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SUMMARY
A natural way of modelling relative survival through regression analysis is to assume an additive
form between the expected population hazard and the excess hazard due to the presence of an
additional cause of mortality. Within this context, the existing approaches in the parametric,
semiparametric and non-parametric setting are compared and discussed. We study the additive excess
hazards models, where the excess hazard is on additive form. This makes it possible to assess the
importance of time-varying effects for regression models in the relative survival framework. We
show how recent developments can be used to make inferential statements about the non-parametric
version of the model. This makes it possible to test the key hypothesis that an excess risk effect is
time varying in contrast to being constant over time. In case some covariate effects are constant, we
show how the semiparametric additive risk model can be considered in the excess risk setting,
providing a better and more useful summary of the data. Estimators have explicit form and inference
based on a resampling scheme is presented for both the non-parametric and semiparametric models.
We also describe a new suggestion for goodness of fit of relative survival models, which consists on
statistical and graphical tests based on cumulative martingale residuals. This is illustrated on the
semiparametric model with proportional excess hazards. We analyze data from the TRACE study
using different approaches and show the need for more flexible models in relative survival.

1. INTRODUCTION
In many cancer studies and also in population-based and clinical observational studies other
than cancer, information on causes of death, remissions, etc. is sometimes unavailable,
especially with a long follow-up. In some cases, this information is recorded on medical
registries but it is incomplete or misleading, because death could be only partially due to the
disease of interest and it is difficult to classify deaths due to other causes indirectly correlated
with the disease of interest. For this reason the use of cause-specific survival in the framework
of competing risks, where at least two distinct alternative causes need to be specified, is
problematic. Moreover, many clinical studies aim at identifying prognostic factors for mortality
due to the disease, differentiating whether their effects are also related to the natural mortality
in the underlying population. In this case, problems arise in comparisons between studies based
on different background populations.

Relative survival analysis provides a solution to these difficulties. It does not require
information on cause of death, whereas it allows one to estimate patient survival corrected for
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the effect of other causes of death, using the natural mortality of the underlying population. Of
course, the natural mortality encompasses also mortality from the disease of interest; however,
when the latter is very small, and then negligible, the general population is commonly assumed
to be unaffected by the disease of interest. Indeed, relative survival describes the excess
mortality for patients diagnosed with the disease of interest, irrespective of whether the excess
mortality is directly or indirectly attributable to the disease. In general, estimation of this
corrected patient survival, a quantity that is hypothetically defined as the net survival in the
competing risks setting, is the principal aim in relative survival. From population life tables
theory, the estimate is given by the relative survival ratio between the observed survival of
patients and the expected survival from the underlying population, with respect to the main
factors affecting the natural mortality, such as age, sex and calendar time.

Thereby, a natural way of modelling relative survival through regression analysis consists in
assuming the following additive form for the observed hazard at time t, conditional on
covariates Z and X:

(1)

where Z and X are sets of covariates that are not necessarily all distinct. The total observed
hazard is modelled by the sum of the expected hazard λ*(t; Z), which represents the background
rate of mortality of the general population, and the excess hazard ν(t; X) due to the presence
of an additional cause of mortality, such as cancer or other chronic diseases. The expected
hazard is generally estimated from external data, i.e. mortality rates recorded in the public
registries of the population underlying the patients’ sample under study. It is assumed to be
known in the actual model and generally it depends on some characteristics Z of the population.
The additional excess hazard follows a regression model based on the relevant risk factors X
and can be modelled by a proportional or an additive form, according to the validity of the
underlying assumptions. In general, the principal interest in regression analysis consists in
evaluating possible prognostic factors that influence directly the excess risk, in the absence of
the effect of competing causes of death. That is why only the excess risk is supposed to depend
on the set of covariates observed in the exposed individuals.

Among different approaches to modelling relative survival, our attention is directed to models
following the additive form in (1). Within this approach, various models and their extensions
have been proposed recently and they can be classified as parametric, semiparametric or non-
parametric models. Two basic methods that assume a multiplicative function of the covariates
for the excess hazard, described by Hakulinen and Tenkanen [1] and Estve et al. [2], have been
used in the parametric setting. Extensions of these models [3,4] and handling time-dependent
covariates [5] have also been developed in the literature. Although all these models are
specified in continuous time, they assume a parametric function for the hazard, usually a
constant hazard within pre-determined time intervals. In order to control for eventual non-
proportional excess hazards, the standard solution used within these models consists of
including time-dependent covariates as interaction terms (covariate by follow-up time
intervals). More recently, some suggestions have used spline functions [6,7] for modelling
time-dependent hazard ratio and the baseline excess hazard, in order to yield more flexible and
less restrictive additive models, in case of multiplicative scale for the excess hazard. In the
semiparametric setting, these attempts can be seen as alternatives to the well-known
proportional excess hazards model by Sasieni [8]. The semiparametric proportional excess
hazards model considers an excess risk on Cox form and can easily handle time-dependent
covariates, provided that the assumption of proportional hazards for the excess risk of
individuals is verified. Zahl [9] considered the fully non-parametric additive hazards model
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[10] to model the excess hazard, where λ(t; X)=α0(t)+α1(t)X1+···+αp+1(t)Xp+1, overcoming
problems about non-proportionality and non-positive excess hazards [11,12].

We here study the additive hazard models and show how recent developments can be used to
make inferential statements about the non-parametric additive excess hazards model. This
makes it possible to test the key hypothesis that an excess risk effect is time varying in contrast
to being constant over time. One problem with the fully non-parametric dynamic description
is that the model might be too big, if some covariate effects are in fact constant with time. We
therefore also show how the semiparametric additive risk model [13] can be considered in the
excess risk setting. This model can provide a better and more useful summary of the data and
makes a better bias/variance trade-off. We show how these two additive models are easy to fit
with estimators on explicit form and how inference including tests for time-constant effects
can be carried out based on a resampling scheme.

Our objective in this paper is to introduce and to assess the importance of time-varying effects
for regression models in the relative survival framework. Their presence in the model shows
directly how the influence of risk factors on the excess hazard may change over follow-up time,
as regression coefficients are allowed to depend on time. No difficulties appear in handling
time-dependent covariates, which are treated as commonly performed in the Aalen additive
hazards model and in the Cox model.

Another aim of this paper is to describe a new suggestion for goodness-of-fit methods and
graphical test for residuals in the relative survival setting. We do this by a straightforward way
of using the cumulative martingale residuals proposed by Lin et al. [14], and we illustrate their
use for testing the proportional hazards assumption in the proportional excess model by Sasieni
[8]. This approach is very simple to implement and is known to work well in the standard
survival setting. Even though our suggestion is related to the recent interesting proposal by
Stare et al. [15], our approach has several important advantages. First, our method does not
need any critical choice of smoothing parameters (or parametric assumptions) for the baseline.
Secondly, our procedure is asymptotically justified and will thus lead to asymptotically correct
p-values and this is not true in general for the Stare et al. procedure.

In Sections 2 and 3, we present the non-parametric additive regression model and the semi-
parametric additive regression model for the excess hazard, respectively. To avoid confusion
in terminology, we denominate them as the non-parametric and the semiparametric additive
excess hazards models. We illustrate the estimators, their properties and tests of hypothesis
about the time-varying regression coefficients. In Section 4, we describe the proportional
excess model and the corresponding inference. Section 5 deals with new suggestions and
discussion about goodness of fit within the relative survival analysis. Finally, in Section 6, we
analyze data from the TRACE study using different models and we show the need for more
flexible models in relative survival.

2. THE NON-PARAMETRIC ADDITIVE EXCESS HAZARDS MODEL
2.1. Model and estimators

An extension to the standard relative survival models is proposed when the excess hazard is
modelled in additive form. The non-parametric additive excess hazards model, described also
by Zahl [9], is

(2)
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and contains only non-parametric terms. The excess rate follows the additive hazards model
introduced by Aalen [10]. The function Y(t) is a risk indicator, which is 1 if the event or
censoring has yet not occurred until t and 0 otherwise. The effects of risk factors on the excess
mortality hazard ν(t; X)=Y(t)XT(t)β(t) are expressed by the time-varying p-dimensional
regression coefficient β(t)=(β1(t), . . . ,βp(t))T.

The relative survival for the additive excess hazards model is equal to

which in general, for additive models, can be expressed as r(t)=S(t)/S*(t), where S(t) and S*
(t) are the observed and expected survival, respectively.

The conditional intensity λ(t; Z, X) in (2) provides a model for its associated counting process
N(t) that counts the observed failures in the observation period t ∈[0, τ], with τ<∞, of a subject
with predictable covariates Z and X. We need a little notation to write out the estimators. Let
(Ni(t), Yi(t), Zi(t), Xi(t)) for i =1, . . . ,n be n independent observations from the additive excess
hazards model with intensity λ(t). Define N(t)=(N1(t), . . . ,Nn(t))T as the counting process of
the n subjects and λ(t)=(λ1(t), . . . ,λn(t))T as the associated intensity. The n × p dimensional
matrix X(t)=(Y1(t)X1(t), . . . ,Yn(t)Xn(t))T contains all information about the predictable
covariates in the excess rate. The considered estimators have properties that rely on martingale
theory, it is therefore suitable to introduce the n-dimensional zero-mean martingale M(t)= N
(t)-Λ(t) associated with the counting processes N(t). The so-called compensator of the

martingale, , is the total cumulative intensity. Define

. We then have the increments dN(t)=λ(t)dt+dM(t)=λ*(t)
dt+X(t)β(t)dt+dM(t) of the counting process using the excess additive regression model.

Inference is made by estimating the cumulative regression coefficients , which
give the cumulative effects of each covariate on the excess mortality rate. Estimators in the
additive excess hazards model are very similar to the ones used for the standard additive hazards

model. Let . The principal basic difference in working with relative survival
consists in replacing the usual counting process N(t) with the modified counting process

. Thus, from the increments of the martingale, we have

which suggests the possibility to estimate the increments β(t)dt by least-squares methods for
multiple linear regression. The increment in  thus gives the observed excess risk compared
with the background mortality, among those under risk, since the martingale increment has
mean zero. In other words, the expected number of deaths equals the expected number of
background deaths plus the expected number of excess mortality deaths. The resulting
estimator is

(3)

where the p × n matrix
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(4)

is the generalized inverse of X(t). Therefore,

is the estimator for the p-dimensional vector of cumulative regression coefficients.

The estimator in (4) can be expressed as

the difference of the standard Aalen estimator [10], , and a predictable
term depending on the known background rate and the observed covariates [11]. The second
term represents the average expected hazard of the population at risk at each observed time,
weighted with the observed covariate values. The Aalen estimator is incremented at each failure
time (where a jump is observed) while it is constant between failures. Note that the estimator
B̂* decreases systematically between failure times because of the Lebesgue integral in the
second term. Consequently, even though the estimator B̂* is well defined by expression (3)
and is an unbiased estimator of the excess mortality, some care has to be taken when
implementing the Lebesgue integration. This aspect is also discussed in the related papers [8,
9,16].

2.2. Properties of the estimators and inferential procedures
We observe that, if the matrix X(t) has full rank for all t,B̂*(t) is an unbiased estimator of B
(t), because the second term in

is a martingale with zero mean. Moreover, using functional forms of the strong law of large
numbers, under certain regularity conditions the following convergence in distribution can be
proved [17]:

where U is a Gaussian martingale with covariance function . An explicit
expression for ϕ(t) can be found elsewhere [17]. These simple properties of the estimator B̂*
are the fundamental elements for inference and are the same as those for the estimator B̂ for
the standard non-parametric additive hazards model, since the asymptotic results are still based
on the martingale M(t). The martingale in the additive excess model differs from the one in the
standard additive model only for the expression of its compensator Λ(t). In fact, a component
of this latter is constrained to be equal to the integrated expected mortality of the population.

Before describing inferential procedures, we present one of the possible estimators for the
variance of B̂*,
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the optional variation process of the martingale  and it is uniformly consistent.
Based on the jth diagonal element Φ̂jj(t) of Φ̂(t), the pointwise confidence interval for Bj(t) is
equivalent to

(5)

where cα/2 is the (1-α/2) quantile of the standard normal distribution. It is useful as a synthetic
estimator but its use for a statistical test about the entire shape of the cumulative regression
coefficients would lead to incorrect conclusions.

The two hypotheses  (or Bj(t)=0) and  (or Bj(t)=λt), for all t in the
range [0, τ], are of interest, each of them verifying, respectively, the assumption of no effect
and the assumption of constant effect of the coefficient βj. Tests are shown directly for the

cumulative regression coefficient Bj(t). For testing the first hypothesis , we consider the
variance weighted test statistics

(6)

based on the resampling approach for the additive Aalen model [18]. T1S has the same

asymptotic distribution as  under the null hypothesis, where Δ1(t) is a
resampling process, which depends only on standard normal random variables, conditional on
the data (Ni(t),Yi(t),Zi(t),Xi(t)) for i =1, . . . ,n. The empirical distribution of the resampling
process can be used to build confidence band for T1S (see Appendix A). The observed test

process can be plotted versus time together with its confidence band. Graphically,  may be
tested by observing whether the zero function, representing the null hypothesis, is contained
within this confidence band.

In order to test the hypothesis , the quantity  may estimate the constant γ in the
null hypothesis. Two possible test statistics are

(7)

Approximate p-values can be obtained by resampling from the process Δ1(t)-Δ1(τ)(t/τ). Note
that these test statistics depend on the selected time interval [0, τ], and therefore different results
may be obtained on smaller time intervals.
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3. THE SEMIPARAMETRIC ADDITIVE EXCESS HAZARDS MODEL
3.1. Model and estimators

The semiparametric additive model is a submodel of the non-parametric additive model where
some effects are allowed to be constant in time. We can specify a semiparametric model for
relative survival with additive hazards

(8)

where X(t) and V(t) are, respectively, a p-dimensional and a q-dimensional covariates, Y(t) is
the risk indicator, β(t) is the p-dimensional time-varying regression coefficient and γ is the q-
dimensional time-invariant coefficient. After having tested whether effects are time varying
or constant in the full additive model (2), the semiparametric additive model (8) could be fitted
to better describe the right form of the regression coefficients. Moreover, the model is simpler
and leads to easier estimators.

The estimators of the cumulative coefficient  and γ can be obtained by least-
squares methods, as for the non-parametric additive model. We consider the same setting as
for the additive excess hazards model (2), where the counting process N(t) is now associated
with the intensity λ(t) modelled by the semiparametric regression in (8). In addition to X(t),
define the matrix V(t)=(Y1(t)V1(t), . . . ,Yn(t)Vn(t))T of dimension n × q. If we consider the
martingale decomposition and the modified counting process , its corresponding
increment can be expressed as

Since the martingale increments dM(t) are uncorrelated and with zero mean, least-squares
methods can be applied. The estimator of γ is

(9)

where the inverse of the matrix H(t)=I-X(t)X-(t) is assumed to exist. Plugging the estimator
γ ̂* into the estimating equation for dB̂*(t), the estimator of B(t) is given as

(10)

This estimator can also be expressed as

depending on the estimated p-dimensional cumulative coefficient,

, and the estimated constant coefficient γ ̂’ in a standard
semiparametric additive hazards model. The estimator γ ̂’ has the same expression of γ ̂* in (9),
except for the presence of N(t) instead of .
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3.2. Properties of the estimators and inferential procedures
Asymptotic properties of the estimators B̂*(t) and γ ̂* are of primary importance in testing
hypotheses about B(t) and γ. Under some regularity conditions, as n→∞, n1/2(γ ̂*-γ) and
n1/2(B̂*-B) converge in distribution to a zero-mean normal and a zero-mean Gaussian process,
respectively.

In order to test the hypothesis of no effect  and the hypothesis about an effect

being time constant , we suggest to use the confidence band for Bj(t) based
on the resampling approach, similar to what was presented in Section 2.2. From the properties
about asymptotic convergence previously described, we obtain the following test statistic for

:

(11)

where Ψ̂jj(t) is the jth diagonal element of Ψ̂(t), a consistent robust estimator of the variance
n1/2(B̂*-B) defined in Appendix A.

Similarly, for the hypothesis  the test statistics

(12)

and their quantiles can be computed by resampling. For more details, see Appendix A.

Graphical comparisons between the observed test process  and the simulated
processes under the null can show times of departure from this last hypothesis.

4. PROPORTIONAL EXCESS HAZARDS MODEL
The proportional excess model proposed by Sasieni [8] models the excess risk on a
multiplicative scale. The statistical model is

(13)

where the p-dimensional regression coefficient β=(β1, . . . ,βp)T is assumed to be time invariant.
In a counting process setting, the intensity λ(t) is associated with the process N(t), with t ∈[0,
τ], τ<∞. Referring to the same definitions of the previous models, we associate the compensated
counting process  with the usual martingale M(t) so that

with Y(t)=(Y1(t), . . .,Yn(t)).
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Solving the unweighted score equations derived from the log likelihood for β and λ0, up to all
the observation period [0, τ], leads to the following estimator for the baseline cumulative excess
hazard:

(14)

with Xi equal to the p-dimensional vector of covariates of subject i. The substitution of this
estimator in the score equation for β yields

(15)

which provides an estimator for the parameter β such that U(β ̂)=0. Setting  for i =
1, . . . ,n, the modified counting process  is equal to Ni and the unweighted estimators are the
solutions to the usual score equations for the Cox model. Properties of the estimators and
conditions under which they are valid can be found in [8].

Note that some difficulties arise in exchanging summation with integration in equation (15),
which depends on both the observed failure times and the observed censoring times, as the
modified counting process  changes at every censoring time, besides at every failure time.

5. GOODNESS OF FIT FOR RELATIVE SURVIVAL MODELS
There is a general lack of accomplished methodology for the regression diagnostics and
assessment of goodness of fit of additive relative survival models. The existing theory is only
sometimes implemented in public software. Some of the parametric models are estimated in
the framework of generalized linear models, thereby enabling the use of standard regression
diagnostics in this area. Recently, in the context of models with multiplicative excess rate, Stare
et al. [15] proposed some diagnostics aimed at detecting time-varying effects of covariates on
the excess risk and based on partial residuals defined similarly to the Schoenfeld residuals for
Cox model, but as already mentioned their procedure relies heavily on the choice of a
smoothing parameter that can be completely avoided by the procedure we suggest here. An
additional problem with [15] is that it does not lead to the correct level even though it, in
practice, tends to work well.

In this section, we propose a very straightforward procedure based on cumulative martingale
residuals for testing goodness of fit of the proportional excess hazards model (13). Our
approach can also be used to assess the fit of the additive hazards excess model, but we here
illustrate the basic idea by looking at the proportional excess hazards model.

In the proportional excess hazards model, we are interested in checking whether the sub-model
for the excess hazard is adequate. More specifically, in order to fulfill this objective, three
aspects would need to be checked: Functional form of covariates, the form of the link function
of the excess hazard, the assumption of proportional hazards. We show how the cumulative
sums of martingale-based residuals [14] can be used to answer these problems.

The partial likelihood score function (15) for parameter β can also be expressed as a functional
of the martingale process Mi(t) associated with individual i:
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where we define E(β, t)=S1(β, t)/S0(β, t) and , with k = 0, 1, 2.
We have ,  and . Xi = (X1i , . . . , Xpi)T is the p-dimensional vector of
covariates of individual i.

The martingale residuals for the proportional excess hazards model are defined as

(16)

where Λ̂0(s) is the estimator in (14). They are defined similarly to the martingale residuals for
the standard proportional hazards model [19]. They verify the basic properties, i.e. their sum
over the individuals is zero and they average to zero asymptotically. The cumulative martingale
residuals are constructed by different partial-sum processes of the martingale residuals M ̂i(t).
Processes can be over follow-up time or covariate values, in order to test, respectively, the
proportional excess hazards assumption or the functional form of covariates and the link
function. Then, tests about these aspects are made by using the processes to compare their
observed behavior with their potential one under the assumption that the model is true.

The functional of the martingale residuals used to test the proportional excess hazards
assumption is based on the observed score process in time, expressed as U(β ̂, t)=Σi XiM ̂i(t).
Using the cumulative martingale residuals Uj(β ̂, t)=Σi XjiM ̂i(t), the proportional excess hazard
assumption may be verified both by graphical plots and by hypothesis tests. A test statistics
for each j (j=1, . . . , p) is given by the supremum of the standardized score process

(17)

where

is a consistent estimator of the variance of the observed score process. This supremum test for
proportionality has the advantage that no specific functional form need to be chosen when
looking for lack of fit of the model for a specific covariate j.

The distribution of n-1/2U(β ̂, t) is asymptotically equivalent to

(18)

where  and G1, . . . ,Gn independent standard normals.
The matrix ĵ(β ̂, t) represents minus the derivative of the score function with respect to β (15).
Then, the asymptotic distribution of n-1/2U(β ̂, t) may be evaluated using a resampling
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procedure, by generating realizations from process (18), which depends only on the random
variables Gi [17]. This is made by repeatedly generating normal random samples {Gi} while
holding the observed {Ni, Yi, Xi} fixed. The null distribution of the test statistics in (17) is then
approximated by these simulations. A graphical test about proportionality may be obtained by
plotting the observed score process U(β ̂, t) over time together with the realizations we have
simulated from process (18) in order to approximate the null distribution of U(β ̂, t). If the
observed score process diverges from the simulated processes under the model, which should
randomly fluctuate around the zero axis, there is evidence of a lacking fit of the proportional
excess hazards model due to the missing proportionality.

The key reasoning about the validity of these cumulative martingale in checking the current
model consists in replacing the counting process N(t) with the modified counting process

 when it is opportune. For more details, see Appendix A. Here, we underline the use of
the estimator Λ̂0 in (14), expressed as a function of . Finally, it is important to note that
process (18) depends directly only on the original counting process Ni(t), but not on , as
the variance of Mi(t) is equal to E(Ni), and therefore can be approximated by GiNi.

Graphical and statistical tests for checking the functional form of covariates and the link
function in the proportional excess hazards model may be carried out very similarly to the ones
proposed by Lin et al. [14] for the proportional hazards model and involve the same
substitutions shown previously in this section. For investigation of the functional form of a
certain covariate j, the tests are based on the cumulative residual process

where I(·) is the indicator function, x ∈R and M ̂i(t) are defined in (16). Resampling methods,
as described previously, provide simulated realizations under the null, which approximate the
asymptotic distribution of the latter process. Therefore, a graphical test is given by plotting the
observed cumulative residuals  versus the continuous covariate with values x, together
with random realizations under the model.

6. APPLICATION TO THE TRACE DATA
6.1. Description of the data

Data from the TRACE study are here illustrated. They provide a typical example of data
exhibiting non-proportional excess hazards with respect to some covariates. The TRACE study
[20], consisted in a cohort of 6676 patients with acute myocardial infarction who were screened
in 27 Danish coronary-care units for entry between May 1990 and July 1992. Information on
all patients survival was available from the Danish national registries. The follow-up period
was from the day of diagnosis and onwards, during which the outcome under study was total
death. The aim of the TRACE study group was to establish which risk factors had a prognostic
importance on mortality of patients with acute myocardial infarction.

The actual data set analyzed in this section consists in a random sample of 1876 patients from
the TRACE data. Models were fitted only in the follow-up period of the first 6 years from
diagnosis, as most of the excess deaths for myocardial infarction occurred inside this time.
Patients still alive after 6 years were considered right-censored. The total number of deaths
after myocardial infarction during the follow-up period was 881, and of these, 221 took place
within the first two months. The time scale was time since prognosis. The background control
population mortality was obtained from the registry StatBank Denmark
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(http:www.statistikbanken.dk) during the 5-year period from 1986 to 1990. Information on the
background mortality rates was collected by gender and age.

In our analysis, only the most relevant prognostic factors are taken into account as an example
for fitting and comparing the different models. The recorded risk factors are age of patients
during the follow-up time, gender (female=1), clinical heart pump failure (CHF)(presence =1),
diabetes (presence=1) and ventricular fibrillation (VF) (presence=1). Some risk factors are
expected to have very strongly time-varying effects, in particular VF. Previous studies [21]
showed that VF was a very important risk factor for death due to myocardial infarction during
the first short time period after diagnosis, but its adverse effect was exhausted approximately
after two months.

6.2. Comparison of models and estimates
In this section, the non-parametric and semiparametric additive excess hazards models
described in Sections 2 and 3 are analyzed on the TRACE data set and compared with the
standard methods actually used for modelling relative survival. The total hazard would be
expressed as the sum of the known background rate of mortality in the control population and
the excess hazard associated with myocardial infarction.

In the first step, the non-parametric additive excess hazards model is applied to the TRACE
data. Successively, we show how possible simplifications of the non-parametric model lead to
the more parsimonious semiparametric hazards model. Excess risk for the TRACE data was
also estimated through the proportional excess hazards model in Section 4.

Age was centered around its mean at the start of the study (defined as a‾0) and considered as
a time-dependent covariate. Results from the non-parametric additive excess hazards model
are presented in Table I and Figure 1. For simulation-based tests, a number equal to 300
resampled processes was used. All covariates in the model had an effect significantly different
from zero, according to the test T1S in (6). Using the supremum test T2S in (7), the effects of
CHF, centered age and VF resulted to be time varying, while the effects of gender and diabetes
turned out to be invariant in time (Table I). The same conclusions hold in case of using the
alternative test statistics T2I. The estimated cumulative regression coefficients B̂*(t) are shown
in Figure 1 for each covariate, together with the 95 per cent pointwise confidence intervals (5)
and the confidence band based on T1S obtained by the resampling technique in Section 2.2.
The regression function estimates β ̂(t) are the slopes of the cumulative estimates. Interpretation
of their patterns is explained later on in this paper.

Particular care needs to be taken in the interpretation of the intercept β0(t) and its behavior in
the model when compared with the horizontal zero line. In our application, the excess intensity
for a male subject without CHF, diabetes and VF is νi(t)=Yi(t)[β0(t)+((a0i+t)-a‾0)β1(t)], where
a0i is the age of subject i at the start of the study. In this case, the intercept needs to be interpreted
together with the additional coefficient β1. The excess base line hazard can then be represented
by νi(t) for a subject with a0i=a‾0. In order to interpret correctly the coefficient β0(t) on its own
as the excess baseline hazard, the time-dependent age a0i+t should be centered with respect to
a‾0+t. Thus, the additional term about age in the excess hazard would be null for a subject with
mean age a‾0+t at every t. In this second case, results from the application (not shown here)
indicated that patients with acute myocardial infarction have an estimated decreasing relative
survival during the whole follow-up period.

From Figure 1 it can be observed that the effects of gender and diabetes on the excess mortality
rate are constant with time, as graphs of their estimated cumulative coefficients are
approximately straight lines. The time invariance of these two covariate effects justifies a
possible simplification of the model by reducing the number of non-parametric components.
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Therefore, the semiparametric additive excess hazards model is also applied to the TRACE
data, where effects of gender and diabetes are assumed to be constant and the remaining
covariate effects are allowed to be time varying.

Results about the semiparametric excess hazards model are presented in Table II. The
assumption of constant effects for gender and diabetes was confirmed by the results in the
right-hand side of Table II. According to the tests T2S and T2I in (12), the remaining covariate
effects were still significantly time varying, as in the previous non-parametric model. This
reduced semiparametric model gives a better fit to the TRACE data, as it is simpler in the
interpretation and able to discriminate between constant and time-varying effects. Moreover,
going from the non-parametric to the semiparametric additive model, comparison of Tables I
and II reveals that values of the supremum and squared tests are almost unchanged. Graphics
about behavior of the estimated time-varying cumulative coefficients were also unchanged
with respect to the non-parametric case, and thus they can be observed from the same Figure
1. Both the constant effects in Table II were significant (p-values<0.001) and positive: For
patients with diabetes the estimated excess mortality rate was 8.3 per cent higher than for
patients without diabetes and this increase was estimated to be constant within the 6 years
follow-up; the female gender was associated with an estimated increased excess mortality rate
of 4.3 per cent. Departure of the effects from the null hypothesis of time invariance may be
observed easily looking at Figure 2, where each observed test process is shown along with 50
resampled processes under the null. The presence of a significant variation within the 6 years
follow-up period is very evident for the VF coefficient: Behavior of its test process in Figure
2 reveals that the effect of VF is very strong initially, and thus the excess mortality rate has a
very high increase within the first two months, but successively the effect seems to disappear
in time. Increasing age had also a strongly time-varying effect, which was very high within
approximately the first eight months. Similarly, the effect of CHF was increasing very fast
initially, after two months it continued to be present but constant until the fourth year, finally
the effect vanished during the last two years of follow-up.

We apply the proportional excess hazards model to the TRACE data, in order to verify whether
the excess hazard associated with myocardial infarction could be described by a proportional
form. The same set of covariates analyzed in the previous models is influencing significantly
the proportional excess hazard by increasing it (Table III). CHF and VF seem to be very
important risk factors in predicting the excess mortality rate due to myocardial infarction, as
for patients with heart pump failure or with VF the excess hazard ratio is about 3.2 and 2.7,
respectively. Nevertheless, these last results could be questionable because they are related to
regression coefficients that are assumed to be invariant in time. If instead effects of CHF and
VF were highly time varying (as it was in the semiparametric additive model), the assumption
of proportional excess hazards would be violated, since it is strictly related to the invariance
of the regression coefficients in the relative risk.

In order to test proportionality of the excess hazards of each covariate in the proportional model
(13), we use the simple non-standardized version of the test statistics (17) based on cumulative
martingale residuals. Results in Table III suggest that only the covariate VF contributes to
violate the assumption of proportionality (p =0.002), whereas the proportional effect of CHF
was correctly verified by the data.

Comparison of the model-based relative survival functions with the corresponding non-
parametric estimated curves, underlines the possible violation of assumptions in the analyzed
models. We considered the semiparametric additive excess hazards models and the
proportional excess hazards model with sex and VF as the only risk factors. In Figure 3, the
four estimated relative survival functions from each model are compared with the
corresponding relative survival curves (relative survival ratios) estimated by using the Kaplan-
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Meier method for the observed and the Hakulinen method [22] for the expected survival. The
choice of the alternative Edered II method [23] for the expected survival does not affect the
final results, as our example concerns a short follow-up period. In panel (a) of Figure 3, it is
observed that the proportional excess hazards model does not fit very well the data of patients
with VF, neither for females nor for males. On the other hand, this model captures well the
difference in relative survival between males and females. The current lack of fit of the
proportional excess hazards model is due to the wrong assumption of proportional excess
hazards for VF, which does not reflect a much higher excess risk of dying soon after admission
in the study for patients with VF. Predictions in panel (b) of Figure 3 describe much better the
excess mortality pattern for the different patients groups, since the presence of a time-varying
coefficient for VF in the semiparametric model allows one to capture changes of the effect of
VF with time.

The evidence of the wrong assumption about the proportionality for the VF effect within the
additive model with excess risk as in (13), was also provided by the statistical and graphical
tests proposed by Stare et al. [15], based on the maximum values of the Brownian bridge
processes. The EM method for smoothed baseline excess hazards was chosen within the R
package relsurv in order to fit the regression model. The effect of VF resulted to be time varying
(maximum value was equal to 3.109 with p<0.001), whereas CHF and all the remaining
covariates had time-constant effects. Therefore, the analyses of goodness of fit based on the
test statistics (17) and on the tests by Stare reached the same conclusions about the TRACE
study, stating that it is solely the covariate VF that ruins the proportional effects. Different
results given by the models presented in this section are essentially due to modelling the excess
risk on different scales, that is, the proportional or the additive scale. The effect for CHF, which
resulted to be time varying when using the latter scale in the additive excess hazards models,
but was time constant in models with the proportional scale, is an example of that.

7. DISCUSSION
The high flexibility of the additive non-parametric and semiparametric models for relative
survival, together with the inferential aspects described in this paper, provides a very important
alternative to the existing methods in this field, and on the other hand, a useful general extension
of the more restrictive recent models. Indeed, the model fitting may fail both because the chosen
link function for the excess hazard (multiplicative or additive function) is inappropriate, and
because the time invariance of the hazard ratio does not hold, besides misspecification of the
functional forms of covariates. The described additive excess hazards models overcome the
critical problem of violating the proportional hazards assumption. The introduction of
covariate-by-time interactions in the parametric relative survival models entails further
assumptions that would need always to be carefully tested, in order to avoid neglecting possible
associations between time-dependent covariates and excess mortality.

The TRACE example demonstrates the need of new flexible survival models for modelling
the excess hazards, which can deal with time-varying dynamics of covariates effects. In this
paper, we showed how the non-parametric and semiparametric versions of the additive excess
hazard can easily handle these dynamics. We demonstrated when one or the other model is
appropriate according to the responses of simulation-based graphical and statistical tests about
variation of effects over time. Even though inferential procedures described here are
complicated in their expressions, when they concern finding equivalent asymptotic
distributions of Gaussian processes, the great advantage is a very easy interpretation of results.
In this connection, the statistical software, e.g. the R packages used in our application and
presented in Appendix B, is an essential instrument.
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The graphical procedures for the additive excess hazards models presented in this paper, have
the advantage of suggesting time points and sub-intervals where variation of the effects occurs
in time with sufficient accuracy, whereas in the graphics about Brownian bridge processes
[15] for the proportional excess models, this information is not clearly provided because of the
implementation of smoothing procedures.

It would be of interest to extend other test methods about time-varying covariate effects and
goodness-of-fit plots from the non-parametric and semiparametric additive hazards model to
the relative survival case. Some starting points could be Aalen [24,25] and Gandy et al. [26].

As for the non-parametric excess additive hazards model, also for the semiparametric model
(8), approximate maximum likelihood estimators can be found, similar to what was done by
McKeague and Sasieni [13] for the semiparametric additive hazards models. They are also
asymptotically efficient in the case of consistent estimates of the weights. For the model by
McKeague and Sasieni [13], there exist also other estimators, improved by their properties of
robustness and consistency, which could be easily extended to the relative survival case when
the replacement of  holds.

In choosing between a proportional or an additive form for the excess hazards, problems about
non-proportionality and large number of covariates under study should always be faced. An
additional crucial problem, which was not studied in this paper, concerns non-positive excess
hazards in relative survival regression models. From a practical point of view, models on some
situations as prevention studies, would need to allow the excess hazards to be negative, assuring
however non-negative observed intensities. As pointed by Zahl [9], the non-parametric additive
excess hazards model overcomes this problem. A proportional excess hazards model cannot
be used in the case of negative excess intensities; however, it is still possible to consider an
eventual excess intensity equal to zero [8].

Our suggestions about checking goodness of fit of the proportional excess hazards model and
the additive excess models play an important role in a good model selection. An advantage of
the supremum test described in Section 5 is that no specific deviations from proportionality
need to be explicitly expressed. The drawback is, however, that the model is assumed to be
correct with respect to all the other covariates when the proportionality assumption is
investigated for a specific covariate. Nevertheless, this is a general problem faced also by the
existing methods for goodness of fit of regression survival models. Then, important features
of the data may be overlooked, and we might be unable to individuate where a possible lack
of proportionality occurs during the follow-up time.

For these reasons, models that allow accommodating time-varying covariate effects are very
interesting extensions to be considered in the relative survival scenario. In this paper, we studied
such an extension for models with additive excess hazards and presented the usefulness of
some inferential procedures about time-varying coefficients. A natural and important case to
investigate, following the same lines of study presented here, would be allowing the presence
of both time-varying and constant regression coefficients within the proportional excess
hazards model (13).
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Appendix

APPENDIX A

A.1. Inferential procedures for the non-parametric and semiparametric
excess hazards models

In order to explain the test statistics T1S, T2S and T2I within the non-parametric additive hazards
model, we consider the process

which, conditional on the data (Ni(t), Yi(t), Zi(t), Xi(t)) for i = 1, . . . ,n and under some regularity
conditions, has the same limit distribution as n1/2(B̂*(t)-B(t)). The random variables Gi, for i
= 1, . . . ,n, are independent and standard normal distributed and

with

Moreover

is a consistent estimator of the asymptotic variance of n1/2(B̂*(t)-B(t)).

Within the semiparametric additive hazards model, the test statistics T1S, T2S and T2I are
evaluated on the basis of the simple process Δ3(t). From the properties about asymptotic
convergence and martingale theory, it follows that

with G1, . . . ,Gn independent standard normal, has the same asymptotic distribution as
n1/2(B̂*-B). The variance of this latter is consistently estimated by,

with
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Vectors C1 and P(t) are predictable functions of the matrices V and X- and they are defined as

The estimates M ̂i(t) of martingale residuals are

A.2. Cumulative martingale residuals
In the process (18), Ĵ(β, t), i.e. the estimator minus the average of the derivative of the score
function U(β) with respect to β, needs to be a function of  and it is evaluated as

APPENDIX B
We show the basic R code concerning the application of the models presented in this paper to
the TRACE data. The R package timereg can be downloaded at
http://staff.pubhealth.ku.dk/∼ts/timereg.html.

The data set is called TR and it is structured with multiple observations for each patient in order
to fulfill the conditions for studying time-dependent variables. The function aalen.test fits both
the non-parametric and semiparametric additive excess hazards models presented in Sections
2 and 3. Commands for the former model are

library(timereg);

dummy<-rnorm(nrow(TR));

fit1 <-aalen.test(Surv(start,stop,status>=7) ∼ CHF+agec+sex+diabetes+VF+ +const
(dummy),data=TR,n.sim=300,max.time=6,offsets=TR$rate,id=TR$id,fix.gam=1);
summary(fit1)

In this example, the Surv(start,stop,...) setting is used for the time-dependent covariate agec,
estimates are unweighted and summary of the output shows the tests T1S for non-significant
effects and the tests T2S and T2I for time-invariant effects. The offset TR$rate is the vector of
expected mortality rates from the Danish population. The option fix.gam needs to be set equal
to one in case of the non-parametric model. Further options are explained in the R help.

The following code:
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plot.aalen(fit1,pointwise.ci=2,sim.ci=1)

provides graphics about the behavior of the cumulative regression coefficients B(t). The
arguments pointwise.ci ≥1 and sim.ci ≥1 show, respectively, the 95 per cent confidence
intervals and the confidence bands based on 50 simulated processes under the null hypothesis.

The semiparametric additive excess hazard is given by

fit2 <- aalen.test(Surv(start,stop,status>=7) ∼ CHF+agec+const(sex)+ +const(diabetes)
+VF, data=TR,n.sim=300,max.time=6,offsets=TR$rate,id=TR$id);

summary(fit2);

plot.aalen(fit2,ylab=“Test process”,score=T)

The last plot, with the argument score, yields graphics about the observed processes used for
computing T2S and T2I with 50 random realizations under the null hypothesis. Further options
about plot.aalen are explained in the R help.

The function pe.sasieni fits the proportional excess hazards model described in Section 4 as
follows:

fit3 <- pe.sasieni(Surv(start,stop,status>=7) ∼ CHF+agec+sex+diabetes+VF,
+data=TR,offsets=TR$rate,id=TR$id,max.time=6);

summary(fit3)

The summary provides statistics about the regression coefficients and tests for non-significant
effects. The non-standardized version of the test for the hypothesis of proportionality of the
hazards, based on cumulative martingale residuals and presented in Section 5, is also given in
the summary.
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Figure 1.
Estimated cumulative regression coefficients for the non-parametric additive hazards model,
together with 95 per cent confidence intervals (dashed lines) and confidence bands based on
50 simulated processes under the null (solid lines).

Cortese and Scheike Page 20

Stat Med. Author manuscript; available in PMC 2009 September 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Semiparametric additive excess hazards model: Observed test process for each covariate, along
with 50 simulated processes under the null hypothesis of time-invariant effects.
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Figure 3.
(a) Comparison between relative survival predictions based on the proportional excess hazards
model (dashed lines) and non-parametric relative survival estimates based on the Kaplan-Meier
and Hakulinen methods (solid lines) by sex and VF. (b) Comparison between relative survival
predictions based on the semiparametric excess hazards model (dashed lines) and non-
parametric relative survival estimates based on the Kaplan-Meier and Hakulinen methods
(solid lines) by sex and VF.
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Table III
Proportional excess hazards model: Tests for non-significant effects and 50 simulation-based tests for proportionality
of the relative excess risk

Covariate exp(β) (relative risk) SE(β) 95 Per cent CI for
relative risk p-Value

Test for non-significant effects

CHF 3.158 0.130 (2.436-4.056) <0.001

Age 1.046 0.005 (1.035-1.057) <0.001

Sex (female=1) 1.689 0.117 (1.342-2.125) <0.001

Diabetes 1.998 0.120 (1.579-2.529) <0.001

VF 2.718 0.131 (2.109-3.522) <0.001

Covariate j Test-statistics supt |Uj(t)| p-Value

Test for proportionality of the excess hazard

CHF 12.7 0.418

Agec 163.0 0.826

Sex (female=1) 22.1 0.176

Diabetes 19.4 0.086

VF 29.2 0.002
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