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Abstract
We recently reported a β3-decapeptide, βWWI-1, that binds a validated gp41 model in vitro and
inhibits gp41-mediated fusion in cell culture. Here we report six analogs of βWWI-1 containing a
variety of non-natural side chains in place of the central tryptophan of the WWI-epitope. These
analogs were compared on the basis of both gp41 affinity in vitro and fusion inibition in live, HIV-
infected cells. One new β3-peptide, βWXI-a, offers a significantly improved CC50/EC50 ratio in the
live cell assay.

Linear peptides derived from the C-terminus of HIV-1 gp41 (C-peptides) are potent HIV fusion
inhibitors1. These molecules bind to the gp41 N-peptide region and inhibit an intramolecular
protein-protein interaction that drives fusion of viral and host cell membranes2–4. Previous
work has shown that the protein-protein interface consists of a highly conserved pocket on the
N-peptide surface that is occupied by three C-peptide side chains: Trp-628, Trp-631 and
Ile-6353–5. These three residues comprise the WWI epitope3–5. Simple6–9 and
constrained10–13 α-peptides, aromatic foldamers14, peptide-small molecule conjugates15, and
small molecules16, 17 that bind this N-peptide surface pocket inhibit gp41-mediated cell fusion
with IC50 values ranging from 250 pM for α-peptides to 5 μM for small molecules. We
previously reported a set of β3-decapeptides that present a WWI epitope on one face of a salt
bridge18–21 and macrodipole-stabilized22 14-helix23, 24. One of these molecules, βWWI-1,
binds a validated gp41 model in vitro and inhibits gp41-mediated fusion in cell culture25. Past
work by Chan and co-workers6 demonstrated the importance of the three epitope residues,
particularly the central tryptophan, in both gp41 affinity and viral infectivity. Here we report
six analogs of βWWI-1 containing a variety of nonnatural side chains in place of the central
tryptophan of the WWI-epitope. These analogs were compared on the basis of both gp41
affinity in vitro and fusion inibition in live, HIV-infected cells. One new β3-peptide, βWXI-a,
offers a significantly improved CC50/EC50 ratio in the live cell assay.

We synthesized a small collection of β3-decapeptides (βWXI-a—f) containing a variety of
nonnatural side chains in place of the central tryptophan of the WWI-epitope (Figure 1). These
nonnatural residues included those with both entended or alternative π-systems (βWXI-b,d)
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and halogen-substituted aromatic rings (βWXI-a,c,e,f) to probe the steric and electronic
requirements of the N-peptide surface pocket in the context of a β3-peptide. βWWI-1, a
previously described β-peptide HIV fusion inhibitor25, was synthesized as a positive control.

Each β-peptide was labeled at the N-terminus with 6-(fluorescein-5(6)-carboxamido) hexanoic
acid N-hydroxy-succinimidyl ester (Flu) and employed in a direct fluorescence polarization
(FP) assay to determine its affinity for IQN17, a fusion protein containing 17-residues from
the gp41 N-terminus joined to a 29 residue isoleucine zipper10. IQN17 exists as a stable trimer
in solution10 and effectively recreates the N-peptide surface pocket for C-peptide-like ligands.
β-peptides βWXI-a-fFlu bound IQN17 with equilibrium dissociation constants between 12.1
μM (βWXI-d) and 105.4 mM (βWXI-b) (Table 1, Figure 1A). With the exception of pyridyl-
containing βWXI-b, all new β-peptides bound IQN17 about as well as βWWI-1 (KD = 16.5 ±
0.6 μM). These results are significant if not surprising, given the loss off affinity that typically
results from altering the central tryptophan residue6, 25.

All seven β-peptides were evaluated for the ability to promote cell survival in an MTT
colorimetric assay26, 27. In this method, MT-2 human T-cells are plated with varying
concentrations of β-peptide inhibitor and cultured with wild-type HIV-1 IIIB28–30. After 5
days incubation, the number of live cells that remain is determined by addition of (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT is reduced in the
mitochondria of live cells to formazan (λmax = 595 nm) and quantified by UV. The EC50 values
reported represent the β-peptide concentration required to achieve 50% survival of infected
cells (Figure 2; Table 1).

The EC50 values of β-peptides βWXI-a through f vary between 8.2 μM (βWXI-d) and > 250
μM (βWXI-b). With the exception of βWXI-b, which is inactive (EC50> 250 μM), all of the
new β-peptides (8.2 μM ≤ EC50 ≤ 19 μM) are more potent than βWWI-1 (EC50 = 56 μM) at
promoting the survival of HIV-infected cells. Interestingly, two of the most potent new β-
peptides (βWXI-c and f) share little structural similarity, with halogen substituents at para-
and ortho- positions, respectively. βWXI-a and e, with EC50 = 18–19 μM, share a fluorine-
containing substituent at the meta position of the phenyl side chain.

We also compared the new β-peptides in terms of cytotoxicity, determined as the viability of
uninfected cells in the presence of inhibitor alone (Figure S1, Table 1). The CC50 values
reported represent the β-peptide concentration required to inhibit MT-2 cell growth by 50%.
CC50 values range from 31 μM (βWXI-f) to > 250 μM (βWXI-b), with a value of 100 μM for
βWWI-1. Interestingly, although βWXI-d and f are characterized by the lowest EC50 values,
each was cytotoxic at concentrations close to this value, with CC50/EC50 ratios less than 4.
Importantly, one new β-peptide, βWXI-a, exhibits an CC50/EC50 ratio of 8, representing a
significant improvement relative to βWXI-1 as well as βWXI-c-f.

The ability of βWXI-a to bind IQN17 and inhibit fusion in the MTT assay may be partially
rationalized by a simple model in which the indole side chain of the central tryptophan is
replaced by the central aromatic side chains of our β-peptides (Figure 3). A crystal structure
of the gp41 fusion peptide solved by Sia et. al.11 depicts the epitope-containing β-peptide
C14linkmid bound to IQN17 and clearly shows association between the indole side chain and
the N-peptide surface pocket. Substitution of the Trp indole ring of C14linkmid with the m-
trifluoromethylphenyl side chain in βWXI-a suggests that the trifluoro-methylbenzene side
chain is a reasonable structural mimic of the indole ring, whereas the 3-pyridyl side chain is
not. Although βWXI-a is not as potent as Fuzeon in the MTT assay (EC50 = 37.5 nM), it has
a significantly lower mass (1457 Da vs. 4492 for Fuzeon), and higher metabolic and proteolytic
stablity31–35. Furthermore, due to the ability of the 14-helical scaffold to tolerate changes to
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the epitope face, it may be possible to identify β3-peptides with further improved activity and
decreased toxicity through combinatorial optimization36, 37.
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Figure 1.
Helical net representations of βWWI-125 and βWXI-a—f. β3-homoamino acids are identified
by the single letter code used for the corresponding α-amino acid. O represents ornithine.
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Figure 2.
Plots illustrating survival of HIV-infected MT-2 cells in the presence of the indicated β-peptide.
EC50 values reported represent the β-peptide concentration required to achieve 50% survival
of infected cells; CC50 values represent the concentration required to achieve 50% survival of
uninfected cells. Viability was measured with an MTT colorimetric assay26, 27 as described in
the text.

Bautista et al. Page 6

Bioorg Med Chem Lett. Author manuscript; available in PMC 2010 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Models representing the interface between the N-peptide surface pocket (grey) and the central
epitope residue of βWWI-1, βWXI-a and βWXI-b. Models were constructed using the
programs Spartan (Wavefunction, Inc.) and PyMOL (DeLano Scientific, LLC) and the high-
resolution structure10 1gzl of the α-peptide C14linkmid bound to IQN17.
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Table 1
Binding affinity and MTT assay results for peptides βWWI-1 and βWXI-a-f.

Peptide KD
a (μM) EC50

b (μM) CC50
c (μM) Selectivity (CC50/EC50)

βWWI-1 16.5 ± 0.6 56 ± 5.9 100 ± 19.6 1.8

βWXI-a 10.2 ± 0.3 19 ± 1.7 150 ± 3.3 7.9

βWXI-b 104.5 ± 8.2 > 250 > 250 N/Ad

βWXI-c 14.1 ± 2.3 8.9 ± 1.3 23 ± 4.6 2.6

βWXI-d 12.2 ± 0.9 8.2 ± 5.0 23 ± 5.9 2.8

βWXI-e 15.7 ± 1.3 18 ± 3.7 50 ± 4.5 2.8

βWXI-f 13.3 ± 1.4 8.8 ± 7.4 31 ± 9.1 3.5

a
For 50% binding of IQN17; binding curves were measured in triplicate.

b
For 50% protection in MT-2 cells; antiviral curves used triplicate samples at each concentration.

c
For 50% inhibition of MT-2 cell growth; toxicity curves also used triplicate samples.

d
Not active.
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