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Abstract
Does incremental reinforcement learning influence recognition memory judgments? We examined
this question by subtly altering the relative validity or availability of feedback in order to differentially
reinforce old or new recognition judgments. Experiment 1 probabilistically and incorrectly indicated
that either misses or false alarms were correct in the context of feedback that was otherwise accurate.
Experiment 2 selectively withheld feedback for either misses or false alarms in the context of
feedback that was otherwise present. Both manipulations caused prominent shifts of recognition
memory decision criteria that remained for considerable periods even after feedback was altogether
removed. Overall, these data demonstrate that incremental reinforcement learning mechanisms
influence the degree of caution participants exercise when evaluating explicit memories.
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Recognition criteria are hypothetical standards by which memory evidence is categorized as
either sufficient or inadequate to warrant a judgment of prior encounter (viz. “old”) (Macmillan
& Creelman, 1991) (see Figure 1). Although most memory researchers assume criteria are
adaptive, there are few models of learning that might support such adaptability (however see
Estes & Maddox 1995; Unkelbach, 2006) and to date, the vast majority of successful
manipulations of memory decision criteria have involved explicit instructions given to
observers about the relative preponderance of old and new items (Hirshman, 1998; Rotello et
al., 2005; Strack & Foerster, 1995), or explicit warnings to avoid either errors of omission or
commission (Azimian-Faridani & Wilding, 2006). These instructed criterion shifts are
sometimes augmented with clear descriptions of monetary losses and gains attached to different
response outcomes (payoff matrices) (Van Zandt, 2000) but in all of these cases observers
consciously attempt to comply with instructions given their understanding of test list
regularities or characteristics. What remains unclear is whether the decision criterion can adapt
without an explicit or controlled strategy.

One candidate mechanism we propose that might enable adaptive positioning of criterion is
incremental reinforcement learning, which is central for learning category distinctions in other
non-recognition domains (e.g., Gluck & Bower, 1988; Poldrack et al., 2005). Such learning
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requires integrating trial-by-trial feedback outcomes and gradual re-mapping of different
decisions onto different stimulus feature or feature combinations as a function of probabilistic
reward likelihood (for reviews see Ashby & Maddox, 2005). Two category learning paradigms
having this characteristic are information integration and probabilistic classification tasks.
During both, the relationship between key stimulus features and appropriate decisions cannot
be reduced to a simple explicit, verbalizable strategy because observers must classify the items
based on complex combinations of multiple feature dimensions (e.g., a nonlinear combination
of thickness and orientation of sinusoidal gratings), or because feedback is rendered
probabilistically such that making the same judgment for a given repeated stimulus does not
guarantee receiving the same feedback outcome on every trial (see also Ashby & O’Brien,
2007). Neuropsychological findings suggest that learning during these tasks heavily relies upon
the integrity of the striatum, a basal ganglia structure linked to implicit procedural and habit
learning (Knowlton et al., 1996; Saint-Cyr et al., 1988).

Although feedback-based changes in criteria have been frequently examined in perceptual
judgments tasks (e.g., Dorfman & Biderman, 1971; Thomas, 1973), there are fundamental
differences between perceptual classification tasks and the regulation of episodic recognition
judgments. More specifically, in feedback-based category learning tasks it is assumed that the
mapping between object features and category decisions are incrementally altered via trial-by-
trial feedback learning. However, during episodic recognition tests the perceptual and semantic
features of the probes are not diagnostic of the required categorical distinction, since the
memory status of the probes, and the types of features each possesses, are orthogonal. Instead,
incremental reinforcement learning, if successful, must alter the mapping between levels of
retrieved memory evidence and recognition decisions and this represents a level of abstraction
not found during perceptual classification learning. Additionally, observers cannot learn a
reinforced response to each individual test item, because the items within a memory test are
never repeated.

Perhaps consistent with the notable differences between episodic recognition and perceptual
classification demands, evidence for the efficacy of feedback regulation of recognition criteria
has been decidedly mixed. For example, studies by Estes and Maddox (1995), and Healy and
Kubovy (1977) both failed to demonstrate criterion shifts during recognition paradigms that
manipulated the base rates of studied items in conjunction with trial-based feedback
procedures, although similar procedures easily produced shifts in their perceptual classification
tasks. In contrast, Rhodes and Jacoby (2007) manipulated the relative item probabilities across
two screen locations and found that in conjunction with trial-based feedback, subjects
demonstrated different recognition criteria for the two locations. However, the criterion shifts
were only prominent for observers explicitly aware of the location manipulation of target
density, and the removal of the feedback greatly reduced the criterion difference. Critically,
neither explicit awareness nor continued presence of the feedback reinforcement should be
necessary if incremental reinforcement learning governed the effects. Using a different
procedure, Verde and Rotello (2007) demonstrated an acquired criterion shift for separate
halves of a test list containing well versus poorly encoded study items intermixed with lures.
This design also used trial-based feedback, in addition to halting the test and providing
performance summaries during testing. Although these researchers did not examine observer
awareness of the test list characteristics, it is possible that the feedback and particularly the
performance summaries may have explicitly alerted subjects to the fact that the well- and
poorly-encoded study items were not distributed evenly across test halves. In total, although
these designs importantly demonstrated criterion flexibility during the course of testing, they
point towards a mechanism based on explicit awareness of test list regularities. Additionally,
they confound a manipulation of the test list characteristics with the presence of trial-based
feedback, which necessarily precludes assigning an exclusive role to the processing of feedback
in the observed criterion shifts.
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Despite the limited support for an incremental reinforcement learning mechanism governing
episodic recognition, recognition decisions arguably share important similarities to feedback-
based classification learning tasks. First, episodic information is often assumed to be
multidimensional (Johnson et al., 1993; Yonelinas, 1994) such that the category “old” may
depend upon complex combinations of different trace attributes in ways difficult to capture in
a simple explicit response strategy. Second, under most measurement models of recognition,
any decision criterion for responding will only yield positive feedback probabilistically because
the evidence evoked by old and new items overlaps and cannot be fully separated by a simple
criterion boundary (Macmillan & Creelman, 1991) (Figure 1). These two characteristics
suggest that recognition judgments might be influenced by the same learning mechanisms
shown to govern classification learning in information-integration and/or probabilistic
classification tasks, provided such mechanisms are sensitive to abstract mnemonic evidence
representations.

One study suggesting such a mechanism underlying learned criterion shifts was Han and
Dobbins (2008), which used systematically misleading feedback in order to shift the relative
criteria of two recognition groups. During the procedure, one group was given false positive
feedback for errors of commission (false alarms) whilst the other was given false positive
feedback for errors of omission (misses). All other feedback was correct. This design isolates
any criterion shift solely to the nature of the feedback since the actual structure of the test lists
remained equivalent across the groups. The manipulation shifted the relative criteria of the
groups and this difference remained even when feedback became fully correct in the second
test block of the design, suggesting a durable form of learning (cf. Rhodes & Jacoby 2007).
Additionally, the majority of subjects did not report any perceived anomalies in the feedback
itself post-test.

Although suggestive of incremental reinforcement learning, there were potential drawbacks to
Han and Dobbins (2008). First, the feedback was fully deterministic in that every error of a
particular kind received the false positive feedback. For example, in the condition designed to
instill a lax criterion, all false alarms were incorrectly cued as correct responses. This meant
that no “old” response ever received a negative feedback outcome for this group. Such
deterministic feedback procedures are known to shift learning towards explicit rule use and
away from incremental reinforcement learning, with probabilistic versus deterministic
feedback conditions potentially engaging different neural learning systems (e.g., Frank &
Kong, 2008; Mehta & Williams, 2002; Robinson et al., 1980). Second, the design relied
exclusively upon false positive feedback in order to shift the criteria. This approach was chosen
because it was assumed that subjects would be uncertain during the commission of errors and
hence the manipulation of the feedback validity would be difficult to detect. Nonetheless, this
also potentially weds the manipulation exclusively to surprising event outcomes. Although the
reinforcement literature suggests this may be particularly useful for learning, as it should evoke
considerable “positive prediction error” (Schultz, 2000), it may also increase the likelihood of
explicit awareness of the manipulation. Finally, the design of Han and Dobbins (2008) failed
to demonstrate that the criterion shifts survived complete removal of the feedback. Since a
hallmark of successful incremental reinforcement learning is the perseverance of decision
tendencies in the absence of any form of external reinforcement (e.g., Cincotta & Seger,
2007), it is critical to demonstrate that the acquired memory criterion shifts remain for some
notable period absent feedback. Thus the goal of the current study was to examine whether
feedback based memory criterion shifts demonstrated three key properties consistent with
incremental reinforcement learning processes, namely; a) sensitivity to probabilistic feedback
contingencies, b) not solely dependent upon surprising false positive outcomes, and c)
persistence in the complete absence of supporting feedback.
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GENERAL METHODS
Participants

Sixty-four Duke undergraduates (30 in Experiment 1; 34 in Experiment 2) participated in return
for partial course credit. Informed consent was obtained as required by the human subjects
review committee of Duke University. Experiment 1 administered a post-experiment
questionnaire asking about the feedback procedures to assess participant awareness of the
manipulation. One participant who correctly believed the feedback to be inaccurate or skewed
was removed from Experiment 1.

Materials and Procedures
In Experiments 1 and 2, four lists of 200 words (average 7.09 letters, 2.34 syllables, with a
Kucera-Francis corpus frequency of 8.85) items (100 studied- and 100 lure-items for each
cycle) were constructed for use in sequential study/test cycles. List and condition assignment
was randomized for each participant. During study, participants rated words on the computer
screen for the number of syllables (“Counting syllables 1/2/3/more than 4”) within a limited
amount of time (2 sec), immediately followed by a forewarned memory test. Participants were
not forewarned that feedback would be present during testing. In each test, studied and lure
items were randomly intermixed and presented serially for self-paced OLD/NEW recognition
judgments. Following the old/new response, the participant rated confidence on a scale of 1–
3 (“Confidence? Unsure =1 2 3= Certain”). Feedback, when given, immediately followed the
confidence report. The key and only manipulation across experiments was the nature of the
feedback.

Probabilistic Biased Feedback Manipulation—In Experiment 1, the validity of the
feedback given to errors was probabilistically altered in order to tacitly encourage lax or strict
responding. More specifically, a random portion of a particular type of error (misses or false-
alarms) was incorrectly reported as “correct”. Participants were correctly informed during
correct responses (hits and correct rejections). Consistent with incremental reinforcement
learning principles, the general expectation was that participants would learn to favor the
decision more often linked to a positive feedback outcome (“correct” feedback indications)
and/or would learn to avoid the response option that more often led to negative outcomes
(“incorrect” feedback indications). The false-feedback manipulation was restricted to errors
since they are typically of low confidence and hence incorrect feedback should not raise
suspicions on the part of the participants. In Experiment 2 the balance of positive/negative
feedback was instead shifted by simply omitting correct, negative feedback for one or the other
class of error (availability manipulation). The analyses employed the detection theoretic
estimate of accuracy, Az (Rotello et al., 2008), and criterion, c.

EXPERIMENT 1 - Criterion learning based on the probabilistic false feedback
The goal of Experiment 1 was to determine if a probabilistic variant of the false-feedback
procedure would induce criterion shifts. Half of the participants were given false positive
feedback “That is CORRECT” for approximately 70 percent of their incorrect “Old”
classifications of new items (false alarms). All other responses received correct feedback. We
refer to this as the Lax condition (L). For the other half of participants, approximately 70 percent
of incorrect “New” classifications of old items (miss) received false positive feedback (S -
Strict condition). Each group received the same manipulation (L or S) on the first two
successive study/test cycles. Following this, two additional study/test cycles were given with
no feedback whatsoever during testing (N - no feedback). This allowed us to assess durability
of criterion learning in the absence of any external reinforcement. Thus there were two groups,
one receiving LLNN feedback conditions and the other SSNN.
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RESULTS & DISCUSSION
Accuracy (Az)—A two-way ANOVA for Az with factors of Group (LLNN or SSNN) and
Test (First, Second, Third or Fourth) yielded no main effect of Group (p > .84) or Test (p > .
09), and no evidence for an interaction between Group and Test (p > .32) suggesting that the
groups displayed similar accuracy during each test (Table 1).

Decision Criteria (c)—ANOVA for decision criteria c with factors of Group and Test
revealed a main effect of Group (F(1,28) = 11.85, p < .01, η2

p = .30) with the SSNN group
demonstrating a more conservative criterion (mean c = .24) than the LLNN group (−.03). There
was no main effect of Test (p > .19) and no evidence for an interaction between Group and
Test (p > .65) suggesting a persistent difference in criterion across the two groups regardless
of test. Pair-wise comparisons of the groups’ criteria during each of the four separate tests were
all significant (t(28) = 2.05, 3.37, 2.57, & 2.48 respectively), although the smallest numerical
difference in criteria across the groups was during Test 1 (Table 1).

The probabilistic nature of current feedback manipulation would have precluded the belief that
a given type of response never resulted in errors, yet a relative shift was nonetheless induced.
Furthermore, the no-feedback condition ruled out interpretations that necessarily rely on the
continued presence of feedback. For example, if the criterion shift represented a trial-to-trial
win-stay strategy (Frank & Kong, 2008) on the part of the participants, removing feedback
should have eliminated the relative criterion differences. Finally, we parsed Tests 1 and 2 into
sub-blocks (cumulative blocks of 40 trials (40, 80, 120, 160 & 200 trials)) to examine the
emergence of the relative shift of criterion c in a finer grained manner within each test. Test 1
yielded a significant interaction (F(4,92) = 2.86, p < .05, η2

p = .11) between Group and
Cumulative Sub-block, reflecting an increasingly larger criterion group difference as the total
amount of false feedback accumulated within the test. The same analysis during Test 2 yielded
a main effect of Group (F(1,23)=7,52, p < .05, η2

p = .25) and no evidence for the interaction
between Group and Sub-block (p = .82) suggesting that the relative difference acquired during
Test 1 had already reached asymptote and was carried largely intact into Test 2. Partially
supporting this conclusion, when the criterion measures for each group were compared across
the tests the SSNN group showed no difference between Tests 1 and 2 (p > .96), although the
LLNN group did show a more liberal criterion in Test 2 versus Test 1 (t(14) = 2.48, p < .05).
Overall, these findings suggest that some continued learning may take place across Tests1 and
2, but that the vast majority of criterion learning has occurred prior to the conclusion of Test
1, as indicated by a failure to find a Group by Cumulative Sub-block interaction in the second
test. These findings are consistent with an incrementally learned recognition decision
tendency1.

EXPERIMENT 2 - Criterion learning based on net feedback outcomes
Based on the prior findings it could be argued that it was the unexpectedly positive outcomes
of the manipulated feedback trials that are particularly important for the learning (e.g.,
Butterfield & Metcalfe, 2001; Schmidt et al., 1989). While this would not preclude a core role
for incremental reinforcement learning, it should nonetheless be possible to demonstrate
adaptive criteria whenever the balance of positive to negative reinforcement systematically
favors one decision. Experiment 2 differentially reinforced the judgments by withholding

1Although we do not present the data due to space considerations, individual variability in the number of false feedback trials modulated
the size of induced criterion shifts. For example, a median split of observers receiving high versus low amounts of manipulated feedback
demonstrated that the criterion shift was more prominent for subjects receiving high amounts of manipulated feedback during Experiments
1 and 2. It was not significant when the low subgroups were compared at each test level. Of course this outcome is expected if the feedback
manipulation is the cause of the shift, and variability in the composition of the feedback across subjects is inherent in all designs that use
individual performance feedback to modulate behavior (e.g., Rhodes & Jacoby, 2007).
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feedback for certain types of errors. Thus from the subject’s perspective some small portion
of trials simply failed to elicit feedback. These neutral, uninformative feedback trials should
not reflect unexpectedly positive (or negative) outcomes, but they nonetheless would serve to
shift the balance of reinforcement for the two decision types. For half the participants, the first
two tests selectively encouraged lax responding by eliminating the negative feedback for their
false alarms. All other response types were correctly identified by the feedback (Lax condition).
For the other half of participants, their miss responses received no feedback (Strict condition).
Thus for each group, one response type was associated with positive and negative outcomes
whereas the other was associated with positive and neutral (no feedback) outcomes. Again, all
feedback was eliminated during tests 3 and 4 (LLNN or SSNN).

RESULTS & DISCUSSION
Accuracy—ANOVA for Az with factors of Group and Test yielded a significant main effect
only of Test (F(3,96)=6.29, p<.001, η2

p = .16), with accuracy gradually declining across the
entire experiment. Importantly, there was no interaction between Group and Test (p > .30)
(Table 2).

Decision Criteria—ANOVA for c with factors of Group and Test revealed a main effect of
Group (F(1,32) = 11.20, p < .01, η2

p = .25) (.34 vs. −.05 for SSNN vs. LLNN group,
respectively). There was no main effect of Test (p > .11) or interaction between Group and
Test (p > .07). Pair-wise comparisons of the groups’ criteria at each of the four separate tests
were all significant (t(32) = 2.48, 3.61, 3.50, & 2.43 respectively), although again, the smallest
numerical difference in criteria across the groups was during the first test (Table 2). To our
knowledge, this is the first demonstration that the selective availability of feedback can be used
to guide memory decision criterion placement, or criterion placement in general. Again, a finer
grained analysis by cumulative test sub-blocks revealed a clear interaction within Test 1
between Group and Sub-Block (F(4,112) = 10.98, p < .01, η2

p = .28) suggesting a gradual
acquisition of the learned criterion as withheld feedback accrued. The same analysis during
Test 2 merely approached significance (F(4,116) = 2.40, p = .053, η2

p = .08) suggesting a small
increase in criterion differences as further withheld feedback accrued. When Tests 1 and 2
criterion measures were directly compared for each Group, the differences were not significant
across the tests for either the SSNN Group (p > .26) or the LLNN Group (p > .09). Similar to
Experiment 1, this overall pattern suggests that the bulk of criterion learning occurred during
the initial test, although some small degree of additional learning or relearning may have
occurred during the second test.

General Discussion
A fundamental role for incremental reinforcement learning in episodic memory judgments has
not been suggested in humans (c.f., Wixted and Gaitan (2002) in non-human animals).
Although it is difficult if not impossible to completely rule out a role for explicitly maintained
strategies in criterion shift experiments (Unkelbach, 2006), and using awareness questionnaires
potentially taps only a portion of subject awareness (e.g., Merikle & Reingold, 1991), it is
noteworthy that none of the participants included here reported awareness of the biased nature
of the feedback manipulations. Furthermore, the current findings are quite similar to other
classification learning phenomena that do not require explicit awareness of reward
contingencies for learning. In total, these considerations support the notion that the current
effects do not require participants to formulate explicit, rule-based strategies in reaction to the
biased feedback manipulations, and they clearly demonstrate that no alteration in the test
materials themselves is necessary in order to induce a criterion shift (cf. Rhodes & Jacoby
2007; Verde & Rotello 2007). Instead, an incremental reinforcement learning framework

Han and Dobbins Page 6

Psychon Bull Rev. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



suggests that the current manipulations led to shifted decision preferences based on the relation
of positive/negative outcomes and levels of recognition evidence.

The current data add to early evidence suggesting different routes to regulating episodic
recognition decisions. The first, which has been extensively documented in the recognition
literature, is an explicit strategy on the part of the observers typically formed following overt
warnings or instructions. Furthermore, in those cases where feedback accompanied a detectable
criterion shift for altered lists (e.g., Rhodes & Jacoby 2007), the feedback likely alerted the
subjects to the list manipulation, and thus likely represents a similar strategy to those adopted
by subjects following explicit instructions or warnings about the riskiness of certain responses.
In contrast, the current findings suggest that subjects also appear to develop, through
reinforcement learning, incrementally acquired tendencies that durably change the mapping of
memory evidence types or levels onto decisions. Similar to the acquisition habits in other
domains, these learned criterion shifts may not require subjects to maintain the intention of
responding liberally or conservatively across the multiple trials of the test. Because current
models of episodic recognition judgment typically do not assume two independent or partially
independent decision influences, future work directly contrasting and attempting to doubly
dissociate these putative mechanisms using various methods (i.e., behavioral, functional
neuroimaging, special populations) holds promise for further elucidating the mechanisms that
regulate the translation of memory content into judgments.
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Figure 1.
Example of one-dimensional Signal Detection Theory (1D-SDT) model of item-based memory
decision. The figure illustrates the model of old/new recognition with normal probability
density distributions of familiarity values for old and new items. Accuracy estimate d3 is the
distance between the means of two distributions divided by the standard deviation. ‘C’ denotes
the SDT estimate of bias that is the relative position of “Old/New” decision criterion with
respect to the intersection of two distributions, and ‘HC’ denotes the high confidence criterion.
The decision criterion is the hypothetical standard by which memory information is categorized
as either sufficient or inadequate to warrant a categorical judgment of “old” (Macmillan &
Creelman, 1991). Old items whose evidence falls above the criterion are correctly endorsed
(“hits”) whereas new items with evidence above the criterion yield errors of commission (“false
alarm”). The complimentary proportions below the criterion labeled “correct rejection” and
“miss” respectively.
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