiinflammatory properties (193).

B. PPARg and the regulation of vascular tone

Endothelin-1 (ET-1) is a vasoconstrictive protein that can
also regulate VSMC proliferation. PPARg ligands attenuate
both ET-1 expression and secretion in endothelial cells by
blocking AP-1 signaling (83, 118, 163, 234, 318) (Fig. 5). An-
giotensin II (AngII) is also a potent vasoconstrictor that in-
creases angiotensin II type 1 (AT1) receptor expression,
leading to narrowing of blood vessels and elevations in oxi-
dative stress. In Sprague–Dawley rats, rosiglitazone and
pioglitazone blunt AngII-induced increases in blood pressure
by downregulating AT1 receptors and increasing angiotensin
II type 2 receptor (AT2) expression (87) (Fig. 5). Both TZDs
improve AngII-induced endothelial dysfunction (87). Subse-
quently, another study reported that in male apoE-knockout
(apoE�=�) mice, endothelial dysfunction occurs after AngII
treatment in association with decreased PPARg gene and
protein expression (355). Because human PPARg dominant
negative mutations are associated with hypertension (27),
TZD-induced PPARg activation may be one method of treat-
ment for the effects of elevated blood pressure.

Conversely, endothelial cell–derived nitric oxide (NO) is a
molecule that is a key participant in vasodilatory activity
(280). In 1998, it was found that troglitazone causes vasodi-
lation in humans (117). Subsequent studies showed that
PPARg ligands increase NO production and release (49, 67,
294) (Fig. 5), although it appears that PPARg ligands may
stimulate production of endothelial cell NO through different
pathways (294). Ligand-activated PPARg was found to be
critical to heat-shock protein 90=endothelial nitric oxide syn-
thase (eNOS) interaction and eNOS phosphorylation in
HUVECs (294). Furthermore, NO was recently reported to
activate PPARg in endothelial cells through a p38 MAPK
signaling pathway (297) (Fig. 5). TZDs possess vasculopro-
tective effects through the attenuation of oxidative and ni-
trative stresses (Fig. 5), and elevated NO levels. One study in
male hypercholesterolemic rabbits suggests that rosiglitazone
protects the endothelium by inhibiting superoxide, perox-
ynitrite, and excess NO production (351). Similar to adipo-
cytes and VSMCs (94, 165), TZD-induced reduction in

FIG. 4. Schematic view of PPARc activation in ECs. Nat-
ural or synthetic PPARg ligands attenuate VEGF-induced
Akt phosphorylation, inhibiting EC proliferation and migra-
tion. Ligand-activated PPARg exerts its antiinflammatory
effects by inhibiting cytokine-induced NF-kB activation in
ECs.

FIG. 5. Schematic view of PPARc activation in vascular
tone regulation. PPARg ligands decrease ET-1 and AT-1R
expression and increase AT-2R expression. PPARg ligands
stimulate NO release, and NO can activate endothelial cell
PPARg through MAPK. TZDs can also decrease oxidative
and nitrative stress.
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elevated NO levels may be the result of inducible nitric oxide
synthase (iNOS) inhibition in endothelial cells (351).

C. PPARg and VEGF

PPARg activators have been shown to modulate in vivo
vascular endothelial growth factor (VEGF)-induced angio-
genesis and also in vitro differentiation of endothelial cells into
tubelike structures. In addition, VEGF is known to play a role
in endothelial cell proliferation, migration, vascular perme-
ability, and atherosclerosis. Several studies demonstrated that
PPARg agonist inhibition of VEGF-induced angiogenesis may
be PPARg dependent (Fig. 4), part of which includes the in-
hibition of VEGF receptors and urokinase plasminogen acti-
vator expression along with increased PAI-1 expression, NO,
and apoptosis (185, 387). Rosiglitazone has been shown to
decrease VEGF secretion and indirectly to inhibit angio-
genesis in tumor endothelial cells (282). However, a recent
study found that administration of GW1929, through PPARg-
mediated signaling, increases in vitro endothelial cell tube
formation and in vivo neovascularization that is associated
with elevated VEGF (33).

D. PPARg and EC migration

PPARg ligands are also involved in antimigratory actions of
endothelial cells. VEGF-induced migration of HUVECs is in-
hibited by troglitazone and ciglitazone, providing evidence of
PPARg ligand antimigratory effects on endothelial cells.
Moreover, the effects of PPARg ligands on EC migration in-
clude inhibition of Akt phosphorylation (129) (Fig. 4). Leptin,
through endothelial ob receptor activation, has been shown to
promote endothelial cell proliferation, survival, and vascular
angiogenesis (38, 331). In addition, leptin can regulate en-
dothelial cell Akt phosphorylation (366) and migration
(128). The administration of PPARg ligands inhibits leptin-
stimulated Akt phosphorylation and EC migration (128).
The tumor-suppressor phosphatase and tensin homologue
(PTEN), a modulator of the PI3K=Akt signaling pathway, has
been reported to attenuate VEGF-induced EC migration
through the inhibition of Akt phosphorylation (158), and
PTEN levels were found to be elevated after administration of
PPARg ligands, suggesting the possibility that PTEN plays a
role in the inhibitory actions of TZDs on VEGF- and leptin-
induced Akt phosphorylation and endothelial cell migration
(128) (Fig. 4). Another study, by using scrape-wound and
chemotactic assays, found that troglitazone inhibits endo-
thelial cell migration in high-glucose media (146). Troglita-
zone was shown to accelerate endothelial cell coverage and
repair after rat aortic balloon injury. However, the in vivo data
suggest that endothelial repair may have occurred as a result
of troglitazone-induced suppression of endothelial cell apo-
ptosis rather than a reduction in endothelial cell migration
(146). A PPARg-mediated mechanism for TZD-induced mi-
gratory activity is not suggested in this study. Moreover,
further evidence suggests that the effects of TZD treatment
pertaining to endothelial cell migration might occur through
PPARg-independent signaling (204).

E. PPARg and EC apoptosis

Previous studies suggest that 15d-PGJ2 and ciglitazone
may induce endothelial cell apoptosis through a PPARg-

mediated signaling pathway (34, 213). Our laboratory found
that administering a PPARg antagonist did not block 15d-
PGJ2–induced inhibition of platelet-derived growth factor
(PDGF), providing evidence that 15d-PGJ2 apoptotic and
antiproliferative effects may be PPARg independent in en-
dothelial cells (409). However, PPARg1 was reported to in-
duce apoptotic genes in HUVECs (169), and a study with
PPARg gain- and loss-of-function techniques found PPARg to
be critical to endothelial cell apoptosis (10). Rosiglitazone was
shown to inhibit angiogenesis through a PPARg-dependent
proapoptotic pathway in HUVECs (185). The induction of
apoptosis is possibly beneficial, because activated cells may
produce cytokines. In cases of severe pulmonary hyperten-
sion, lung arterioles consist of phenotypically altered endo-
thelial cells that reduce blood flow and elevate blood pressure.
PPARg-mediated EC apoptosis could be beneficial in allevi-
ating lumen-obliterating endothelial cell growth (10).

F. PPARg and endothelial progenitor cells

Endothelial progenitor cells (EPCs) are circulating vascu-
lar progenitor cells that have been shown to stimulate re-
endothelialization and decrease neointima formation (376).
In vitro and in vivo studies demonstrated that rosiglitazone
stimulates angiogenic progenitor cell (APC) differentiation to
endothelial cells to promote reendothelialization and vascular
protection against injury (377). Rosiglitazone was shown to
improve impaired EPC function in diabetic individuals (292).
In EPCs isolated from male subjects, rosiglitazone and 15d-
PGJ2 prevented C-reactive protein–induced EPC dysfunction
and promoted angiogenesis (367). Rosiglitazone returns mi-
gratory activity to baseline in cultured EPCs from diabetic
individuals, which may improve impaired EPC function as-
sociated with diabetes (291). Pioglitazone has been shown to
increase migratory activity of cultured EPCs from patients
with coronary artery disease through PPARg-dependent sig-
naling (383), as well as to enhance circulating and bone mar-
row EPC migratory activity (122). Rosiglitazone may also
reduce NAD(P)H oxidase and the resultant increase in oxi-
dative stress while enhancing EPC reendothelialization, pro-
moting vessel repair, and improving vascular function (338).
Rosiglitazone and pioglitazone, in addition to improving
EPC-induced angiogenesis, can attenuate EPC apoptosis (122,
367). A reduction in EPC apoptosis may be of great benefit to
individuals with vascular disease (122). PPARg inhibition of
EPC apoptosis may have significant clinical relevance because
previous studies showed that different types of EPCs have
different morphology, proliferation rates, survival rates, and
gene-expression profiles that contribute to different functions
in neovasculogenesis (160, 398). Finally, it has been suggested
that many of the beneficial cardiovascular effects from TZD
treatment in patients may be due to the positive effects on
EPCs (367). The proapoptotic data in ECs and antiapoptotic
data in EPCs may be due to different PPARg functions in these
cells. The role of PPARg-independent effects on apoptosis in
these cells is a possibility and also should be considered.

V. PPARc and Vascular Smooth Muscle Cells

In 1998, three investigative groups reported evidence of
PPARg expression in rat aortic and human VSMCs (164, 239,
340). Similarly, a later study observed that PPARg expression
is present in early human vascular lesions and is upregulated
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in rat aortic smooth muscle cells after balloon injury (198).
Another study reported that both human coronary artery and
aortic VSMCs express PPARg1 and PPARg2 isoforms (29).
PPARg mRNA levels were reported to increase in mesenteric
arteries of both young and adult spontaneously hypertensive
rats (SHRs), suggesting that PPARg expression is differen-
tially regulated in SHRs (88). Similar data regarding mRNA
expression in SHRs were reported from our laboratory.
However, we found PPARg protein expression and function
from SHR vascular smooth muscle cells to be lower compared
with those in Wistar–Kyoto rats. It is likely that the sup-
pressed PPARg function is a result of decreased protein
expression, which could explain the increased VSMC prolif-
erative activity in SHRs (388).

A. PPARg and VSMC proliferation

TZDs were reported to attenuate VSMC proliferation and
regulate vascular tone well before being identified as PPARg
ligands (98, 337, 407). Troglitazone was initially found to
suppress basic fibroblast growth factor (bFGF)-induced vas-
cular smooth muscle cell growth, preventing rat aortic
neointima formation after endothelial injury (199) (Fig. 6).
Further studies also confirmed the antiproliferative activity of
troglitazone on human VSMCs (29, 250). However, these
initial studies did not examine whether the vasculoprotective
effects of troglitazone were PPARg mediated. A later study
with a balloon-injury model confirmed that the inhibitory
effect of troglitazone on VSMC proliferation occurs through
a PPARg-mediated pathway (198). TZDs (troglitazone, ro-
siglitazone, and pioglitazone) inhibit VSMC proliferation in
several human vascular cell beds. The particular TZD ad-
ministered rather than the vascular source is critical for the
potential suppression of VSMC proliferation (79).

C-fos is involved in the MAPK pathway, which plays a role
in cell proliferation. Troglitazone attenuates bFGF-induced
c-fos expression in cultured VSMCs by inhibiting the MAPK
signaling pathway (199) (Fig. 6). A later study also found
troglitazone to inhibit PDGF-induced c-fos mRNA expres-
sion (29) (Fig. 6). Finally, a recent report demonstrated
that rosiglitazone and PPARg overexpression suppress bFGF-
induced c-fos mRNA expression (Fig. 6). Moreover, PPARg
dominant negative gene transfer attenuates rosiglitazone-in-
duced inhibition of c-fos mRNA expression (223).

Connective tissue growth factor (CTGF) has the ability to
regulate many transforming growth factor-beta (TGF-b) re-
sponses in VSMCs, including proliferation, migration, and
fibrosis. Data from our laboratory demonstrated that PPARg
interrupts the Smad3 signaling pathway, inhibiting TGF-b–
stimulated CTGF expression in human aortic smooth muscle
cells (HASMCs) (114) and suggesting crosstalk between
PPARg and TGF-b pathways (Fig. 6). We found that TGF-b
induces early PPARg stimulation and late PPARg inhibition
of gene expression and that growth factor– and cytokine-
induced PPARg expression is inhibited by TGF-b. Early acti-
vation of TGF-b–induced PPARg is mediated by early growth
response-1 (Egr-1) signaling, whereas inhibition of PPARg by
TGF-b is mediated by Smad3, AP-1, and Nab2 (112) (Fig. 6).

Studies from our laboratory also provided the first evi-
dence that the PI3-kinase=Akt-dependent pathway is a reg-
ulator of PPARg1 gene expression in VSMCs. We reported
that PPARg1 is upregulated by PDGF via PI3-kinase=Akt
signaling (115) (Fig. 6). Dominant negative overexpression of
the p85 subunit from PI3-kinase or Akt proteins also sup-
presses PDGF-induced PPARg expression (115). We also
found Egr-1 to be the transcriptional regulator of both growth
factor– and cytokine-induced VSMC PPARg1 gene expres-
sion. Our results demonstrate that PPARg is involved in a
feedback mechanism that negatively controls VSMC activa-
tion (111).

Angiotensin II plays a crucial role in controlling the pro-
liferation and migration of VSMCs. Troglitazone blocks
AngII-induced MAPK activation of VSMCs (140) (Fig. 6). One
possible mechanism includes the attenuation of PKC nuclear
activity and PKC-mediated extracellular signal regulated ki-
nase 1=2 (ERK 1=2) translocation to the nucleus (132). Another
mechanism of AngII-induced VSMC proliferation involves
the upregulation of AT1 receptors. PPARg ligands have been
reported to be responsible for the inhibition of AT1 expression
in VSMCs (343, 349). Further, it was suggested that ligand-
activated PPARg inhibits AT1 transcription by blocking Sp1,
leading to the suppression of AT1-receptor expression (343).
Finally, telmisartan, an AT1-receptor antagonist with partial
PPARg activator properties, inhibits AT1-receptor expression.
Conversely, administration of the PPARg antagonist GW9662
attenuates telmisartan-induced inhibition of AT1, confirming
a participatory role for PPARg in this signaling cascade (167).
Both 15d-PGJ2 and rosiglitazone were shown to decrease

FIG. 6. Schematic view of PPARc activation
in VSMCs. In VSMCs, TZDs attenuate growth
factor–induced (e.g., AngII) cell migration,
proliferation, and fibrosis in either a PPARg-
dependent or -independent manner by interfer-
ing with growth factor–stimulated signaling
pathways. PPARg activation exerts antiinfl-
ammatory roles by inhibiting the NF-kB path-
way; PPARg activation promotes apoptosis via
inducing IRF-1 or GADD45 expression.
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AngII-stimulated eukaryotic initiation factor 4E-binding
protein 1 (4E-BP1) and Src homology (SH) 2–containing
inositol phosphatase 2 (SHIP2) phosphorylation, suppress-
ing Ang II–induced VSMC growth (28). Rosiglitazone may
directly decrease SHIP2 activity (28). A recent study suggests
that pioglitazone and rosiglitazone inhibit AngII-induced
Rho kinase, a known modulator of VSMC tonicity and pro-
liferation. This may be accomplished through increased cy-
tosolic Src homology region 2–containing protein tyrosine
phosphatase-2 (SHP-2) expression and reduced Vav phos-
phorylation (372). However, the effects of PPARg activators
on AngII cell signaling and growth are still unclear.

One of the most important mechanisms in preventing
VSMC growth involves suppression of cell-cycle signal-
ing. In PDGF- or insulin-stimulated cultured rat VSMCs,
PPARg ligands prevent proliferation by inhibiting the G1=S
phase, a rate-determining step in cell-cycle progression (373).
Cell-cycle suppression likely occurs through decreased
phosphorylation of the retinoblastoma protein (Rb) (373), a
mediator of G1=S progression (327). Moreover, PPARg ago-
nists prevent mitogen-induced p27(Kip1) degradation (373), a
known inhibitor of cdk and Rb phosphorylation (328). A non-
TZD partial PPARg agonist can attenuate mitogen-induced
downregulation of p27(Kip1) and proliferation in rat aortic
vascular smooth muscle cells. Furthermore, functional PPARg
is necessary to obtain maximal antiproliferative effects in
VSMCs (42). PPARg ligands also attenuate PDGF-induced
p21(Cip1) expression through the likely inhibition of PKC-d
phosphorylation and activity in cultured rat aortic smooth
muscle cells (374). p21(Cip1) promotes activation of the
cyclin=cdk complex that eventually results in G1=S phase
progression (195, 328). Repression of p21(Cip1) may be an-
other mechanism by which PPARg attenuates VSMC prolif-
eration. Minichromosome maintenance proteins (MCMs) 6
and 7 participate in the initial stages of DNA replication (231)
and are considered to be E2F target genes (272). On retino-
blastoma phosphorylation, E2F dissociates from Rb and is
released for transactivation of DNA synthesis target genes
(151). PPARg ligands attenuate MCM 6 and 7 expression in
VSMCs through the prevention of E2F release from Rb
transactivation, further demonstrating that PPARg agonists
inhibit G1=S cell-cycle progression, in this case by curtailing
pRb=E2F=MCM signaling (43).

Telomerase is important for many cellular functions, in-
cluding VSMC proliferation. PPARg ligand administration
was shown to downregulate telomerase activity in cultured
VSMCs, because of likely inhibition of telomerase reverse
transcriptase (TERT) expression, the catalytic subunit of tel-
omerase. Overexpression of TERT abolishes PPARg-ligand
inhibition of VSMC proliferation. In addition, the Ets-1 tran-
scriptional factor regulates TERT, and PPARg agonists inhibit
both Ets-1 mRNA expression and binding to the TERT pro-
moter. Thus, it is likely that PPARg ligands target TERT for
downregulation to counteract the proliferative properties of
vascular smooth muscle cells (269).

Another mechanism suggests that PPARg ligands inhibit
insulin-induced mitogenic signaling by preventing phos-
phorylation of the Elk-1 transcription factor (130). A recent
in vitro study showed that troglitazone attenuates LDL-
induced VSMC proliferation and production of superoxide, a
contributor to proliferation of VSMCs (153). Finally, PPARg
has also been shown to induce a differentiated phenotype in

proliferative VSMCs. PPARg-dependent signaling increases
smooth muscle a-actin (SM-a-actin) and smooth muscle
myosin heavy chain (SM-MHC), markers of differentiated
VSMCs. Moreover, the effects of PPARg on VSMC differen-
tiation appear to be mediated by the GATA-6 transcription
factor (4).

B. PPARg and VSMC migration

Troglitazone has been shown to inhibit PDGF-induced
vascular smooth muscle cell migration (29, 199). In addition to
troglitazone, 15d-PGJ2 (198, 239) and rosiglitazone (198) at-
tenuate PDGF-induced VSMC migration. CTGF is known to
be involved in VSMC migration, and data from our laboratory
provide evidence that PPARg inhibits CTGF expression (114).
These studies provide strong support for the involvement of
activated PPARg in the prevention of VSMC migration that
leads to subsequent neointima formation.

Angiotensin II is involved in the control of VSMC prolif-
eration and migration. Troglitazone can block AngII-induced
MAPK activation of VSMCs, resulting in the inhibition of
VSMC migration (140) (Fig. 6). PPARg activators can also
inhibit PDGF-, thrombin-, and insulin-like growth factor-1
(IGF-1)-induced VSMC migration through MAPK and
downstream nuclear signaling (133). Furthermore, PPARg li-
gands were reported to inhibit PDGF-induced Ets-1 nuclear
expression in cultured VSMCs (Fig. 6) or from rat aortic bal-
loon injury. Ets-1 is a transcription factor that is part of
ERK=MAPK cell migratory signaling. Moreover, Ets-1 is
involved in the transcriptional regulation of matrix
metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9
(MMP-9), facilitators of VSMC migration (131) (Fig. 6). PPARg
activators decrease MMP-9 mRNA and protein expression,
along with activity, whereas PPARg inactivation through
phosphorylation reverses agonist-induced inhibition of
MMP-9 expression (239).

C. PPARg and VSMC apoptosis

In VSMCs, PPARg can signal both growth inhibition (405)
and apoptosis (44, 148). PPARg activation increases GADD45
expression and caspase-mediated apoptosis (Fig. 6). The Oct-1
protein, a transcription factor regulated by PPARg, is critical
for PPARg-induced GADD45 protein expression (44) (Fig. 6).
PPARg ligand administration and PPARg overexpression
have been reported to upregulate interferon regulatory factor
(IRF-1) expression, mediating PPARg-induced apoptosis in
VSMCs (Fig. 6). Further evidence of proapoptotic effects is
provided by using an anti-sense approach to suppress IRF-1
expression in VSMCs (224). Pioglitazone is shown to increase
apoptosis through PPARg-dependent TGF-b release in cul-
tured VSMCs, likely facilitating phosphorylated Smad2 nu-
clear translocation (303) (Fig. 6). TGF-b–induced apoptosis is
mediated, in part, by Smad-dependent GADD45 expression,
providing further evidence that GADD45 mediates VSMC
apoptosis (397) (Fig. 6). Pioglitazone is also reported to induce
apoptosis through Smad2 phosphorylation in cultured
VSMCs from both nondiabetic and diabetic patients, usually
resistant to induced apoptosis (315). Furthermore, troglita-
zone can induce apoptosis by activating GADD45 and
p53 expression independent of PPARg activation (275). Ro-
siglitazone at high concentrations can more potently induce
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apoptosis in intimal compared with medial smooth muscle
cells (35).

D. PPARg and the regulation of VSMC
inflammatory response

CCAAT=enhancer-binding proteins (C=EBPs) are involved
in transcriptional regulation of inflammatory cytokines and
other proteins. PPARg ligands attenuate C=EBPd expression,
and C=EBPd overexpression reverses PPARg ligand inhibition
of cytokine gene expression (346). Interestingly, elevations in
C=EBPd levels due to inflammation increase PPARg expres-
sion and strengthen its antiinflammatory effect in VSMCs
(347). In addition, PPARg ligands suppress C=EBPd mRNA
and protein levels by dephosphorylating STAT-3 (347), sug-
gesting that PPARg and C=EBPd participate in negative au-
toregulation feedback. Moreover, PPARg overexpression
decreases C=EBPd promoter activity, further indicating the
presence of receptor-dependent signaling in C=EBPd expres-
sion (347). This mechanism is likely involved in the suppres-
sion of inflammatory cytokines during atherosclerosis (347).
Other antiinflammatory responses involving PPARg activa-
tion include the suppression of TNF-a–induced expression of
VCAM-1 (Fig. 6), MCP-1, and fractalkine (CX3CL1) in cul-
tured VSMCs through inhibition of NF-kB (283).

VI. PPARc and Monocytes=Macrophages

PPARg expression is present in murine macrophages (8,
307), neointimal lesions (198), macrophage-derived foam cells
in both early and advanced stages of atherosclerotic lesions
(240, 306), and differentiated human monocyte–derived
macrophages (64). However, PPARg expression, critical for
macrophage lipid metabolism, is not a determinant for mac-
rophage differentiation in vivo or in vitro (56, 249). PPARg is
also found in other inflammatory cells, including human pe-
ripheral blood T cells (395), human CD4þ T cells (236), and
mature dendritic cells from the spleen (106). PPARg expres-
sion is also confirmed in mouse T-helper cells (70). The
PPARg1 isoform is found in THP-1 and RAW 264.7 cells (306).

A. PPARg and monocyte=macrophage
inflammatory signaling

Macrophages are often considered to be heterogeneous and
respond to various signaling cascades (365). Different cyto-
kines determine the type of stimulatory or inhibitory response
on inflammatory signaling by inducing either a ‘‘classic’’ or
‘‘alternative’’ activation pathway in macrophages. Th1 cyto-
kines, including lipopolysaccharide (LPS), IFN-g, and IL-1b,
tend to be involved in ‘‘classic’’ activation, whereas Th2
cytokines, including IL-4 and IL-13, likely activate the ‘‘al-
ternative’’ pathway. M1 macrophages are involved in pro-
inflammatory cytokine expression and oxidative stress,
whereas M2 macrophages play a role in apoptotic cell
phagocytosis, sequestering of pathogens, and wound healing
(267, 341). Moreover, macrophages demonstrate functional
plasticity because they have the ability to switch between M1
and M2 states of activation (295).

PPARg was shown to be necessary for monocyte-derived
M2 macrophage phenotype expression (37). PPARg is also
upregulated during M1 switching to an M2 phenotype, which
is critical for increased expression of CD36 (31), arginase I

(267), and the mannose receptor (37). PPARg has been shown
to regulate M1=M2 switching, in part by reducing inflam-
matory cytokine expression normally associated with an M1
phenotype, such as TNF-a, IL-1b, and IL-6 (174), and sup-
pressing in vitro macrophage activation (307). The suggestion
that PPARg is an inflammatory regulator is further illustrated
by the belief that PPARg may reverse suppression of cytotoxic
T lymphocytes, normally a function of M2 activation (364). In
addition, specific genes from both M1 and M2 macrophages
were found to be unaltered when administering TZD (56,
154, 382).

PPARg participates in antiinflammatory signaling to pro-
tect against atherosclerotic lesion formation, in part, through
negative regulation of macrophage transcriptional activity.
PPARg ligands, in a PPARg-dependent manner, attenuate
monocyte and macrophage MMP-9 expression and secretion
(186, 240, 307, 330), iNOS, and scavenger receptor-A (SR-A)
through the likely inhibition of AP-1, STAT, and NF-kB
transcription factor signaling (307). In addition, PPARg neg-
atively regulates a specific population of pro-inflammatory
genes controlled by these transcription factors (307, 330) (Fig.
7). PPARg activation also inhibits macrophage osteopontin
(OPN) expression by interfering with nuclear factor binding
to the homeobox-like A=T rich region of the OPN promoter,
providing another example of PPARg inhibition of macro-
phage gene expression (277, 278). Similarly, PPARg ligands
were shown to inhibit proinflammatory cytokine (IL-6, IL-1b,
TNF-a) expression in monocytes (174) (Fig. 7). However,
PPARg may not be required for IFN-a– or LPS-induced pro-
inflammatory cytokine secretion in macrophages (56, 249).
Moreover, it is possible that PPARg ligands can upregulate
antiinflammatory cytokines (Fig. 7), such as the IL-1–receptor
antagonist (IL-1Ra), suggesting another way by which PPARg
can suppress proinflammatory activity (245). PPARg also
regulates inflammatory signaling in cells other than mono-
cytes and macrophages. PPARg activators can suppress IL-2
(70, 236, 395, 396), IFN-g (236), and TNF-a (236) in human and
animal lymphocytes. PPARg ligands also decrease CD40-
induced IL-12 secretion in dendritic cells (106).

B. PPARg and monocyte=macrophage migration
and apoptosis

In addition to antiinflammatory properties, PPARg ligands
inhibit monocyte=macrophage migration. Troglitazone or
rosiglitazone administration results in the inhibition of MCP-
1–induced monocyte migration (186). Furthermore, oxidized
low-density lipoproteins (oxLDLs) may attenuate MCP-1–
dependent monocyte migration by inhibiting chemokine
receptor 2 (CCR2) expression (145). Both 9-HODE and 13-
HODE, components of oxLDL that stimulate monocyte dif-
ferentiation to macrophages, inhibit macrophage migration
and enhance macrophage adhesion to VSMCs by upregulat-
ing CX3CR1 and decreasing CCR2 expression through a
PPARg pathway (26), suggesting a proinflammatory role for
macrophage PPARg that may lead to the development of
atherosclerosis. Moreover, a recent study showed that
PPARg-dependent signaling increases CXCR2 receptor ex-
pression in primary human macrophages, providing fur-
ther evidence that PPARg can also have proinflammatory
properties (309). Next, PPARg ligands can also induce apo-
ptotic activity by blocking the NF-kB antiapoptotic signaling
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cascade in human macrophages (64). Finally, PPARg activa-
tion during differentiation of human monocytes to macro-
phages decreases the ability to engulf apoptotic neutrophils
(232).

C. PPARg and monocyte=macrophage
iNOS expression

Studies have shown that the ability of PPARg to repress
iNOS expression (159, 217, 307) may occur through direct
interaction with the CREB-binding protein (CBP) (217). Fur-
thermore, a recent provocative report suggested another
mechanism by which PPARg represses iNOS and other
proinflammatory genes in murine macrophages. SUMO-1
covalently modifies several transcription factors, including
PPARg (271). SUMOylation of PPARg results in binding to the
nuclear-receptor co-repressor (N-CoR)-histone deacetylase-3
(HDAC-3) complex, repressing proinflammatory signaling,
particularly NF-kB target genes (270, 287). Furthermore,
PPARg and the glucocorticoid receptor were found to inhibit
iNOS expression through at least two different signaling
pathways (270).

D. PPARg and monocyte=macrophage
CD36 expression

CD36 is a scavenger receptor that promotes uptake of
oxLDL (101). Ligand-dependent PPARg has been shown to
increase CD36 expression through various signaling path-
ways in both cultured monocytes and macrophages (159, 254,
358). By using embryonic stem cell–derived macrophages, two
studies reported that PPARg is required for ligand-activated
CD36 gene regulation (56, 249). Macrophages from PPARg
conditional knockout mice are shown to have decreased
CD36 expression compared with wild-type macrophages (8).
However, although CD36 is a PPARg target gene, PPARg is
not mandatory for oxLDL uptake in differentiated macro-
phages (56). Moreover, an in vivo study showed that TZDs
decrease macrophage CD36 protein expression in ob=ob
mouse models that display characteristics of insulin resis-
tance, diabetes, and obesity, all of which are risk factors for
atherosclerosis (219). TGF-b phosphorylation of PPARg has

been suggested as an inhibitory mechanism of action re-
garding PPARg-mediated CD36 expression (143).

E. PPARg and monocyte=macrophage
lipid homeostasis

A role for PPARg activation in macrophage cholesterol
homeostasis has been established. CLA-1 is a high-density
lipoprotein (HDL) receptor involved in cellular cholesterol
removal. CLA-1 was shown to be upregulated by PPARg li-
gands in differentiated human macrophages (63) (Fig. 7).
PPARg ligands also demonstrate a role in reverse-cholesterol
transport by upregulating expression of ATP-binding cassette
(ABC) transporters ABCA1 (11, 57, 65) and ABCG1 (8, 11) in
monocytes and macrophages (Fig. 7), possibly through an
LXR-a–mediated transcriptional signaling pathway (57) that
may include caveolin-1 (227). This is important, because an
atheroprotective role for granulocyte–macrophage colony-
stimulating factor (GM-CSF) may involve PPARg and ABCA1
signaling (92). Providing further evidence, a PPARg condi-
tional knockout mouse model displays a reduction in mac-
rophage cholesterol efflux, although this study found that
troglitazone attenuates cholesterol efflux and ABCA1 ex-
pression in macrophages from both PPARg knockout and
wild-type mice, suggesting some PPARg-independent effects
(8). Finally, although PPARg is not required for oxLDL uptake
in differentiated macrophages (56), oxLDL uptake is wors-
ened in PPARg-deficient macrophages (249). This finding
further indicates an important role for PPARg in oxLDL lipid
trafficking.

VII. PPARc and Atherosclerosis

Diabetes has been estimated to increase the risk of devel-
oping atherosclerosis by twofold (178). Increasing evidence
suggests that failure to maintain normal glycemic control in-
fluences the development of atherosclerosis (142, 356). As
previously mentioned, PPARg is expressed in atherosclerotic
lesions (240, 306). Monocytes differentiate into macrophages
on migration into the vessel wall. In macrophages, oxLDL
uptake occurs through scavenger receptors, promoting the
expression of foam cells (127, 254). Initially, PPARg was

FIG. 7. Schematic view of PPARc
roles in atherosclerosis. PPARg
ligands increase CLA, ABCA1, and
ABCG1 expression, leading to im-
proved lipid homeostasis. PPARg
agonists also decrease proinflamma-
tory cytokine and gene expression
and increase antiinflammatory cy-
tokine expression. PPARg ligands
increase SR-B expression, which
promotes cholesterol efflux. Con-
versely, PPARg activation upregu-
lates CD36 expression, resulting in
increased oxLDL uptake. Increased
oxLDL levels further stimulate
PPARg expression, which leads to
increased CD36 expression. Finally,
loss of PPARg increases CCR2 ex-
pression and monocyte recruitment.
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thought to be proatherosclerotic. PPARg ligand administra-
tion, combined with an RXR agonist, upregulates oxLDL
uptake through increased CD36-receptor expression (Fig. 7).
Furthermore, oxLDL exposure increases SR-A and CD36
mRNA expression through a PPARg-dependent mechanism,
signaling further oxLDL cellular uptake (254) (Fig. 7). More-
over, PPARg is highly expressed in foam cells (358). PPARg
also is found to be highly expressed in cultured CD36þ

HASMCs, and troglitazone treatment upregulates CD36 ex-
pression only in CD36þ smooth muscle cells, suggesting that
VSMCs may be able to obtain a macrophage-like phenotype
and differentiate into foam cells (242). Furthermore, LPA, a
PPARg ligand synthesized during mild oxidation of LDL
(332), and other PPARg agonists were also shown to increase
neointima formation in rats (406). Collectively, these studies
suggest that PPARg is involved in the development of ath-
erosclerosis. Another study found that oxLDL uptake was
decreased in PPARg-deficient macrophages, partly due to loss
of CD36 expression. However, troglitazone treatment had no
effect on intracellular oxLDL levels (249). A likely explanation
is that troglitazone stimulates CD36 while suppressing SR-A
expression (249). It is likely that TZD increases neither mac-
rophage intracellular cholesterol levels nor foam cell forma-
tion.

However, the majority of studies suggest an ather-
oprotective role for TZDs and PPARg. PPARg-ligand treat-
ment increases scavenger receptor B (SR-B) expression in
atherosclerotic lesion macrophages of ApoE�=� mice, poten-
tially facilitating cholesterol efflux (63) (Fig. 7). Treatment
with rosiglitazone and GW7845 inhibits atherosclerosis in
male low-density lipoprotein receptor knockout (LDL-R�=�)
mice although CD36 expression is increased. Interestingly,
PPARg ligand treatment did not reduce atherosclerosis in fe-
male mice. Hormonal differences could be an explanation
for the dissimilar outcome between genders (215). In male
LDL-R�=� mice fed either a high-fructose or high-fat diet,
troglitazone can suppress atherosclerotic lesion formation
(72). Next, rosiglitazone reduces aortic atherosclerotic lesions
in both diabetic and nondiabetic apoE�=� male mice (212).
Finally, rosiglitazone treatment is associated with increased
ABCA1 gene expression (Fig. 7) and decreased macrophage
accumulation in diabetic mice, providing further evidence of
an antiatherosclerotic role (48).

LDL-R�=� mice given transplants with bone marrow
deficient in PPARg demonstrate an overall worsening of
atherosclerosis (57). Next, bone marrow generated from
macrophage PPARg knockout (MacPPARg KO) mice was
transplanted to LDL-R�=� and wild-type mice. Mice recon-
stituted with macrophage PPARg knockout bone marrow
display increased lesion formation in both strains compared
with respective controls. In cases of mild or severe hyper-
cholesterolemia, loss of PPARg results in increased athero-
sclerosis, possibly due to increased CCR2 chemokine receptor
expression and monocyte recruitment (18) (Fig. 7).

In vitro studies show that functional PPARg is more prev-
alent in intimal VSMCs compared with medial smooth muscle
cells. Therefore, intimal vascular smooth muscle cells are a
likely target for PPARg in regulating antiatherosclerotic ef-
fects (35). Another study showed that transfer of the PPARg
wild-type gene in a rat carotid artery balloon injury model
results in decreased neointima formation and that rosiglita-
zone-induced inhibition of VSMC proliferation and migration

is blunted by PPARg-dominant negative gene transfer.
However, the effects of rosiglitazone primarily, but not en-
tirely, occur through PPARg-mediated signaling (223). In
human atherosclerotic plaques, PPARg is associated with M2
macrophage marker expression, although PPARg activation
does not switch M1 macrophages, foam cells, or already dif-
ferentiated resting macrophages in vitro or atherosclerotic
plaque macrophages in vivo to an M2 phenotype (37).

PPARg ligands may also reduce atherosclerotic develop-
ment by inhibiting IFN-g–induced increases in MHC-II ex-
pression that normally activate T lymphocytes and control
immune responses (194). Increased expression of iNOS has
been shown in coronary atherosclerotic plaques of patients
with unstable angina (84). Troglitazone and 15d-PGJ2 are
found to suppress IL-1b–induced iNOS production and
cytokine-induced NO synthesis in vascular smooth muscle
cells. NF-kB, critical for iNOS transactivation, is down-
regulated by both PPARg activators in VSMCs (165). Finally,
osteoprotegrin (OPG) is involved in the regulation of ath-
erosclerotic lesion calcification. In our laboratory, we dem-
onstrated that PPARg ligands or PPARg overexpression
inhibits OPG expression in human aortic smooth muscle cells
(113). The role of PPARg in atherosclerosis is controversial,
with much of the literature providing the rationale that
PPARg plays a regulatory role against the development of
atherosclerosis. However, several considerations must be ta-
ken into account. Pioglitazone binds with less affinity to
PPARg compared with rosiglitazone, yet has been shown to
be more effective at improving patient lipid profiles (135).
Many of the beneficial effects of TZD-induced activation of
PPARg-mediated transcription are still unclear, particularly
because the effects of TZDs on PPARg-mediated transcrip-
tional activity are tissue specific. Moreover, the biologic ef-
fects of PPAR target genes remain largely unestablished, and
because PPAR agonists tend to participate in both gene acti-
vation and repression, the known biologic effects of PPAR
target genes tend to be rather complex. Thus, a need exists for
further research regarding the role of PPARg and its ligands in
atherosclerotic plaque formation, although the literature
provides compelling evidence that PPARg activation is im-
portant for the attenuation of atherosclerosis.

VIII. PPARc and the Heart

The role of PPARg in the heart is controversial and often
paradoxical. First, myocardial PPARg expression seems to
vary between studies (16, 124, 392, 394). Next, although sev-
eral reports have demonstrated beneficial effects of PPARg
agonist administration on the heart (3, 16, 136, 394) (Fig. 8), the
effects of TZDs on cardiac function are in question, particu-
larly in humans. A recent study reported that patients who
receive rosiglitazone display an increased risk for myocardial
infarction and possibly death from cardiovascular events
(265) (Fig. 8). In vivo administration of TZDs appears to de-
crease PPAR target gene expression (47, 336). Nonetheless, it
is likely PPARg agonists exert an indirect action on the heart
because PPARg has minimal effects on cardiac fatty acid ox-
idation or PPAR gene expression in cultured myocytes (124).
However, a direct role for PPARg must be considered because
ciglitazone increases insulin-induced glucose transport in
cardiomyocytes. Moreover, phosphorylation of Akt residues,
Thr308 and Ser473, is required for insulin stimulation of
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glucose transport and is decreased in insulin-resistant cardi-
omyocytes (248). In particular, because active Akt has been
shown to be necessary for glucose transporter 4 (GLUT4) fu-
sion with adipocyte plasma membranes (191), this may sup-
port a role for PPARg ligand–induced Akt phosphorylation in
cardiomyocytes. The possible discrepancy found in endothe-
lial cells (128, 129) and cardiomyocytes may be explained by
the use of different stimuli.

Although ciglitazone enhances insulin-stimulated glucose
transport, ciglitazone does not improve insulin-stimulated
GLUT4 expression in neonatal rat cardiomyocytes (363), adult
rat cardiomyocytes (248), or cardiomyoblasts (124). One
possible explanation for increased glucose transport is that
elevated glucose transporter 1 (GLUT1) expression, not usu-
ally seen with insulin-induced glucose uptake, may be a
contributing factor, although the mechanisms remain unclear.
The cardiomyocyte microtubule network may be important in
regulating insulin signaling. Disruption of the microtubule
network may prevent the convergence of insulin signaling
and GLUT4 vesicle trafficking (248). Conversely, ligand-
independent PPARg represses GLUT4 gene expression in
adipocytes, and rosiglitazone not only alleviates PPARg-
induced repression of GLUT4, but also facilitates transcription
(15). Similarly, PPARg1 and PPARg2 have been shown to re-
press GLUT4 expression in cardiomyocytes, and this is en-
hanced by hyperlipidemia, as free fatty acids bind to PPARg
and further repress GLUT4 transcription (12). Overall, these
results suggest that the regulation of glucose transport by
insulin may involve PPARg-dependent and -independent
signaling pathways.

Another proposed mechanism of action involving insulin
signaling and PPARs in the cardiovascular system may in-
clude the forkhead-box class O (FOXO) family of transcription
factors. FOXO1 is highly expressed in adipocytes and may
enhance insulin sensitivity (13, 14) through inhibition of
PPARg1 and PPARg2 (13). Insulin signaling results in phos-
phorylation of FOXO1 by Akt (360). FOXO phosphorylation
may repress PPARg1 and PPARg promoter activity, directly
or indirectly leading to increased GLUT4 expression and
subsequent improved insulin sensitivity in adipocytes and
cardiomyocytes (14).

Transgenic mice overexpressing PPARg (MHC-PPARg) in
the heart were recently generated and characterized (336).
However, cardiomyopathy is present at 2 months of age in
these mice, with 100% mortality occurring at 5 months. Sub-
sequently, a new transgenic line was generated to circumvent
the problem, as these mice display characteristics suggestive
of milder cardiomyopathy (Fig. 8). PPARg transgenic mice
show increases in expression of fatty acid–utilization genes
(Fig. 8), similar to MHC-PPARa mice. Conversely, similar to
MHC-PPARd mice, glucose-transporter expression is in-
creased in the PPARg transgenic model (Fig. 8). Thus, it is
possible that combined elevations in cardiac lipid and glucose
levels may further potentiate the development of cardiomy-
opathy (399).

Whole-body PPARg deletion is embryo-lethal in murine
models (21). To study the function of PPARg in the heart, two
cardiac-specific PPARg-knockout murine models were gen-
erated (91, 97); however, these two lines manifest different
phenotypes. The first mouse line shows evidence of mild
ventricular hypertrophy (Fig. 8) that is further increased by
rosiglitazone treatment, suggesting off-target TZD effects on
hypertrophy. Systolic function does not seem to be impaired
in these cardiac-specific PPARg-null mice. NF-kB activity is
increased, and surprisingly, Akt phosphorylation is de-
creased despite the presence of a hypertrophic phenotype (97)
(Fig. 8). The second cardiac-specific murine knockout model
demonstrates progressive dilated cardiomyopathy (Fig. 8) in
association with mitochondrial oxidative damage and a re-
duction in the mitochondrial antioxidant, manganese super-
oxide dismutase (91) (Fig. 8). These models suggest a likely
role for PPARg in cardiac function as well as in maintaining a
proper oxidation=reduction balance.

IX. PPARa

PPARa is highly expressed in the liver, with expression in
other tissues including heart, kidney, skeletal muscle, small
intestine, and brown adipose tissue. Similar to PPARg, PPARa
is also expressed in the cardiovascular cells. PPARa is in-
volved in the expression of genes involved in lipid metabo-
lism, including fatty acid uptake and oxidation. Moreover,

FIG. 8. Schematic view of PPARc
roles in the heart. PPARg agonists are
associated with increased myocardial
infarction and cardiovascular events in
humans. PPARg agonists decrease is-
chemia=reperfusion injury and cardiac
hypertrophy while increasing contrac-
tile function in mice. Administration of
PPARg agonists decreases JNK=AP-1
and NF-kB signaling pathways and in-
creases carbohydrate oxidation in mice.
Mice with cardiac-specific PPARg
overexpression show a dilated cardio-
myopathy phenotype. Moreover, these
mice have increased expression of
genes involved in glucose transport and
fatty acid utilization. Myocardial
PPARg-knockout mice display characteristics of cardiac hypertrophy and dilated cardiomyopathy along with increased
NF-kB activity, decreased Akt phosphorylation, and decreased antioxidant gene expression.
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PPARa, similar to PPARg, can play a role in transcriptional
repression of certain genes by inhibiting signaling pathways
of other transcription factors. The attenuation of proin-
flammatory signaling is accomplished through this method
by downregulating expression of genes involved in promot-
ing the inflammatory response.

In rodent models, PPARa was shown to be activated by
fibrates, hypolipidemic drugs that are involved in peroxisome
proliferation and fatty acid oxidation (172). Fibrates include
clofibrate, bezafibrate, fenofibrate, and gemfibrozil. Wy-
14,643, nafenopin, and clofibric acid are other hypolipidemic
compounds that are PPARa-activating agents. Warfarin, an
anticoagulant, and trichloroacetic acid were also initially de-
scribed to be stimulators of PPARa (96). Fatty acids, including
linoleic acid and arachidonic acid, were also shown to activate
PPARa and to regulate gene function (138).

A. PPARa ligands

However, these studies did not demonstrate whether fi-
brates or fatty acid compounds could directly bind to PPARa.
A ligand-binding assay found that fibrates and certain fatty
acids do indeed have binding affinity for PPARa (109). In
addition, GW7647 (40), GW9578 (41), and LY-518674 (393)
are known to be PPARa ligands. PPARa antagonists are
limited in number and include GW6471 (391) and the N-
acylsulfonamide compounds A and B (325).

B. PPARa and endothelial cells

PPARa is expressed in human endothelial cells (83, 170,
240). Moreover, PPARa activators are involved in several
endothelial cell functions. For example, PPARa agonists can
prevent leukocyte recruitment and adhesion to endothelial
cells, in part by decreasing VCAM-1 (6, 173, 241, 321), along
with ICAM-1 and E-selectin expression (321) (Fig. 9). Down-
regulation of adhesion molecules by PPARa activators is
likely through inhibition of NF-kB (241, 321) (Fig. 9). In ad-
dition to decreased adhesion molecule expression, PPARa
activators impair leukocyte binding to endothelial cells (6,
173, 241, 321).

PPARa has been demonstrated to play a role in vascular
function. PPARa ligands inhibit ET-1 synthesis and secretion
in endothelial cells through negative regulation of AP-1 (83)
(Fig. 9). A possible explanation is that PPARa activators may
suppress, at least in part, PKC activity involved in endothe-
lial cell ET-1 secretion (234). In DOCA-salt rats, fenofibrate
prevents increased ET-1 synthesis in mesenteric arteries
(163). PPARa ligands stimulate eNOS expression by PPARa-
mediated signaling (139).

PPARa has been shown to be involved in endothelial cell
inflammatory signaling. One mechanism for endothelial cell
PPARa participation in antiinflammatory pathways may
include oxLDL and a phospholipase A2 (PLA2)-dependent-
pathway, potentially stimulating fatty acid transport protein-
1 (FATP-1) expression (81). Another antiinflammatory
mechanism suggests that PPARa ligands may decrease
VEGFR2 expression through direct PPARa=Sp1 interaction in
endothelial cells (246). Finally, bezafibrate increases the CuZn
superoxide dismutase antioxidant and decreases NAD(P)H
oxidase subunit expression in endothelial cells (168). PPARa
ligands have also been shown to attenuate MCP-1 and IL-8
expression in endothelial cells, possibly by PPARa suppres-

sing NF-kB (247, 285). Conversely, another study suggests
that PPARa ligands increase MCP-1 and IL-8 expression
through a PPARa-dependent signaling cascade in human
aortic endothelial cells (203). Overall, these studies suggest
that PPARa is primarily involved in antiinflammatory sig-
naling, although it is likely that PPARa may also exert
proinflammatory effects.

C. PPARa and VSMCs

PPARa is also expressed in human vascular smooth muscle
cells (239, 340). As in endothelial cells, PPARa has an antiin-
flammatory role in VSMCs. PPARa activators suppress IL-6
(80, 340), 6-keto-PGF1a (340), along with COX-2 protein and
mRNA expression by negatively regulating NF-kB signaling
(340) (Fig. 10). PPARa agonists may increase VSMC IkBa, an
inhibitory protein that suppresses NF-kB nuclear transloca-
tion (82). HO-1, a PPARa target gene, is upregulated by
PPARa and contributes to the antiinflammatory effects in
VSMCs (193) (Fig. 10). Group IIA secretory phospholipase A2
(sPLA2-II2) is a proinflammatory mediator of atherosclerosis.
PPARa has been shown to repress IL-1b–induced sPLA2-IIA
expression in VSMCs (298).

In vitro studies have shown that PPARa ligands inhibit
VSMC proliferation (264, 404). One possible mechanism may
involve PPARa activation of p16INK4a (Fig. 10), a cdk inhibitor
that blocks phosphorylation of the retinoblastoma protein and
subsequent G1=S cell-cycle progression (126). Next, epoxide
hydrolase inhibitors activate PPARa and suppress PDGF-
induced VSMC proliferation through negative regulation of
cyclin D1 expression (261). Finally, HO-1, in addition to an-
tiinflammatory signaling, also has a role in VSMC anti-
proliferation (193) (Fig. 10). PPARa also has been shown to
regulate VSMC migration. Integrins are critical for VSMC
migration in atherosclerosis. PPARa may interact with Smad4
and inhibit TGF-b–induced beta5 integrin expression in
VSMCs (187) (Fig. 10). In addition, docosahexaenoic acid may

FIG. 9. Schematic view of PPARa activation in ECs.
PPARa activation attenuates NF-kB signaling and tran-
scription in ECs, leading to decreased adhesion-molecule
expression and inhibition of leukocyte interaction with ECs.
PPARa ligands inhibit ET-1 synthesis by negatively regu-
lating AP-1.
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regulate VSMC apoptosis through PPARa-dependent p38
MAPK signaling (89).

D. PPARa and monocytes=macrophages

PPARa is expressed in differentiated human macrophages
(64) and atherosclerotic lesion macrophages (63). This is im-
portant because differentiated macrophages play an impor-
tant role in inflammation and plaque formation. The first
evidence for a role of PPARa in inflammatory control dem-
onstrated that PPARa-null mice display a prolonged response
to inflammatory stimuli. Leukotriene B4 (LTB4) binding to
PPARa results in activation of fatty acid oxidation (FAO)
enzymes that degrade fatty acid and disrupt inflammatory
signaling (86).

Further evidence that PPARa plays a protective role against
the inflammatory response is shown from experiments using
RAW 264.7 mouse macrophages, whereby Wy14,643 reduces
nitrate accumulation in association with decreased iNOS and
elevated HO-1 (Fig. 11). Interestingly, natural PPARa ligands,
such as LTB4 and 8(S)-HETE, increase nitrate accumulation,
an indication of proinflammatory activity. This difference
may be due to variable selectivity to PPARa (74). Other
studies in monocytes=macrophages provide evidence of
PPARa-dependent antiinflammatory signaling. Fenofibrate
suppresses LPS-induced MMP-9 secretion in monocytes (330)
(Fig. 11). PPARa also has been shown to downregulate the
platelet-activating factor (PAF) receptor, possibly regulating
monocyte and macrophage inflammatory responses and cel-
lular apoptosis (156).

FIG. 10. Schematic view of PPARa activa-
tion in VSMCs. PPARa activation in VSMCs
inhibits proliferation and migration by inter-
fering with cdk and b5-integrin signaling
pathways. PPARa activation also exerts anti-
inflammatory roles via inhibiting NF-kB
mediated–inflammatory factor release.

FIG. 11. Schematic view of PPARa ligand
roles in macrophages and atherosclerosis.
PPARa ligands may prevent atherosclerosis
by improving cholesterol homeostasis, de-
creasing lipid accumulation, and participat-
ing in antiinflammatory signaling in
macrophages. LDL-R�=� mice transplanted
with bone marrow from PPARa�=�mice have
increased atherosclerosis, whereas GW7647
decreases lesion development in LDL-R�=�

mice. However, PPARa�=�=apoE�=�mice are
protected against the development of ath-
erosclerosis.
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Treatment with Wy-14,643 and bezafibrate inhibits osteo-
pontin expression in human macrophages through AP-1 in-
hibition (Fig. 11). Moreover, osteopontin expression is not
suppressed in macrophages lacking PPARa expression (255).
Another antiinflammatory mechanism points to simvastatin
inhibiting PKC-induced phosphorylation of PPARa that may
result in reduced iNOS and IL-6 expression in macrophages
(288). PPARa ligands inhibit IFNg, TNF-a, and IL-2 proin-
flammatory cytokine expression in human T cells (236).
Conversely, ligand-activated PPARa can increase ROS pro-
duction in mouse and human macrophages (352).

ApoB-48R is involved in macrophage lipid accumulation.
Wy-14,643 attenuates apoB-48R expression in both monocytes
and macrophages (147) (Fig. 11). Lipoprotein lipase (LPL)
hydrolyzes the lipids of lipoproteins and is generally con-
sidered to be expressed in cells of atherosclerotic plaques,
including macrophage-derived foam cells (266). Although
several studies demonstrated that PPARa activators increase
LPL mRNA in macrophages (120, 216, 412), conflicting evi-
dence exists regarding LPL secretion. Decreased LPL secre-
tion due to PPARa activators may reduce glycated LDL
uptake witnessed in macrophages (120) (Fig. 11). Conversely,
increased LPL secretion could stimulate PPARa target gene
expression in macrophages or provide an antiinflammatory
role by reducing VCAM-1 expression in endothelial cells
(412). PPARa ligands are involved in intracellular cholesterol
homeostasis and have been shown to reduce cholesteryl ester
formation in human macrophages and foam cells, possibly
through upregulation of carnitine palmitoyltransferase type 1
(CPT-1), an enzyme involved in fatty acid degradation (66)
(Fig. 11). PPARa ligands can also regulate reverse cholesterol
transport or cholesterol efflux. PPARa ligands increase CLA-1
expression in differentiated human macrophages (63) (Fig.
11). Furthermore, Wy-14,643 was found to elevate ABCA1
expression in macrophages to facilitate apoAI-induced re-
verse cholesterol transport (65) (Fig. 11). Niemann-Pick type
C1 and C2 (NPC1 and NPC2) proteins control intracellular
cholesterol mobilization to the plasma membrane for extra-
cellular transport. PPARa agonists were found to upregulate
NPC1 and NPC2 expression in human macrophages (Fig. 11).
In addition, NPC1 and NPC2 inhibition has been shown to
prevent ABCA1-mediated extracellular cholesterol transport
(62) (Fig. 11). Overall, these studies suggest that PPARa li-
gands are actively involved in macrophage cholesterol efflux
(Fig. 11). Furthermore, PPARa ligands have been demon-
strated to be regulators of cholesterol homeostasis in both
normal and atherosclerotic lesion macrophages (Fig. 11).

E. PPARa and atherosclerosis

A role for PPARa has been identified in atherosclerotic le-
sion formation involving several cell types. As mentioned
earlier, PPARa ligands are critical in controlling macrophage
cholesterol homeostasis, and PPARa has been shown to in-
hibit VSMC proliferation and migration, important steps in
the prevention of atherosclerosis. Wy-14,643 induces SR-B1
expression in atherosclerotic lesions (63). PPARa also may
play a role in atherosclerotic thrombosis by inhibiting tissue
factor (TF) mRNA and activity in human monocytes and
macrophages (238, 260).

Although much evidence suggests that PPARa ligands
protect against atherosclerosis, murine animal models have

yielded conflicting results. The loss of PPARa is shown to
protect against atherosclerosis in apoE�=� mice (359) (Fig.
11). Conversely, fenofibrate attenuates the development of
atherosclerotic lesions, with a more pronounced decrease
observed in apoE�=� mice that express the human apoA-I
transgene (99). Another study showed that GW7647 de-
creases lesion formation in LDL-R�=� mice (214) (Fig. 11).
Furthermore, lesion size is deceased in human apoE2
knockin mice administered fenofibrate (152). Finally, male
and female LDL-R�=� mice transplanted with bone marrow
from PPARa�=� mice display increased aortic atherosclerosis
(Fig. 11), along with decreased peritoneal macrophage cho-
lesterol efflux (17). Thus, from these studies, the role of
PPARa in atherosclerotic lesion formation is controversial;
however, much of the data tends to suggest an ather-
oprotective effect of PPARa.

Possible explanations for decreased atherosclerotic devel-
opment witnessed with the removal of PPARa in apoE�=�

mice may involve systemic or vessel wall effects. Systemic
effects may include decreased glucose levels and insulin re-
sistance, lower blood pressure, and the loss of liver PPARa
target genes that lead to atherosclerotic development. Fur-
thermore, the absence of PPARa may attenuate LPL activity in
the subendothelial space of the vessel wall and decrease ath-
erosclerosis. Systemic effects can alter gene expression in
vessel walls, making it difficult to confirm the role of vascular
wall PPARa in atherosclerosis (359).

F. PPARa and the heart

The use of both gain- and loss-of-function techniques has
proven useful in evaluating PPARa and its effects on cardiac
energy metabolism. Cultured myocyte treatment with PPARa
ligands or adenoviral overexpression of PPARa induces sev-
eral genes involved in fatty acid metabolism (23, 124,
161). However, the effects of PPARa ligands on myocardial
target genes in vivo have been disappointing (75). PPARa li-
gands decrease cardiac FAO rates in diabetic mice (1, 2).
PPARa, similar to fatty acid metabolism, may also display
direct effects on the heart by inhibiting inflammation and
collagen deposition resulting from AngII-induced hyperten-
sion. Clinically, PPARa activation may provide a cardiopro-
tective effect against hypertension and hyperlipidemia.
Furthermore, fenofibrate activation of PPARa may decrease
hypertension-induced changes in mechanical overload that
lead to ventricular hypertrophy (103).

PPARa ligands are known to have direct effects on
mitochondrial function (180, 181). PPARa activators can
differentially inhibit cardiac mitochondrial respiration. The
attenuation of cardiac mitochondrial respiratory function is
greater with the administration of fenofibrate compared
with Wy-14,643 (413). This suggests a possible PPARa-
independent effect because the Wy-14,643 compound has a
higher PPARa affinity than does fenofibrate.

PPARa is regulated by hypoxia, as shown by the reduc-
tion in PPARa-dependent transcriptional activity of mus-
cle carnitine palmitoyltransferase I, an enzyme involved
in mitochondrial FAO. The DNA-binding activity of the
PPARa:RXR heterodimer is reduced in hypoxic cardiomyo-
cytes (161). Furthermore, myocardial hypoxia can decrease
PPARa-dependent gene expression in two in vivo rat models
(299). The level of PPARa mRNA, along with its target gene,
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medium-chain acyl-CoA dehydrogenase, is decreased after 7
days in a model of hypoxia-induced right ventricular hyper-
trophy. However, these levels are upregulated at day 14,
suggesting a compensatory response by the heart due to in-
creased load. It is likely that part of the transcriptional re-
sponse to hypoxia-induced right ventricular hypertrophy
involves the regulation of PPARa by hypoxia in the early
stages and, in the later stages, by increased load (323).

PPARa cardiac-specific transgenic mice were developed to
discern between PPARa-induced cardiac effects and ligand-
induced systemic effects (107, 108, 149, 284, 316). PPARa
overexpression induces genes involved in cardiac fatty acid
metabolism and utilization (108) while suppressing genes
known to participate in glucose uptake and utilization (108,
284). Of great interest, these abnormalities are more promi-
nent in mice that are insulin resistant or fed a high-fat diet
(107), both of which are capable of elevating circulating lipids.
It is likely that increased reliance of fatty acid utilization,
along with the concomitant decrease in glucose utilization
by the heart, may aggressively promote remodeling, leading
to eventual cardiomyopathy. However, the mechanisms
whereby altered fatty acid and glucose utilization result in
cardiac remodeling are still unclear.

Although a cardiac-specific PPARa-knockout mouse model
has yet to be characterized, murine models with generalized
PPARa-ablated gene expression have been developed and are
often used in examining PPARa function in cardiac energy
metabolism and utilization (53, 93, 183, 205, 211, 229, 281,
381). Malonyl-CoA decarboxylase is an important regulator of
cardiac fatty acid oxidation (77), and PPARa knockout mice
have decreased malonyl-CoA decarboxylase gene expression
(53). PPARa-null mice show decreased fatty acid oxidation
rates (53, 93, 211, 381) along with increased glucose metabo-
lism and oxidation (53, 281). As a result, it is possible that the
alterations pertaining to the dependence on each fuel source
in PPARa-deficient mice make it difficult for the heart to adapt
to increase workloads (53, 229). Furthermore, increased ven-
tricular afterload is improved in PPARa-knockout mice with
GLUT1 overexpression (229), suggesting that glucose ATP
production in PPARa-null mice may not be sufficient to meet
the demands of greater cardiac workload. Moreover, because
chronic pressure overload deactivates PPARa (134, 208), this
model may be suitable for studies in cardiac metabolic dys-
function. PPARa activation can reduce cardiomyocyte hy-
pertrophy, as fenofibrate decreases ET-1–induced neonatal rat
cardiomyocyte enlargement (171, 220). A recent investigation
with PPARa-knockout mice demonstrated greater cardiac
hypertrophy after pressure overload in association with
enhanced inflammatory marker expression (335), and the
follow-up study asserts that PPARa and PPARd inhibit in-
flammation and cardiac hypertrophy by suppressing NF-kB
signaling (334).

XV. PPARd

PPARd is distributed ubiquitously in almost all tissues,
including liver, fat, skeletal muscle, and skin, and differs from
the other two PPAR isotypes. Several studies show that
PPARd has important roles in cell growth, differentiation,
placenta growth, colon tumorigenesis, and wound healing
(20, 289, 350). Recent studies focused on the effects of PPARd
regarding lipid metabolism and insulin sensitivity. PPARd is

expressed in the vascular system and displays essential reg-
ulatory roles in vascular biology.

PPARs, liver X receptors (LXRs), farnesoid X receptor
(FXR), and krüpple-like factor (KLF) are transcription factors
controlling lipid and glucose metabolism, as well as the in-
flammatory response. These transcription factors interact
with each other and synergistically regulate gene expression.
PPARd overexpression influences the activity of PPARa and
PPARg in 3T3 fibroblasts and nontransformed monkey kid-
ney CV-1 cells (329). PPARd inhibits PPARg activity by in-
terfering with PPARg DNA-binding activity and not PPARg
gene expression in colon cancer cells, which is identified by
PPARd knockout and gain-of-function approaches (414). LXR
can bind to all three PPAR subtypes, and PPAR ligands can
regulate LXR=PPAR interaction, as studied by SPR technol-
ogy (402). LXR induces fatty acid synthesis, whereas PPARd
induces fatty acid oxidation. Moreover, the diverging effects
of PPARd and LXR on metabolic gene regulation are apparent
because PPARd represses the expression of the LXR target
gene angpt13, and L-165041 enhances the inhibitory effect.
The likely mechanism is that PPARd competes with LXR for
binding to RXR, and L-165041 increases the affinity between
PPARd and RXR (243). KLF5, a member of the KLF super-
family, is critical for regulation of adipocyte differentiation
and energy metabolism (274). KLF5þ=� heterozygous mice
are not prone to high-fat diet–induced obesity, insulin resis-
tance, and hypercholesterolemia. Under basal conditions,
SUMOylated KLF5, unliganded PPARd, and co-repressors
form a transcription-repressor complex. Once PPARd agonists
activate PPARd, KLF5 is deSUMOylated and associates with
the transcription activation complex composed of liganded
PPARd and the CREB binding protein (273).

A. PPARd ligands

PPARd, on activation by ligands, regulates gene expres-
sion. For several years, highly selective PPARd ligands were
not known, and as a result, the progress in PPARd re-
search was hampered. Natural ligands, such as unsaturated
fatty acids, eicosanoid derivatives, and prostaglandins, have
binding affinity for PPARd, although natural ligand selectiv-
ity tends to be low (389). cPGI activates both PPARd and
PPARa (221), whereas retinoid acid activates both RAR and
PPARd without activating PPARa and PPARg (324). As a re-
sult, synthetic ligands were developed to widen this research
scope. L-796449, L-165461, and L-783483 have high affinity for
PPARd, but also to PPARg, whereas L-165041 has a high af-
finity for only PPARd (30). Both GW501516 and GW0742 are
widely used and are 1,000 times more selective for PPARd
compared with PPARa and PPARg. The EC50 of PPARd
transactivation is 1*2 nM (345). PPARd and RXR form an
obligatory heterodimer and recruit co-repressors such as
BCL-6 and SMART to form a transcription complex that
binds to the gene-promoter PPRE. Once ligand activated, co-
repressors dissociate from the complex, and coactivators such
as p300 and SRC-1 bind to the complex, transactivating target
gene expression. Recently, Shearer et al. (326) identified
GSK0660 as a potent antagonist of PPARd with a binding
assay IC50 of *160 nM. However, GSK0660 is inactive on
PPARa and PPARg, with IC50 levels above *10mM. This
antagonist will be useful for elucidating the biologic roles of
PPARd (326).
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B. PPARd and endothelial cells

Endothelial dysfunction is characterized by endothelial
proinflammatory, procoagulant, and profibrotic states.
Impaired endothelial cell permeability, together with the
previous clinical entities, is a marker of early-stage athero-
sclerosis. Endothelial activation is induced by several
risk factors, including LDL=oxLDL, hypercholesterolemia,
hyperglycemia, and cytokines (TNF-a, IL-1b), which pro-
mote increased adhesion molecule expression and ensuing
leukocyte–endothelial adhesion. L-165041 inhibits TNF-a–
induced MCP-1 secretion and VCAM-1 expression in the
EAhy926 cell line (311). Both GW0742 and GW501516 have
potent antiinflammatory effects in endothelial cells (Fig. 12),
inhibiting inflammatory cytokine (TNF-a and IL-1b)-induced
adhesion molecule expression and ensuing leukocyte–
endothelial adhesion in primary HUVECs. The mechanisms
of PPARd antiinflammatory effects involve the attenuation of
oxidative stress through the upregulation of antioxidant
genes catalase, CuZn superoxide dismutase, and thioredoxin,
as well as control of BCL-6 co-repressor translocation to
proinflammatory genes (105).

In endothelial cells, ligand activation of PPARd increases
human endothelial cell proliferation and angiogenesis via up-
regulating VEGF expression and release (290). Next, PPARd
activation by either PGI2 or L-165041 inhibits H2O2-induced
EC apoptosis via upregulation of 14-3-3 epsilon (226).
L-165041 and GW501516 activate the 14-3-3 gene YWHAE
promoter, increasing 14-3-3 expression in a C=EBP-dependent
manner, and not in a PPRE-dependent fashion. PPARd regu-
lates expression of C=EBP and forms a transcriptional complex
with C=EBP in ECs (45). PPARd activation stimulates prolif-
eration and attenuates apoptosis in EPCs through phosphor-

ylated Akt-dependent signaling. These effects promote
enhanced vasculogenesis and may be therapeutically benefi-
cial in the treatment of ischemic cardiovascular disease (144).

C. PPARd and VSMCs

PDGF, a neointimal stimulator, induces PPARd expression
via the PI3-kinase=Akt pathway in VSMCs (410). In vivo data
show that PPARd is upregulated during the development of
vascular lesion formation (410). Overexpression of PPARd in
VSMCs increases post-confluent cell proliferation (Fig. 12) by
modulating cell-cycle checkpoint genes including cyclin A,
cdk2, and p57(Kip2) (410). The suppression of PPARd ex-
pression may mediate the inhibitory effects of prostacyclin
synthase on neointimal formation (166). However, the role of
PPARd in VSMCs is not yet agreed on. Recently, Lim et al.
(222) reported that L-165041 suppresses rat VSMC prolifera-
tion by inhibiting phosphorylation of the retinoblastoma
protein and cell-cycle progression. In vivo data show that L-
165041 attenuates neointima formation in the carotid artery
balloon injury model. GW501516 also dose-dependently
suppresses TNF-a–induced VSMC proliferation (184). PPARd
receptors and agonists may play different roles in VSMC
proliferation, accounting for the seemingly inconsistent re-
sults. TGF-b1, known as a potent regulator in the pathogen-
esis of atherosclerosis and restenosis, is upregulated by
PPARd in VSMCs as a target gene. GW501516 inhibits IL-1b–
induced MCP-1 expression, which is mediated by TGF-b1 and
its effector, Smad3. The expression of TGF-b1 is upregulated,
and proinflammatory genes are suppressed in the thoracic
aorta prepared from GW501516-treated mice. Thus, it is ap-
parent the PPARd=TGF-b=MCP-1 pathway stimulates PPARd
antiinflammatory signaling mechanisms (184).

FIG. 12. Schematic view of PPARd roles in atherosclerosis. PPARd ligands are beneficial against the development of
atherosclerosis by regulating lipid homeostasis in humans. PPARd ligands attenuate the development of atherosclerosis in
mice by decreasing inflammatory gene expression and macrophage migration while increasing plasma HDL. Inhibition of EC
and macrophage inflammatory gene expression by PPARd ligands prevents the development of atherosclerosis. However,
PPARd overexpression stimulates VSMC proliferation and macrophage release of inflammatory factors, which may promote
atherosclerotic development.
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D. PPARd and monocytes=macrophages

Macrophage inflammation and lipid dysfunction are in-
volved in the pathogenesis of atherosclerosis. PPARd regu-
lates lipid metabolism in macrophages. VLDL activates
expression of genes involved in b-oxidation, thermogenesis,
lipid mobilization, and carnitine biosynthesis through
PPARd-dependent signaling. Knocking out PPARd has the
same effect as PPARd agonists on fatty acid utilization in
macrophages, indicating that the endogenous unliganded
PPARd receptor has an inhibitory effect on lipid oxidation
(202). GW501516 increases ABCA1 expression and induces
apolipoprotein A1–specific cholesterol efflux in macro-
phages (276). However, different results are achieved in
primary human macrophages and THP-1 human monocytes
with compound F. Compound F upregulates genes related
to lipid accumulation and downregulates genes involved in
lipid efflux and metabolism. Both compound F and PPARd
overexpression promote lipid accumulation in macrophages
(371). Alternatively, activated macrophages are believed to
improve the metabolic syndrome although the mechanism of
modulating alternative activation of tissue macrophages is
still unclear. Adipocyte-derived Th2 cytokines IL-13 and IL-4
induce macrophage PPARd expression. Both adipose tissue
and liver-resident macrophages are activated to the alter-
native phenotype by PPARd, and this switch is beneficial
for fatty acid metabolism and improves insulin sensitivity
(177, 268).

The removal of PPARd leads to downregulation of MCP-1
and IL-1b expression, attenuating macrophage proinflam-
matory responses. Overexpression of PPARd enhances the
inflammatory response, suggesting that endogenous PPARd
has a proinflammatory effect in macrophages (Fig. 12). How-
ever, similar to endothelial cells, PPARd agonists have a po-
tent inhibitory effect on macrophage inflammation (Fig. 12).
GW0742 inhibits LPS-induced expression of inflammatory
genes iNOS and COX-2 in macrophages (382). Ligand-acti-
vated PPARd regulates the translocation of nuclear repressor
BCL-6 to inflammatory genes and controls the inflammatory
switch in a ligand-dependent manner (201). Graham et al.
(141) reported that GW0742X decreases TNF-a expression in
peritoneal macrophages and adipose tissue.

Foam cell and subsequent fatty-streak formation play crit-
ical roles in atherogenesis. LDL=oxLDL induces macrophage
differentiation into foam cells, in which many genes likely
modulate the transformation process. One such example may
include the regulation of scavenger-receptor expression by the
PPAR family. Both compound F administration and over-
expression of PPARd stimulate PMA-induced macrophage
differentiation (370).

E. PPARd and atherosclerosis

A deteriorated plasma lipoprotein profile directly affects
vascular function. Elevated plasma levels of low-density li-
poproteins (LDLs) increase the risk of atherosclerosis. Con-
versely, the increase of HDLs has a cardiovascular protective
effect. Very low density lipoproteins (VLDLs) and their tri-
glyceride components regulate gene expression via activation
of PPARd in macrophages (58). Accumulating evidence
demonstrates that PPARd regulates lipid metabolism in
metabolically active tissues. Adipose tissue–specific activated

PPARd protects against obesity and induces expression of
genes required for fatty acid oxidation and energy un-
coupling. Adipose-specific PPARd transgenic mice also show
improved overall lipid profiles and reduced plasma triglyc-
eride levels (379), demonstrating a possible atheroprotective
effect. GW501516 increases HDL levels and decreases small
dense LDL, triglycerides, and insulin in insulin-resistant
middle-aged obese rhesus monkeys (276). In St. Kitts vervet
atherosclerotic primate models, GW501516 increases plasma
HDL-C, apoA-I, and apoA-II concentrations, demonstrating
protective effects of PPARd on the cardiovascular system
(375). However, considerably less is known about the function
of PPARd on lipid homeostasis in humans.

In vivo results also were observed in human subjects. A
clinical study performed in healthy white normolipidemic
male subjects showed that plasma triglyceride and LDL levels
significantly decline, whereas HDL-C levels are enhanced
after 2 weeks of GW501516 administration (339) (Fig. 12).
Consistently, Riserus et al. (310) reported that GW501516
treatment significantly reduces plasma triglycerides, apoB,
and LDL cholesterol in healthy moderately overweight sub-
jects (Fig. 12). Presently, laboratory and clinical studies in-
dicate that lowering lipid levels can be achieved by
administering PPARd agonists, resulting in improved lipid
homeostasis (Fig. 12). With regard to its genetic basis, the
lipid-regulating function of PPARd is associated with gene
polymorphisms (333). Plasma HDL-C levels are elevated in
the PPARd exon 4þ 15 C=C and exon 7þ 65 G=G genotypes of
healthy white subjects with exposure to endurance training
compared with those with other genotypes (150).

The role of PPARd in atherosclerosis has been identified in
an atherosclerotic animal model. PPARd�=� bone marrow
transplanted into g-irradiated LDL-R�=� mice significantly
reduced atherosclerosis lesions, likely as a result of the at-
tenuated inflammatory status of macrophages (201). Li et al.
(214) reported that PPARd agonist GW0742 has no effect
on atherosclerotic lesions, whereas PPARa and PPARg ago-
nists strongly inhibit atherosclerosis in hypercholesterolemic
diet–fed LDL-R�=� mice. However, PPARd agonists inhibit
inflammatory gene expression (Fig. 12), including IFN-g,
TNF-a, MCP-1, VCAM-1, and ICAM-1 in atherosclerotic
lesions (214). It is likely that the antiinflammatory effect of
PPARd may not reverse the proatherogenic impact of ex-
treme hypercholesterolemia in this animal model. Treatment
with GW0742X reduces atherosclerotic lesions in LDL-R–
null mice and decreases MCP-1 and ICAM-1 expression in
the aorta (141). In the apoE�=� mouse atherosclerotic model,
treatment with GW501516 attenuates atherosclerotic lesion
formation through multiple pathways, which may include
increases in plasma HDL levels, potent antiinflammatory
effects, and suppression of macrophage transmigration
(Fig. 12). PPARd inhibits the chemokines-receptor signal-
ing pathway by increasing the expression of regulator of G-
protein signaling (RGS) genes (25). In the AngII-accelerated
atherosclerotic model, GW0742 attenuates AngII-induced
atherosclerotic lesion formation. GW0742 increases the ex-
pression of BCL-6, RGS4, and RGS5 in the vascular wall,
which inhibits inflammatory and atherogenic gene expres-
sion (348). In agreement with several in vitro studies, these
in vivo data support an atheroprotective role of PPARd ago-
nists (Fig. 12).
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F. PPARd and the heart

PPARd activation by GW0742 increases palmitate oxi-
dation in neonatal and adult cardiomyocytes, meanwhile
upregulating the expression of fatty acid oxidation genes (61)
(Fig. 13). Consistently, the expression of key fatty acid oxi-
dation genes (mCPT1, ACOX1, UCP3) and also basal
myocardial FAO rates decrease in cardiomyocyte-specific
PPARd-knockout mice (60) (Fig. 13). Cardiac-specific over-
expression of PPARd increases the expression of GLUT4 and
phosphofructokinase, a glycolytic gene, promoting myocar-
dial glucose utilization, which may contribute to reduced
myocardial injury after ischemia=reperfusion (46) (Fig. 13).
GW610742X increases fatty acid oxidation after myocardial
infarction in both left and right ventricles, along with the
upregulation of PPARd metabolic target gene expression,
such as CD36, CPT1, and UCP3 (176). These studies suggest
PPARd increases fatty acid oxidation and related gene ex-
pression, providing a physiological benefit for metabolic-
related heart disease.

Inflammatory responses are involved in the pathophysio-
logic processes of ischemia=reperfusion, hypertrophy, and
fibrosis. Much evidence suggests that PPARa and PPARg
suppress myocardial inflammatory responses. PPARd atten-
uates LPS-induced expression of TNF-a through inhibition of
NF-kB in cultured cardiomyocytes (90). PPARd interacts with
the p65 NF-kB subunit, inhibiting the LPS-induced NF-kB
signaling pathway and decreasing MCP-1 expression in rat
cardiomyocytes (293). Furthermore, GW0742 reduces cardiac
expression of IL-6, IL-8, MCP-1, and ICAM-1, which are in-
duced by ischemia=reperfusion (403).

Progressive myocardial lipid accumulation and hypertro-
phy occur in cardiomyocyte-specific PPARd-knockout mice
(Fig. 13). The function of the PPARd-null heart is impaired,
characterized by a decrease in rates of contraction and relax-
ation, decreased cardiac output, and increased left ventricular
end-diastolic pressure (60) (Fig. 13). GW0742X reduces right
ventricle hypertrophy and lung congestion (176). Further-
more, PPARd activation by L-165041 inhibits phenylephrine-
induced protein synthesis and increases carnitine palmitoyl-
transferase and pyruvate dehydrogenase kinase 4 expression
in cultured rat cardiomyocytes (293).

GW501516 inhibits proliferation of cardiac fibroblasts and
myofibroblasts and also suppresses differentiation of fibro-
blasts into myofibroblasts (354). Collagen accumulation is
involved in myocardial fibrosis, and GW501516 attenuates
AngII-stimulated collagen synthesis in cardiac fibroblasts
(354, 408).

PPARd is critical for maintaining normal fatty acid oxida-
tion and energy balance in the heart (60), suggesting that
PPARd and its ligands may be important for cardiac function,
distribution of muscle fiber type, and endurance performance

(60, 150). PPARd overexpression or activation may be a con-
tributing factor to increasing endurance and may mimic the
effects of exercise on muscle metabolism (102, 119). PPARd
and its ligands have been shown to improve exercise perfor-
mance and regulate physical endurance and training in skel-
etal muscle (380). Conversely, exercise has been shown to
promote skeletal muscle PPARd accumulation in murine an-
imal models (230). The possibility exists whereby increased
exercise may activate PPARd by facilitating the internalization
of certain fatty acids that act as ligands (380). Another possi-
bility is that exercise increases PPARg coactivator-1a (PGC-1a)
expression (137), and PGC-1a binding to PPARd can potently
activate this transcription factor, irrespective of the presence
of ligands (379). Furthermore, plasma HDL-C levels are
higher in the PPARd exon 4þ 15 C=C and exon 7þ 65 G=G
healthy white genotypes with endurance training compared
with other genotypes (150), and PPARd agonist administra-
tion increases plasma HDL-C concentrations in various ani-
mal models (210, 276, 375). One explanation may be that
increased availability of free fatty acids due to exercise acti-
vates PPARd and promotes reverse cholesterol transport
(150). Finally, a recent study demonstrated that GW501516
and exercise training work synergistically to increase running
endurance (256). These studies have important cardiovascular
significance because running performance in humans appears
to be linked more to cardiovascular performance and not to
muscle fiber–type distribution (304).

In summary, although all three PPAR isotypes are involved
in the metabolic syndrome and cardiovascular disease, evi-
dence suggests that PPARd is different from the other two
subtypes. The PPARd receptor and agonists can sometimes
show distinct modes of action. PPARd can repress both
PPARg and PPARa target gene activity, and PPARd repres-
sion is likely PPRE dependent (329). PPARd improves the
metabolic syndrome and cardiovascular activity through
potent antiinflammatory effects and regulation of lipid and
glucose metabolism. To date, several studies indicate that
PPARd is a potential therapeutic target for treatment of the
metabolic syndrome and cardiovascular diseases, including
atherosclerosis and cardiac hypertrophy. PPARd appears to
act as a ‘‘housekeeper’’ because of its near-ubiquitous ex-
pression. Therefore, it is critical for PPARd to be further ex-
amined regarding its effects on metabolism and the various
tissues related to metabolic function.

XVI. Perspective

PPARs have now been firmly entrenched as key players in
the cardiovascular system. During the past decade, consid-
erable evidence has been accumulated regarding the role of
peroxisome proliferator–activated receptors in cardiovascular
diseases and clinical complications related to cardiovascular

FIG. 13. Schematic view of PPARd roles in
the heart. PPARd ligands increase myocardial
fatty acid utilization genes. Cardiac-specific
PPARd-knockout mice have decreased myo-
cardial expression of fatty acid oxidation genes
along with increased myocardial lipid accu-
mulation, cardiac hypertrophy, and congestive

heart failure. Myocardial PPARd overexpression in mice increases expression of genes involved in glucose utilization, which
may prevent further injury after ischemia=reperfusion.
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abnormalities. PPARs regulate several cell-signaling mecha-
nisms related to cardiovascular health and disease. A con-
tinuing need exists for basic science and clinical investigations
to understand fully the role of PPAR in the physiology and
pathology of cardiovascular-related diseases. Thus, it is im-
portant to gain a better understanding of the regulatory role of
PPARs in vascular cells and the heart.

TZDs and fibrates are pharmacologic agents that have
pleiotropic effects, many of which are beneficial in alleviating
cardiovascular abnormalities in animal models. However,
this has not necessarily translated into markedly improved
clinical cardiovascular outcomes. This may be because of
differences in both uptake and effects on target pathways
between various animal species and humans. In addition,
increasing evidence shows that several beneficial PPAR ago-
nist effects are not from direct participation of PPAR-signaling
pathways. No definitive evidence indicates that activated
PPARg pathways are critical for the beneficial effects of TZDs
in the cardiovascular system. Moreover, greater evidence
exists that ligand-activated PPAR signaling may play a role in
the witnessed pharmacologic side effects of TZDs.

Hence, dual PPAR agonists were generated to circumvent
this problem and simultaneously to activate two PPAR iso-
forms. However, the administration of dual PPAR agonists in
the clinical setting has been somewhat disappointing because
of increased risks for cardiovascular events. Selective PPAR
modulators (SPPARMs) were developed to find newer, safer,
and more effective agonists and have been shown to improve
the overall clinical profile. The possibility that cardiovascu-
lar diseases in patients may be the result of depleted endog-
enous PPAR ligand concentrations must also be considered.
Furthermore, a need exists to conduct a greater number of
studies on the role of PPAR antagonists in the cardiovascular
system.

The development of animal model systems specifically for
studying PPARs and PPAR agonists has led to greater in-

creases in information regarding the mechanisms of these
nuclear transcription factors in the cardiovascular system.
Because global deletion of PPAR is embryo-lethal, the use of
conditional knockout mice (e.g., ECs, VSMCs, macrophages)
has been critical to understanding the development of human
cardiovascular diseases. Nonetheless, limitations are found in
using the mouse model. Genetically modified mice often do
not show characteristics evident of the human phenotype.
Thus, we need more suitable animal models that may correct
for many, if not all, of these characteristics. The use of genet-
ically modified rabbits, pigs, or monkeys may be more ap-
propriate for studying the effects of PPARs and their agonists
in the cardiovascular system and for providing a clearer un-
derstanding of the pathophysiology of cardiovascular dis-
eases (Fig. 14).

Finally, although previous studies have successfully tar-
geted PPAR for deletion in cardiovascular cells, the possibility
of PPAR cell–cell crosstalk should not be overlooked in the
cardiovascular system. For example, does VSMC PPARg af-
fect function in PPARg-null ECs and vice versa? The ability to
gain a better understanding of PPARs and agonists in the
cardiovascular system will enable us to address the contro-
versy regarding the subsequent administration of pharma-
cologic agents that not only activate PPAR pathways, but may
also have PPAR-independent effects.
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FIG. 14. Perspective view of PPARs and PPAR li-
gands in the cardiovascular system. The use of mouse
models has shown that PPAR ligands have many
beneficial effects in the cardiovascular system. How-
ever, PPAR ligand administration (e.g., rosiglitazone)
in the clinical setting has not necessarily translated into
markedly improved cardiovascular outcomes. Fur-
thermore, some question exists as to whether the
beneficial effects of PPAR agonists involve PPAR-
dependent signaling. Although the development of
animal model systems specifically for studying PPAR
agonists and PPAR gain- and loss-of-function has
elucidated important findings regarding the molecular
mechanisms of cardiovascular disease, certain limita-
tions pertain to the use of mouse models. In many
cases, genetically altered murine models do not dis-
play characteristics similar to those of humans. Hence,
a need exists for using genetically modified animals,
such as rabbits, pigs, or monkeys, that have a closer
phenotypic resemblance to humans and therefore may
be more appropriate for studying PPARs and PPAR
agonists in the cardiovascular system.
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Abbreviations

4E-BP1, 4E-binding protein 1; 15d-PGJ2, 15-deoxy-d
12,14-prostaglandin J2; ABC, ATP-binding cassette; AGP, 1-
O-octadecenyl-2-hydroxy-sn-glycero-3-phosphate; AngII,
angiotensin II; AP-1, activator protein-1; APC, angiogenic
progenitor cell; apoE�=�, apo E knockout; AT1, angioten-
sin II type 1 receptor; AT2, angiotensin II type 2 receptor;
azPC, 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine;
BADGE, bisphenol A diglycidyl ether; bFGF, basic fibroblast
growth factor; CARLA, coactivator-dependent receptor li-
gand assay; CBP, CREB-binding protein; CCR2, chemokine
receptor 2; C=EBP, CCAAT=enhancer-binding protein; CPT-
1, carnitine palmitoyltransferase type 1; CTGF, connective
tissue growth factor; ECs, endothelial cells; Egr-1, early
growth response-1; eNOS, endothelial nitric oxide synthase;
EPC, endothelial progenitor cell; ERK 1=2, extracellular signal
regulated kinase 1=2; ET-1, endothelin-1; FAO, fatty acid ox-
idation; FATP-1, fatty acid transport protein-1; FRET, fluo-
rescence resonance energy transfer; FXR, farnesoid X
receptor; FOXO, forkhead-box class O; GLUT1, glucose
transporter 1; GLUT4, glucose transporter 4; GM-CSF,
granulocyte–macrophage colony-stimulating factor;
HASMCs, human aortic smooth muscle cells; HDAC-3, his-
tone deacetylase-3; HDL, high-density lipoprotein; HETE,
hydroxyeicosatetraenoic acid; HO-1, heme-oxygenase 1;
HODE, hydroxyoctadecadienoic acid; HUVECs, human um-
bilical vein endothelial cells; ICAM-1, intercellular adhesion
molecule-1; IFN, interferon; IFN-g, interferon-gamma; IGF,
insulin-like growth factor; IkBa, IkappaB-alpha; IKK, IkappaB
kinase; IL, interleukin; IL-1b, interleukin-1beta; IL-1Ra, IL-1
receptor antagonist; iNOS, inducible nitric oxide synthase; IP-
10, IFN-inducible protein of 10 kDa; IRF-1, interferon regula-
tory factor; I-TAC, IFN-inducible T-cell a-chemoattractant;
KLF, krüpple-like factor; LDL, low-density lipoprotein; LDL-
R�=�, low-density lipoprotein receptor knockout; LNO2, ni-
tro-9,12-cis-octadecadienoic acid; LPA, lysophosphatidic acid;
LPL, lipoprotein lipase; LPS, lipopolysaccharide; LTB4, leu-
kotriene B4; LXR, liver X receptor; MAPK, mitogen-activated
protein kinase; MCM, minichromosome maintenance protein;
MCP-1, monocyte chemoattractant protein-1; MHC-II, major
histocompatibility complex class II; Mig, monokine induced
by IFN-g; MMP-2, matrix metalloproteinase-2; MMP-9, matrix
metalloproteinase-9; N-CoR, nuclear receptor co-repressor;
NF-kB, nuclear factor-kappa B; NO, nitric oxide; NPC,
Niemann-Pick, type C; OA-NO2, nitro-9-cis-octadecenoic
acid; OPG, osteoprotegrin; OPN, osteopontin; oxLDL, oxi-
dized LDL; PAF, platelet-activating factor; PAI-1, plasmino-
gen activator inhibitor type-1; PDGF, platelet-derived growth
factor; PECAM-1, platelet–endothelial cell adhesion molecule;
PGC-1a, PPARg coactivator-1a; PKC, protein kinase C; PLA,
phospholipase A2; PPAR, peroxisome proliferator-activated
receptor; PPARa, PPARalpha; PPARb=d, PPARbeta=delta;
PPARg, PPARgamma; PPARg E null, endothelial cell PPAR-
gamma knockout; PPRE, peroxisome proliferator response
element; PTEN, phosphatase and tensin homologue; Rb,
retinoblastoma protein; RGS, regulator of G-protein signal-
ing; RXR, retinoic X receptor; SHIP2, Src homology (SH)
2–containing inositol phosphatase 2; SHP-2, Src homology
region 2–containing protein tyrosine phosphatase-2; SHRs,
spontaneously hypertensive rats; SM-a-actin, smooth muscle
alpha-actin; SM-MHC, smooth muscle myosin heavy chain;

SPA, scintillation proximity assay; sPLA2-II2, secretory
phospholipase A2; SPPARMs, selective PPAR modulators;
SPR, surface plasmon resonance; SR-A, scavenger receptor
A; SR-B, scavenger receptor B; STAT, signal transduction
and activator of transcription; TERT, telomerase reverse
transcriptase; TF, tissue factor; TGF-b, transforming growth
factor-beta; TNF-a, tumor necrosis factor-alpha; TZD,
thiazolidinedione; VCAM-1, vascular cell adhesion molecule-
1; VEGF, vascular endothelial growth factor; VLDLs, very
low density lipoproteins; VSMCs, vascular smooth muscle
cells.
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