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Spectrally resolved bioluminescence optical tomography is an approach to recover images of, for
example, Luciferase activity within a volume using multiwavelength emission data from internal
bioluminescence sources. The underlying problem of uniqueness associated with nonspectrally
resolved intensity-based bioluminescence tomography is demonstrated and it is shown that using a
non-negative constraint inverse algorithm, an accurate solution for the source distribution can be
calculated from the measured data. Reconstructed images of bioluminescence are presented using
both simulated complex and heterogeneous small animal models as well as real multiwavelength
data from a tissue-simulating phantom. The location of the internal bioluminescence source using
experimental data is obtained with 0.5 mm accuracy and it is shown that small �2.5 mm diameter�
sources of up to 12.5 mm deep, within a complex mouse model, can be resolved accurately using
a single view data collection strategy. Finally, using the reciprocity approach for image reconstruc-
tion, a dramatic improvement in computational time is shown without loss to image accuracy with
both experimental and simulated data, potentially reducing computing time from
402 to 3.75 h. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2982138�
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I. INTRODUCTION

Theoretical and instrumentation developments have led to
the widespread implementation of bioluminescence imaging
in cancer research, enabling a significant advance in the abil-
ity of investigators to track tumour cell growth and death in
vivo.1 Tumor metastases studies have been completed with
luciferase imaging, showing tumor cell invasion, which oth-
erwise could not be observed.2 As these advanced imaging
and prognostic measuring tools progress, it is important to
seek improvements in imaging methodology, image recon-
struction, and computational speed, in order to accurately
visualize and quantify the bioluminescence signals in vivo in
a linear and unbiased manner. These improvements allow
gains in fundamental insight about tumor growth, regression,
immune response, and the overall response to new therapies.
Specifically it would be desirable to develop fast and accu-
rate three-dimensional �3D� image recovery methods which
provide anatomically accurate and spatially invariant volu-
metric images of bioluminescence activity in vivo. This study
provides analysis of a new algorithm for bioluminescence
tomography with robust accuracy and improved speed of
computation.

Recent interest in modeling and reconstruction algorithms
for bioluminescence tomography �BLT� has increased3–5 and
led to the general consensus that nonspectrally resolved
intensity-based BLT measurements result in a nonunique
solution.6,7 This specifically implies that using measurements

of bioluminescence activity at a single wavelength can lead
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to multiple solutions of internal bioluminescence source dis-
tribution. However, the light emitted from bioluminescence
sources, such as firefly Luciferase, is widely distributed over
the band of wavelengths from 500 to 650 nm and above.
When not attenuated, it produces a peak emission near
560 nm, but when detected from within an animal appears to
have an “effective” peak emission closer to 600 nm with
measurable light as much as 50 nm above and below this
peak.1 Using spectrally resolved detection schemes it is pos-
sible to measure the emission at the surface of the tissue in
discrete steps of 10 nm ranging from 550 to 650 nm, al-
though for deeper sources, strong optical absorption of tissue
at the shorter wavelengths might preclude accurate measure-
ments with adequate signal to noise.

To date, all reported reconstruction algorithms have either
used a priori information to constrain the solution and keep
the computation time low,5,6 or analytical solutions which
limit the problem to a homogenous tissue volume with regu-
lar shapes.4,8 More specifically it has been shown that using
a model based on homogeneous analytical solutions of pho-
ton propagation, the accuracy of the image reconstruction of
bioluminescence sources decreases dramatically when the
domain being imaged is heterogeneous.8 However, there
have been theoretical proposals and experimental setups that
aim to reconstruct not only the distribution of biolumines-
cence source, but also the underlying tissue absorption and
scatter simultaneously.9–11 Additionally, it has been shown
that using a single-perspective view, it is possible to recon-

struct images of internal bioluminescence distribution with
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depth accuracy of less than 1 mm and a maximum of 20%
error in reconstructed intensity.4 Methods have also been de-
veloped that incorporate multilevel adaptive finite element
algorithms, whereby the discretized volume mesh is adap-
tively refined to improve both the robust performance and
efficiency of the reconstruction algorithms and these have
been shown to improve localization accuracy.12

There is a need to derive and construct a robust method
that can accurately model light propagation in heterogeneous
and complex tissue, using for example in this work, the finite
element method �FEM�. Additionally, reconstruction algo-
rithms will need to be further advanced to overcome the need
for spatial a priori information, by the use of spectral data,
while at the same time reducing the computation time to
provide accurate reconstructed images in reasonable time
limit. This article demonstrates the development of a 3D al-
gorithm used for multiwavelength 3D BLT image reconstruc-
tion using experimental and simulated data. The reciprocity
approach, similar to that used in diffuse optical tomography13

�DOT� and fluorescence DOT,14 is presented and applied to
the BLT source distribution problem. It is shown that accu-
rate images can be obtained using a fast linear reconstruction
algorithm without the use of a priori information.

II. THEORY

II.A. The forward model

Assuming that the photon propagation through tissue is
dominated by scatter, the diffusion approximation �DA� to
the radiative transport equation is widely accepted as being
accurate to model transport of light through tissue.13 Assum-
ing a continuous wave system, the DA is given as

− � · ��r� � ��r� + �a�r���r� = B�r� , �1�

where B�r� is a bioluminescence source at location r, ��r� is
the photon fluence rate, �=1 /3��a+�s�� is the diffusion co-
efficient, and �a and �s� are absorption and reduced scatter-
ing �or transport scattering� coefficients, respectively.

The air-tissue boundary is an important aspect of accurate
modeling of light propagation and is represented in this case
by an index-mismatched type III condition, in which the flu-
ence at the external boundary of the tissue exits but does not
return.15,16 The flux leaving the external boundary is equal to
the fluence rate at the boundary weighted by a factor that
accounts for the internal reflection of light back into the tis-
sue

���� + 2An̂ · ���� � ���� = 0, �2�

where � is a point on the external boundary and A depends
upon the relative refractive index mismatch between the tis-
sue domain and air derived from Fresnel’s law.

II.A.1. Linearity

The solution to Eq. �1� is linear with respect to its right-
hand side, B�r�. Therefore given multiple source distribu-
tions one can either calculate the fluence due to each source

individually and then sum the solution, or calculate the flu-
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ence due to all source distributions simultaneously, as shown
in Fig. 1. The fluence rate data ��r� can therefore be repre-
sented by an operator, which is linear in terms of the biolu-
minescence source, B�r�. Thus, taking advantage of the lin-
earity of the model, a set of independent basis solutions for
the source can be created

B = �
i=1

N

aibi, �3�

where the coefficients ai are the weight functions for mul-
tiple unit sources bi at each node i in the model containing a
total number of nodes N. This structure can be represented in
matrix form as B=ab.

II.B. The inverse model

II.B.1. Unknown bioluminescence distribution

Assuming that the underlying optical properties at appro-
priate wavelengths are known, the goal of the inverse prob-
lem is recovery of the unknown bioluminescence source at
each point within the volume using measurements of biolu-
minescence light fluence from the tissue surface. This inver-
sion can be achieved using a modified Levenberg–Tikhonov
minimization

� = B
min�y − F�B�r��� , �4�

where y is the measured bioluminescence boundary data, and
F�B�r�� is the calculated boundary data based on Eq. �1�.
Substituting the matrix expression of Eq. �3� into Eq. �4� and
solving for the weight function coefficients, a, in a least
squares manner, results in a single step linear expression

a = WT�WWT + �I�−1y , �5�

where W is a sensitivity matrix containing the solution of Eq.
�1� for all possible source positions N and y is the measured
boundary flux. Here, � is a regularization parameter and I is
the identity matrix. Although the Hessian matrix, WWT, is
invertible, the use of � becomes necessary in the presence of

FIG. 1. The top row shows three different bioluminescence sources plus
their combination, while the bottom row shows the calculated fluence due to
each source distribution.
noise in the data.
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II.B.2. Unknown bioluminescence and optical
property distribution

In the common case, where the underlying optical prop-
erties of the volume being imaged are unknown, Eq. �4� can
be modified to

� = �,�a,B
min �y − F���r�,�a�r�,B�r��� , �6�

where the solution must be optimized with respect to the
optical properties as well as the unknown bioluminescence
source distribution. This can be achieved using a two-step
approach, whereby the unknown distribution of the optical
properties can be calculated using a nonlinear spectral image
reconstruction algorithm, as demonstrated for Fluorescence
Imaging.17 Using this approach, once the problem has been
optimized for the unknown optical properties at each wave-
length, Eq. �5� is then used, as a single step optimization to
solve for the unknown bioluminescence sources.

II.B.3. Uniqueness

It has been shown theoretically and is generally accepted
that the use of single wavelength bioluminescence data for

FIG. 2. �a� and �b� represent the circular 2D model with 64 detectors place
nescence distributions, resulting in identical calculated boundary data as plo

FIG. 3. The spectral response of �a�, tissue absorption as a function of tissue

a dilute sample.
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source reconstruction is a nonunique problem.3,7 Consider
the example shown in Fig. 2, which is a two-dimensional
�2D� circular model with background optical properties of
�a=0.01 mm−1 and �s�=1.0 mm−1. Two different biolumi-
nescence source distributions in this model produce identical
boundary data for 64 equally spaced detectors on the external
boundary, Fig. 2�c�. From this example, it is evident that
using bioluminescence measurements at a single wavelength
will lead to a nonunique problem and therefore multiple pos-
sible solutions of the bioluminescence source distribution.
However, it has been shown that the use of multiwavelength
data, measured from the same domain containing the same
bioluminescence distribution, over a range of usable wave-
lengths can overcome this nonuniqueness issue,3 since the
measured optical signal is a function of the underlying tissue
spectral signature �due to chromophore and scattering param-
eters� as well as the spectral signature of the biolumines-
cence source emission, Fig. 3.

Instead of using data from a single wavelength, multi-
wavelength BLT combines data sets over a range of usable
wavelengths such that Eq. �5� becomes

und the periphery �arrows with only 8 shown� with two different biolumi-
in �c�. The two lines of data are indistinguishable.

mophores and, �b�, the measured Luciferase �bioluminescence� emission in
d aro
tted
chro
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a = W̃T�W̃W̃T + �I�−1ỹ , �7�

where W̃= �W�1 ;W�2 ;W�3 ; ¯ ;W�n� is a matrix composed of
cascaded weight matrices of all n wavelengths and ỹ
= �y�1 ;y�2 ;y�3 ; ¯ ;y�n� contains the corresponding mea-
sured boundary data for each wavelength. The solution a, is
then a vector corresponding to the number of unknowns �N�
that define the bioluminescence source distribution.

II.C. The sensitivity matrix

The sensitivity matrices, W, in Eqs. �5� and �7� are matri-
ces that relate the change in measured boundary data, due to
changes in bioluminescence source activity at each point
within the domain

Wj,i = �
d1,1 d1,2 d1,3 ¯ d1,i

d2,1 �

d3,1 �

] �

dj,1 dj,2 dj,3 ¯ dj,i

� , �8�

where Wj,i is the sensitivity at detector j due to a biolumi-
nescence source at node i. Each element essentially is the
detector reading dj,i if node i alone was the only biolumi-
nescence source within the domain.

II.C.1. Direct „perturbation… approach

The sensitivity matrix can be calculated using a direct
approach, whereby the source intensity at each node of the
model is perturbed by a small amount and the resulting
boundary data are recorded. This process needs to be re-
peated for each node, at each wavelength to provide the full
set of weight matrices required for image reconstruction as
outlined above. The pseudo algorithm for the calculation of
the weight matrices using this method can be stated as:
Repeat, for each wavelength �

Repeat, for each node i within the model, where
i=1: N

Set the bioluminescence source, Bi=1
Solve Eq. (1) subject to boundary condition in

Eq. (2) to obtain ��r�

FIG. 4. Circular 2D model with �a� heterogeneous optical properties ��a sh
source S1, and �c� source S2 �color bars show logarithm of the fluence in �
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Extract detector reading dj for each
detector j

Set Wji���=dj.

Using this method, assuming a 2D model with 2000
nodes, 64 boundary measurements at 6 wavelengths, would
equate to 12 000 �2000 nodes�6 wavelengths� forward
model simulations.

II.C.2. Reciprocity approach

As derived and shown by Arridge et al.,18 the reciprocity
principle can be stated as:

The measurement of flux at detector j that is due to a
source at node i is equal to the measurement of the photon
density at node i that is attributed to a source at detector j,
provided that the source is created by the application of ap-
propriate adjoint operator P

Pij = − �n̂�	i� · ��i, �9�

if boundary node � j belongs to an element containing
nodes on the external boundary, otherwise Pij =0.

Consider the model shown in Fig. 4 which is a 2D het-
erogeneous model with varying optical properties. Using the
basic principles of reciprocity, it can easily be shown that the
detector reading at S2 �Fig. 4�b�� due to an external source at
S1 is equal to a detector reading at S1 �Fig. 4�c�� when S2 is
the source. The same principle can be extended to the biolu-
minescence problem as demonstrated in Fig. 5. In this case, a
single bioluminescence source is modeled in the location as
shown by the white cross in Fig. 5�a� and 64 boundary mea-
surements are calculated, Fig. 5�b�. Additionally, using the
reciprocity theorem, each detector is then modeled as a bi-
oluminescence source and the corresponding photon density
is calculated at the location of the original bioluminescence
source and plotted. As evident, the calculated data are iden-
tical showing the validity of the reciprocity theorem, in this
case, for a nonuniform model.

Using the reciprocity approach, the weight matrices can
be calculated for all nodes simultaneously, for each detector
position, at each required wavelength. The pseudoalgorithm
for the calculation of the weight matrices using this method

in the color bar� with the corresponding internal fluence calculated for �b�
d �c��.
own
b� an
can be stated as:
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Repeat, for each wavelength �

Repeat, for each detector j
Set the “adjoint” bioluminescence

source at the detector nodes=1
Solve Eq. (1) subject to boundary

condition in Eq. (2) to obtain ��r�
Set Wji���=��i�.

Using this method, assuming a 2D model with 2000
nodes, 64 boundary measurements at 6 wavelengths, would
equate to 384 �64 detectors�6 wavelengths� forward model
simulations.

II.D. Non-negativity

Image reconstruction in bioluminescence tomography us-
ing spectral data, as defined by Eq. �7�, is a nonconstrained
least squares solution to obtain the bioluminescence source
distribution within a volume of interest. However, the non-
constrained least squares method does not ensure a unique
solution to eliminate the reconstruction of negative sources
within the medium. Consider, for example, the case pre-
sented in Fig. 6�a�, where a 2D model of soft tissue contain-
ing 20 �mol of blood at 75% oxygen saturation with 60%
water fraction and scattering amplitude and power of 1 con-
tains a 15 mm diameter bioluminescence source distribution.
Boundary data using 64 equally distributed detectors at the
external boundary were simulated using Eq. �1� for six wave-
lengths between 600 and 650 nm with 10 nm separation. As-

FIG. 5. �a� Circular 2D model with the same optical properties as shown in
Fig. 4, with 64 detectors placed around the periphery �arrows, only 8 shown�
and one bioluminescence source �white cross�, �b� fluence rate calculated at
the 64 detectors due to the bioluminescence source �black solid line� as well
as the fluence rate at the source location �white cross� when each detector on
the periphery acts as a source �red cross�.

FIG. 6. �a� Circular 2D model with spectral properties of 20 �mol blood
content at 75% oxygen saturation of 60% water saturation, scattering am-
plitude and power of 1, and bioluminescence source distribution as shown.
In �b� the reconstructed bioluminescence source are shown using 64 bound-
ary measurements at 6 wavelengths without non-negativity constraints, and

shown again produced with non-negativity constraints �c�.
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suming correct knowledge of the background optical proper-
ties, images of bioluminescence were reconstructed using
Eq. �7� without any constraints on the solution using a regu-
larization factor of �=10−5�maximum of diagonal of the
Hessian matrix �WWT�, Fig. 6�b�. As is evident, although the
reconstructed images of the bioluminescence distribution ap-
pear qualitatively accurate, the distribution of the source
strength is weak and contains negative solutions. Given that
negative sources cannot physically exist, there is a need to
apply non-negativity constraints to the least squares solution
in Eq. �7�.

An iterative algorithm using the non-negativity least
squares �NNLS� method as described by Lawson and
Hanson19 has been implemented such that Eq. �7� now be-
come

a = W̃T�W̃W̃T + �I�−1ỹ, subject to a 
 0. �10�

This algorithm, simply aims to minimize �ỹ−aW̃� subject
to a
0. To demonstrate the effectiveness of the NNLS
method, the same data used for image reconstruction shown
in Fig. 6�b� was used with Eq. �10� to produce the image
shown in Fig. 6�c�. Using the NNLS method, it is evident
that the reconstructed solution is both quantitatively and
qualitatively more accurate, as compared to the noncon-
strained method, and is therefore essential for accurate image
reconstruction in bioluminescence tomography.

III. PHANTOM STUDIES

A set of experimental data was used to demonstrate and
validate the modeling and image reconstruction algorithms
outlined above. Measurements were recorded for a single
bioluminescence source placed within an otherwise uniform
cylindrical phantom of 50.8 mm diameter and 50 mm height.
The phantom was filled with a solution of 0.2% Intralipid
and 0.2% oxygenated blood. The bioluminescent source was
a 50:50 mixture of 165 microMolar ATP solution with Lu-
ciferase reagent solution solubolized in 1 ml distilled water
�CLS II Kit, Roche Diagnostics, Inc.�. The solution was held
in a plastic cylinder of diameter 5 mm, placed 7 mm inside
the edge of the phantom at the 3 o’clock position. Sixteen
equally spaced measurements around the periphery were col-
lected sequentially using a 1 mm silica fiber bundle leading
to a single line of 200 �m fibers entering a spectrometer
�Acton SpectraPro 2300i spectrometer with 300 l /mm grat-
ing blazed at 750 nm wavelength� coupled to a cooled
change coupled device �CCD� �Princeton Instruments
Spec-10 XTE CCD�. Integration time was 15 min per sample
and a fresh sample was used for each detector location to
avoid the effect of source decay. The measured spectrum of
the bioluminescence source at each measurement point was
then normalized using an un-attenuated measured emission
spectrum from a dilute sample, Fig. 3�b�.

In order to image and calculate the spectral optical prop-
erties of the phantom, multiwavelength measurements at
661, 761, 785, 808, 826, and 849 nm were taken using a
multiwavelength frequency domain instrumentation system20
which collects amplitude and phase measurements of near-
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infrared light. Data were collected using 16 equally spaced
fibers around the midpoint of the cylindrical phantom, giving
rise to 480 �240 amplitude and 240 phase� measurements at
each wavelength. Images of chromophore concentration �oxy
and deoxy-hemoglobin, water content� and scattering prop-
erties �scatter amplitude and power� were reconstructed,
Table I, using a spectrally constrained reconstruction algo-
rithm which calculates all parameters, simultaneously, using
data at all wavelengths.21

An image of the bioluminescence source distribution was
calculated using the methods outlined above. Specifically the
measured and imaged concentration of chromophore and
scattering properties were used to obtain the wavelength spe-
cific absorption and reduced scattering properties at 600,
610, 620, 630, and 640 nm. Using these parameters as back-
ground optical properties, an image of bioluminescence
source distribution was calculated using Eq. �10�, were the
weight matrix for each wavelength is calculated using the
reciprocity approach. The mesh used for image reconstruc-
tion was a cylindrical model of 50.8 mm diameter, 50 mm
height consisting of 27 999 nodes corresponding to 145 835
linear tetrahedral elements, Fig. 7�a�. Although the Hessian

matrix W̃W̃T in Eq. �10� is well conditioned and invertible,
the use of � became necessary in the presence of noise in the
data. In this work, �=10−5�maximum of the diagonal of the
Hessian.

IV. SIMULATION STUDIES

A 3D model of the MOBY mouse,22 Fig. 8�a�, was used to
further investigate the efficiency and accuracy of the reci-
procity approach in small animal imaging. Specifically, the
MOBY mouse was used to generate a heterogeneous model
of the small animal, containing seven distinct regions of
varying optical properties �Fig. 8�b� and Table II�. The 3D
FEM forward model contained 80 917 nodes corresponding
to 415 824 linear tetrahedral elements and a total of 750

TABLE I. Chromophore and scattering properties measured and calculated
for the blood phantom used in experimental study, using spectral measure-
ments between 661 and 849 nm.

Total
hemoglobin

Oxygen
saturation

Water
content

Scatter
amplitude

Scatter
power

4.8 ��M� 96% 83% 0.154 1.89

FIG. 7. �a� 3D cylindrical mesh used for image reconstruction using experi-
mental data. In �b� the axial and �c� the coronal cross sections through the

reconstructed bioluminescence source image.
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detector positions �1 mm separation� were uniformly distrib-
uted in a grid along the top-most surface of the animal
model, Fig. 8�c�.

A number of single bioluminescence sources were placed
within the heterogeneous mouse model, exactly at half dis-
tance plane within the measurement grid as shown in Fig.
8�c�. In each case, the sources �arbitrary strength of 10� were
placed at depths of 15, 12.5, 10, 7.5, or 5 mm from the top
surface of the model �as shown in Fig. 9� with a radius of
2.5 mm. Fluence due to the bioluminescence source through-
out the model was calculated for each individual case at a
total of six wavelengths, ranging from 600 to 650 nm in
steps of 10 nm. For image reconstruction, boundary data
�amplitude� were extracted from the calculated fluence, at the
top-most surface of the model, as indicated in Fig. 8�c�. A
mesh of the same model but different resolution consisting of
80 299 nodes corresponding to 414 960 linear tetrahedral el-
ements was used to avoid the inverse crime. Images of the
bioluminescence source distribution were reconstructed for
each case �Fig. 9� using the methods described above, and
data from a total of six wavelengths, ranging from
600 to 650 nm in steps of 10 nm. 1% randomly distributed
noise was added to the amplitude data.

V. RESULTS

Cross sections of reconstructed 3D BLT images of the
cylindrical phantom are shown in Figs. 7�b� and 7�c�. The
use of multiwavelength data and the reciprocity approach,
with the non-negativity constraint, has accurately estimated
the size and location of the internal bioluminescence source

FIG. 8. �a� Model of the MOBY mouse used to generate a �b� heterogeneous
model based on seven regions �Table II� and �c� the FEM mesh used to
generate simulated data. The shaded square indicates the position of 750
detector reading on 1 mm grid separation, with the solid black line indicat-
ing the plane at which sources where modeled at varying depths.
at approximately 7.5 mm from the edge with a full width at



4869 Dehghani, Davis, and Pogue: Spectrally resolved bioluminescence tomography using the reciprocity approach 4869
half maximum of 8 mm, despite the relatively coarse spatial
sampling of the emission spectrum. The computation time
for each weight matrix was 42 s �2.6 s per each of 16 detec-
tors� using a dual Xeon 3.4 GHz workstation with 8 GBytes
RAM, leading to a total computation time of 210 s. As a
comparison, calculating the weight matrices using the direct
method, leads to approximately 73 000 s per weight matrix
�2.6 s for each node�, leading to a total computation time of
approximately 101 h.

TABLE II. The seven regions of anatomy used with
mophore concentrations and scattering properties use
scattering center size and number density and may
cellular, organelle, and structural sizes/densities.

Region name
�No.�

Total
hemoglobin

�mM�

Oxyge
saturatio

�%�

Adipose �1� 0.0033 70
Bones �2� 0.049 80
Muscles �3� 0.07 80
Spleen/liver �4� 0.3 75
Stomach �5� 0.01 70
Lungs �6� 0.15 85
Kidneys �7� 0.056 75

Source depth Target Reconstruction
10 5.5(mm)

5

0 0
10 8

7.5

0 0
10 9

10

0 0
10 4.5

12.5

0 0
10 1.5

15

0 0

FIG. 9. Cross sectional images of the true and reconstructed biolumines-
cence source distribution for the MOBY model. Note the color bar scales at

right vary with each reconstruction.
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Using a simulated mouse model, images of single biolu-
minescence sources at varying depths from the tissue surface
have been reconstructed using noise-added simulated data
�Fig. 9�. As is evident from the images, the size and location
of the sources have been successfully reconstructed using the
proposed reciprocity approach and the non-negativity con-
straint. The accuracy of the reconstructed source size,
strength, and location appears dependent on the depth of the
source. The source is reconstructed within 1 mm for both
location and size for sources at depths of up to 12.5 mm,
with the best quantitative accuracy seen for a depth of
10 mm. The reconstructed source location at 15 mm is
2.5 mm shallower than expected and exhibits a much weaker
strength at only 15% of the true value. The computation time
for each weight matrix for this model was 2250 s �3 s per
each of 750 detectors� using a dual Xeon 3.4 GHz worksta-
tion with 8 GBytes RAM, leading to a total computation time
of 13 500 s for all six wavelengths. As a comparison, calcu-
lating the weight matrices using the direct method takes ap-
proximately 241 000 s per weight matrix �3 s for each node
of the mesh used for reconstruction�, leading to a total com-
putation time of approximately 402 h.

VI. DISCUSSIONS

The principle of nonuniqueness in BLT has been shown
using a simple 2D model �Fig. 2� demonstrating that there
exist multiple solutions of internal bioluminescence sources
that would give rise to identical measured boundary data.
However, using spectral data at discrete wavelengths over
the emission range of the bioluminescence source, it is
shown that an accurate image of the internal source distribu-
tion can be recovered. However, given a set of boundary
data, image reconstruction without appropriately applied
constraints can lead to inaccurate and negative solutions
�Fig. 6�. It is shown that adapting the method of NNLS to the
BLT problem, it is possible to set a lower and nonnegative
bound to the calculated solutions. The applications of such
constraints are critical in BLT to avoid recovering nonphysi-
cal negative source values. Although the NNLS algorithm
used is an iterative algorithm, it is always guaranteed to con-

19

MOBY mouse model, Fig. 8, together with chro-
th the scattering power and amplitude depend on the
ct variations in tissue composition due to different

Water
concentration

�%�
Scatter

amplitude
Scatter
power

50 0.98 0.53
15 1.4 1.47
50 0.14 2.82
70 0.45 1.05
80 0.97 0.97
85 1.7 0.53
80 1.23 1.51
in the
d. Bo
refle

n
n

verge to a solution.
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The concept of reciprocity, as defined and introduced in
DOT by Arridge et al.,18 has been extended and adapted for
BLT and shown to provide accurate solutions to the weight
matrices used for image reconstruction. The use of the reci-
procity approach has been shown to reduce the computation
time of each weight matrix at each wavelength by reducing
the matrix calculation from total number of unknowns to
total number of measurements �Fig. 5�. As an example, as-
suming a 3D model containing 30 000 unknowns and 1000
measurements at six discrete wavelengths, the total number
of models that need to be solved for the computation of all
weight matrices at all wavelengths can be reduced from
180 000 to 6000, without loss of accuracy.

The accuracy and speed of the proposed algorithm are
demonstrated and validated in 3D using experimentally mea-
sured data and shown to reconstruct the location of an inter-
nal bioluminescence source within 0.5 mm accuracy. The re-
construction algorithm used is based on the NNLS and the
reciprocity approach, and provided non-negative solutions at
a reconstruction time of 210 s as compared to 101 h without
the use of the reciprocity approach. The method has also
been applied in a complex, nonhomogeneous mouse model
�Fig. 8� further demonstrating the computational efficiency
of the proposed algorithm and the capability of single-view
imaging to recover bioluminescence sources at depths up to
15 mm �Fig. 9�. The accuracy of the reconstructed source
strength appears to be both a function of source depth and
background optical properties. Previous studies have shown
that using a single-view measurements from a homogeneous
model, sources of up to 10 mm can be recovered with the
accuracy decreasing for deeper sources.4 Another similar
study has shown that although the location of sources can be
recovered at 15 mm, the reconstructed source strength accu-
racy decreases for sources deeper than approximately
12 mm.8 The use of more appropriate and spatially varying
regularization parameters may help improve the quantitative
accuracy, as demonstrated in optical tomography.23

VII. CONCLUSIONS

In this work, the modeling and linear single step non-
negativity constrained image reconstruction algorithm for
spectral resolved BLT is presented which demonstrates
unique BLT image recovery from experimental multiwave-
length data. Multiwavelength emission is shown to provide a
means of estimating the depth of a luminescence object, due
to the wavelength dependent attenuation of tissue. Novel al-
gorithms for the calculation of the weight matrices used in
image reconstruction are presented, based on the reciprocity
approach, and shown to provide solutions which are accurate
compared to the conventionally used perturbation approach.

Images generated from both noisy simulated data and
measured experimental data have been presented based on
the defined models and algorithms. It is shown that in small
animal imaging, the use of single view data collection geom-
etries are able to provide reconstructed images that are accu-
rate in depth recovery for objects within 12.5 mm of the

tissue surface, whereas the source strength accuracy varies as
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a function of depth and background optical properties. How-
ever, it has already been demonstrated that the reconstructed
images of bioluminescence are linear with respect to the
original target source strength which is important when using
the magnitude of the bioluminescence intensity to quantify
physiological function, disease progression or response to
intervention.3

Certain challenges remain which are the subject of further
study, including the incorporation of more accurate numeri-
cal models based on the radiative transport equation24,25

which are more accurate in small animal domains and near
visible wavelengths. Although the application of the pre-
sented reciprocity theory should be valid regardless of the
forward model, these should be validated, specifically when
concerned with the implementation of appropriate boundary
conditions that dictates the behavior of light propagation at
the air/tissue interface. Additionally, the design and improve-
ment of instrumentation will allow the simultaneous detec-
tion of the bioluminescence spectrum with optimum signal to
noise to allow faster data acquisition time. Although the dis-
cussion of the work presented here is limited to Luciferase,
the presented theory and image reconstruction algorithm can
be used for other light emitting sources.
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