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Abstract
The statistical properties of the cross-correlation between two time series has been studied. An
analytical expression for the cross-correlation function’s variance has been derived. Based on these
results, a statistically robust method has been proposed to detect the existence and determine the
direction of cross-correlation between two time series. The proposed method has been characterized
by computer simulations. Applications to single-molecule fluorescence spectroscopy are discussed.
The results may also find immediate applications in fluorescence correlation spectroscopy (FCS) and
its variants.

1 Introduction
While the range of topics being addressed by optical single-molecule spectroscopy has been
expanding with an astonishing speed,1 several fundamental issues pertaining to the theoretical
basis of data interpretation remain unresolved. Here, we discuss issues related to the objective
assessment of the quality of single-molecule time traces.

In the field of single-molecule spectroscopy, it is common to reject invalid time traces and not
include them in further data analysis. For example, when Förster resonance energy transfer
(FRET) is used to study the time-dependent conformational changes in a macromolecule
(e.g., proteins, DNA, or RNA), a pair of fluorescent donor and acceptor probes is attached to
the molecule of interest to provide distance information. In the case of proteins, however, the
probes are usually linked to the macromolecule non-selectively such that one may have
molecules labeled with two donors, two acceptors, or only a single (donor or acceptor) probe.
Data collected on molecules with any of these configurations will have to be rejected prior to
data analysis lest they adversely impact subsequent interpretation. In diffusion-type
experiments, the alternating-laser excitation scheme has been proposed to help remove these
constructs from the ensemble of molecules.2 In experiments investigating immobilized
molecules, one typically selects single-molecule traces that exhibit anti-correlated donor and
acceptor emission pattern based on visual inspection. For the latter example, selection (and
rejection) of single-molecule traces based on the subjective visual inspection alone can be
ambiguous.

This problem can be illustrated by the following example. Consider a FRET experiment in
which both the donor and the acceptor can be quenched non-specifically via a quencher in the
vicinity of the macromolecule under investigation. The quenching is time dependent because
of the slow conformational fluctuations of the macromolecule. As illustrated in Fig. la, it is
possible that two singly labeled macromolecules co-localize within the same diffraction-
limited detection spot (diameter ~300 nm), where the acceptor-macromolecule is at the center
(better direct excitation and photon collection efficiency) and the donor-macromolecule is at
the edge (reduced excitation and photon collection efficiency). To an experimental observer,
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the FRET intensity trace from this configuration cannot be distinguished from a true donor-
acceptor doubly labeled molecule without further analysis. This difficulty is illustrated in Fig.
1b where the simulated donor (blue line) and acceptor (red line) traces appear as if they indeed
come from FRET; the inset further shows how they can appear to be anti-correlated. One might
think that cross-correlation analysis will help to resolve this problem; yet, without a quantitative
assessment, visual examination combined with inappropriate data presentation can further
exacerbate the problem. Fig. 1c displays a cross-correlation curve for the traces shown in Fig.
1b with log averaging. It appears anti-correlated even though, by construction, the donor and
acceptor signals should be uncorrelated. Therefore, Fig. 1b–c clearly demonstrate the
difficulties of evaluating single-molecule time traces based on visual assessment alone.

This work is intended to provide a practical solution to problems of this nature. More
specifically, one focuses on making an objective and statistically robust statement about the
existence of cross-correlation between two time series and the direction of correlation. An
important criterion for the solution is that it be general, independent of an explicit knowledge
of the distributions of the two time series or their time-dependent variations. This problem is
recast as finding an appropriate test statistic. This work is a continuation of previously
published analysis of the variance of auto-correlation functions, in which correlated
fluctuations within a single time-series are considered.3 The present manuscript is concerned
with correlated fluctuations between two time series, such as those observed in single-molecule
FRET experiments, and aims to provide a much needed evaluation of the variance present in
such cross-correlation functions. While the motivations and applications discussed here
involve FRET-type single-molecule experiments, the proposed solution, Eq. 4, is general and
is expected to be applicable to other areas of research including fluorescence correlation
spectroscopy (FCS), computer dynamics simulations and evolution genomics, to name a few.
The critical region in Eq. 5 is useful for evaluating time series with vanishing auto-correlation
whereas the critical region in Eq. 6 is useful for time series with non-vanishing auto-correlation.
The performance of these tests was characterized using computer simulations and was found
to be satisfactory for practical applications.

2 Basic Considerations
Consider a series of N pairs of experimental observables, {(x1, y1),…, (xN, yN)}, discretely
sampled at a fixed time interval, δt ≡ ti+1 − ti, with xi ≠ yi. One is interested in knowing if x and
y are correlated and, if so, whether they are positively or negatively correlated (anti-correlated).
Conventionally, Pearson’s correlation coefficient, , is used to
assess the correlation between the X and Y variables.4 The major limitation of using the well-
established statistical identifiers such as the Pearson’s coefficient is that they have been
developed based on the assumption that there is no measurement noise. When there is
significant measurement noise—as is usually the case with low-signal experiments such as
single-molecule spectroscopy and imaging—the correlation statistic becomes ill defined,
making it difficult to evaluate the correlation quantitatively. In fact, the distribution of
measurement noise is generally not known and may be difficult to characterize. An alternative
method for the identification of correlated pair observables will be needed. Here, one considers
characterizing the correlation of X and Y by cross-correlation between them. This approach
only requires that the measurement noise is not correlated in time, so that the noise does not
contribute to correlation time lags greater than 0.

Let X denote the stationary stochastic process that generates the observable x. The elements
in {xi} do not have to be independent of each other; therefore, the ensemble-averaged auto-
correlation of the {xi} series is not necessarily zero.

That is,
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where 〈…〉 denotes ensemble averaging and δx ≡ x − 〈x〉. For an event series of finite size (N
« ∞), the ensemble averaging is replaced by sample-averaged expectation value, denoted by E
{…}. For example, the correlation function is approximated by,

where m = |ti − tj|/δt. The above approximation assumes the periodic condition, xi = xi+N. In
practical applications, this assumption allows one to compute correlation functions using the
discrete Fourier transformation. Similarly, the elements in {yi} are considered to be from a
stationary stochastic process, Y. Since the elements in {yi} do not have to be uncorrelated, the
auto-correlation of y is Cyy (|tk − tl|) = 〈δykδyl〉 ≥ 0. The two stochastic processes, X and Y,
do not have to have the same statistical properties. For example, X could be a Gaussian process
whereas Y could be a Poisson processes.

Following a recently developed statistical test for auto-correlation,3 the first step for testing
the existence of cross-correlation in a time series is to derive an expression for the uncertainties
(in the form of variance) in cross-correlation under the condition in which X and Y are
uncorrelated. The X–Y cross-correlation is expressed as,

(1)

where δyi ≡ yi – 〈y〉 and the periodic condition for both X and Y has been assumed. It is important
that the formulation be able to deal with finite-length time series, and that the expression be
general, independent of the underlying distributions in {xi} and {yi}.

3 Uncertainties in Cross-Correlation
To evaluate the statistical significance of a cross-correlation, one starts with a simple case in
which X and Y are assumed to be independent. More general cases dealing with correlated X
and/or Y will be discussed in the next section. One further assumes that the elements in {xi}
are mutually independent; as are the elements in {yi}. These assumptions serve the purpose of
quantifying how the stochastic noise contributes to the resulting cross-correlation. The
statistical uncertainties are evaluated by the variance for the cross-correlation, var{Cxy}.

Following a similar procedure for deriving the variance in auto-correlation,3 the variance for
cross-correlation is,

(2)

Eq. 2 is the first major result of this work (see Appendix A for derivation). Note that, because
of the periodic condition imposed on the calculation, the variance is independent of the index
lag, m. Large-number principles (the Central-Limit Theorem) predict that Cxy should behave
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as a Gaussian random variable, regardless of the distributions underlying {xi} and {yi}. As
expected, its variance, var{Cxy}, scales approximately as N−1/2 for large N. Eq. 2 allows one
to calculate the statistical uncertainties in a cross-correlation from the sample without explicitly
knowing the underlying distributions in X and Y. By comparing the previously developed
expression for variance of an auto-correlation function3 with Eq. 2, it is apparent that the the
functional form of the variance is substantially different for auto- and cross-correlations.

To illustrate the results, Fig. 2 displays the cross-correlation trace between random variables
X and Y. X was sampled from a Gaussian distribution with a probability density function,

, whereas Y was sampled from a Poisson distribution
with a probability function, fp(y) = yλ exp[−λ]/y!. Using these two probability density functions,
a total of 1,000 {(xi, yi)} pairs were generated (Matlab R2006b with Statistics Toolbox, The
Mathworks, Natick, MA) with the following parameters: μx = 10, σx = 20, and λ = 10. The
cross-correlation was calculated using discrete Fourier transformation. Of the 500 index lags
included in the figure, 22 of them (~4.4%) exceed the 95% confidence intervals.

The same trace was averaged on the log10 scale and plotted in Fig. 2b. The log-averaged trace
appears visually pleasing and exhibits an apparent positive correlation with a reasonable decay.
Such an appearance is in fact an artifact arising from the way the plot is prepared. Since there
should be no cross-correlation by construction, Fig. 2b clearly demonstrates another example
showing that visual assessment alone, in particular when combined with log-averaging, can be
greatly misleading when interpreting results of correlation analysis. The next section describes
a rigorous way of evaluating the existence and direction of cross-correlation.

4 Existence and Direction of Cross-Correlation
The problem of testing the existence of cross-correlation and the determination of the
correlation direction is recast as a two-sided statistical test problem. The null hypothesis, H0,
is the case in which there is no cross-correlation. There are two alternative hypotheses, H1 and
H−1, in which the former denotes positive cross-correlation and the latter negative. Since each
Cxy(m) is an average over N pairs of random variable products, δxiδyi+m, Cxy(m) is also a
random variable itself. For large N (typically N > 25, valid under almost all experimental
conditions), the probability distribution for Cxy(m) under the null hypothesis (H0) can be very
well approximated by a Gaussian with zero mean and variance vax{Cxy} (the Central-Limit
Theorem). The probability density function is,

(3)

where  is calculated using Eq. 2. In other words, when there is no cross-
correlation between X and Y, each lag in Cxy(m) can be viewed as a stochastic step of a Brownian
random walker with a mean step size of σxy.

With this understanding, one may formulate a statistical test for the existence of cross-
correlation: The null hypothesis that there is no cross-correlation between two time series of
arbitrary distribution is rejected with a false-positive error rate of α when the test statistic,
ZN, exceeds the critical value cα of confidence level (1 – α):
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(4)

where nt is number of time lags included in the test. Eq. 4 is the second major result of this
work. The critical region can be calculated using

(5)

where Erfc−1(α) is the inverse complementary error function and can be computed numerically.
For example, the confidence intervals for α = 0.31, 0.1, and 0.05 are σxy, 1.64σxy and
1.96σxy, respectively. If the null hypothesis is rejected, the sign of ZN gives the direction of
cross-correlation. As an example, the trace shown in Fig. 2 was found to have a ZN = 0.27 and
was categorized as exhibiting ”no correlation” within 95% false-positive confidence interval.

4.1 Characterization of the Test for Observables with Vanishing Auto-Correlation
The proposed test for the existence of cross-correlation was characterized using computer
simulations. The results are summarized in Table 1. In these simulations, 25 time lags (nt =
25) were used for the test. The results show that the proposed test performs very well, even for
short time series. Increasing the test sample size (greater nt) will decrease the statistical noise
in the test; however, it will also reduce the power of the test. In fact, the general characteristics
of the false-negative rate and the power of the test will depend on the specific type of cross-
correlation in the data. Before turning the discussion to the power of the test, one further
characterizes Eq. (2) and Eq. (4) for cases where there are non-vanishing auto-correlations,
Cxx > 0 and/or Cyy > 0.

4.2 Characterization of the Test for Observables with Non-Vanishing Auto-Correlation
When there is correlation among {xi} (or among {yi}), different time lags in a cross-correlation
function, say Cxy(m) and Cxy(m'), are no longer independent even when X and Y are uncorrelated
(cf. Fig. 3a). These correlations, in turn, will result in increased uncertainties in the cross-
correlation function. In other words, applying the unsealed statistical test in Eq. 4 to such data
streams will result in a greater false-positive rate α than the confidence region c1–α would have
allowed. This point is illustrated in Fig. 3b, which displays the cross-correlation function of
the time series displayed in Fig. 1b on a linear scale without log10 averaging. It also shows
how the fluctuations can be correlated (cf. Fig. 2a for an uncorrelated case), resulting in greater
uncertainties in the cross-correlation.

Currently, an analytical expression to quantify such an increase does not seem to be readily
obtainable for general cases when the form of the autocorrelation functions, Cxx and Cyy, are
unknown. Nevertheless, it is possible to devise an empirical way of correcting for the
correlation-related uncertainties. Following Zwanzig and Ailawadi5 and Schenter et al.,6 the
idea is to rescale the confidence region by taking into account the correlations. When there is
no correlation, the c1–α in Eq. 5 is calculated using Eq. 2. When there is correlation, there will
be fewer number of effectively independent time lags. Assuming that the correlation in Cxx

and Cyy decays with a constant  and , respectively, then the number of independent lags
can be approximated by Neff ≃ N/mτ, where . In an application, mτ can be
obtained empirically from fitting the Cxx and Cyy functions to an exponential model. This idea
leads to the scaled confidence interval for the test in Eq. 4,
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(6)

where  is calculated using Eq. 2 but replacing N with N eff.

The performance of this scaled test was studied using computer simulations, in which both X
and Y exhibit non-vanishing auto-correlation (with a constant of ) but with no
cross-correlation between them. The results are summarized in Table 2. It is clear that the
unsealed critical region, Eq. 5, leads to a much greater false-positive error rate than the
confidence interval α would have indicated. On the other hand, the scaled critical region, Eq.
6, is able to reproduce the expected error rate quite well, especially for larger-size samples,
suggesting the practical usefulness of the proposed test.

5 Power of the Cross-Correlation Test: The Single-Exponential Model
The power of a statistical test (detection power) is the probability of rejecting the null
hypothesis (H0) when the alternative hypothesis (H1 or H−1) is true. For the present problem,
the power will depend on the form of the cross-correlation such as the amplitude and the
relaxation rate, as well as on the conditions used in the test such as the false-positive rate (α)
and the number of time lags used. In order for the test to be practical, it is important to
characterize how the detection power depends on theses parameters. To this end, computer
simulations of FRET traces from a simple two-state jump model are used to examine the
performance. The simulation details are included in Appendix B.

Fig. 4a displays a pair of typical FRET intensity traces from the simulation. The auto-
correlations, Cxx and Cyy, as well as their cross-correlation, Cxy, all exhibit non-vanishing
correlation, as shown in Fig. 4b. The relaxation rate in the auto-correlation gives an mτ ~ 10,

which is in turn used to calculate the  for the test statistic, Eq. 6. The power of the test,
denned as the ratio between the number of simulations with successfully detected cross-
correlation and the total number of simulations (10,000), was calculated as a function of the
signal-to-background ratio (S/B) and the number of time lags in the test (nt/mτ) at various false-
positive rates (α). As shown in Fig. 4c–f, several general observations can be made. It is
apparent that the probability of detecting cross-correlation improves with better signal-to-
background ratio. The detection power appears to be close to unity for test lengths, nt, shorter
than the relaxation length, mτ. Longer test lengths tend to result in degraded detection power;
this is because the correlation will vanish at longer time lags (large m), which in turn will reduce
the numerical value of the test statistic, ZN, through averaging (cf. Eq. 4). Finally, while a
tighter confidence interval (smaller α) guarantees less frequent false-positive identification, it
also decreases the detection power. Overall, these computer simulations indicate that the
proposed quantitative statistical test is very powerful (as a statistical test), and that a reasonable
test length, nt, in the case of non-vanishing auto-correlation can be set to nt = mτ.

6 Case Studies: Applications to Single-Molecule FRET of Polyproline and
Enzyme

Single-molecule fluorescence spectroscopy has recently been used to shed new light on many
biological systems (for recent reviews see1,7,8). While it has the unique ability to monitor the
time-dependent behavior of molecules without ensemble averaging, single-molecule
spectroscopy requires extremely high sensitivity which leads to challenges in data collection
and processing. Namely, these experiments are frequently short, due to photo-degradation of
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the fluorescent probes, and they commonly have a low signal-to-background ratio,
characterized by a large amount of background noise in the raw intensity data. These issues
make a thorough characterization of the contribution of noise to the analysis of single-molecule
data a requirement for an accurate interpretation of results. This section presents two distinct
practical applications of the newly developed statistical test for the existence and direction of
cross-correlation: the elimination of non-ideal FRET trajectories from single-molecule data
sets and the identification of trajectories with significant anti-correlation between emission
from donor and acceptor probes (which signifies the presence of intra-molecular
conformational changes).

6.1 Un-correlated fluctuations in a model compound: Polyproline
A quantitative assessment of the uncertainty in cross-correlation functions is a critical issue
for FRET-based experiments since one is typically comparing the intensity fluctuations
between two short, low signal-to-background ratio intensity-vs.-time traces: one for the
acceptor probe and the other for the donor. Since the intensity of acceptor emission is dependent
on the inverse sixth power of the distance between the donor and acceptor probes, an ideal
FRET experiment should have uncorrelated or anti-correlated intensity fluctuations between
the two observed signals. Deviations from ideal behavior, however, are commonly seen in
single-molecule fluorescence trajectories. For instance, “blinking” of the probes is a major
concern; physically this arises from a transition to a dark state of the probe, commonly a triplet
state or non-emissive isomer.9,10 Blinking of the donor probe in a single-molecule FRET
experiment will also cause a concomitant blinking of the acceptor since energy transfer
pathways between the probes are non-existent if the donor is in a dark state. The experimentalist
needs to remove those trajectories that display blinking from the data set before data analysis,
since such trajectories could lead to erroneous conclusions. If the timescale of blinking is on
the order of seconds this can be accomplished with reasonable accuracy by visual inspection
of intensity traces; however, since the lifetime of the dark state should be exponentially
distributed, visual inspection will miss many more blinking events than it identifies. A single-
molecule FRET trajectory with donor blinking will have positively cross-correlated intensity
fluctuations, distinguishing it from the ideal case in which intensity fluctuations should be
uncorrelated or anti-correlated. Such non-ideal behavior in single-molecule FRET trajectories
can be identified quantitatively using the new statistical test for the existence of cross-
correlation between two time series.

Here, the newly proposed statistical test for the existence of cross-correlation is utilized to
analyze single-molecule FRET data collected on fluorescently labeled polyproline peptides in
order to test for non-ideal positive cross-correlation of intensity fluctuations. Polyproline
peptides have previously been used as a “spectroscopic ruler” to calibrate FRET
experiments11 since they are believed to prefer a relatively rigid left-handed type-two helix.
12 Recently, single-molecule FRET experiments have cast doubt on the accuracy of polyproline
spectroscopic ruler, these deviations from ideal behavior have been attributed to miss-
estimation of persistence length of the proline helix13 and cis-trans isomerization of prolines
residues.14–16 Nevertheless, polyproline peptides remain an important model for the
fundamental understanding of the unfolded state in proteins.17 They are expected to be
relatively rigid on the typical time scales probed by single-molecule FRET experiments,
milliseconds – minutes.15 By contrast, bending of short polyprolines due to thermal
fluctuations should be small in magnitude and relatively fast while cis-trans isomerization is
expected to occur on the time scale of minutes. Thus, one would expect to observe no significant
cross-correlation in intensity fluctuations of single-molecule FRET trajectories when short
polyproline peptides are studied under ideal energy transfer conditions.
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Single-molecule FRET experiments were carried out on a polyproline peptide with the
sequence P15CG3K(biotin), as described previously.14 The donor probe, AlexaFluor 555 C5-
succinimidyl ester (Invitrogen), was attached to the N-terminus of the peptide while the
acceptor probe, AlexaFluor 647 C2-maleimide (Invtrogen), was attached to the cysteine
residue. Labeled peptides were immobilized on a biotin-PEG derivitized quartz cover slip
through biotin-streptavidin chemistry and experiments were performed on a single-molecule
confocal microscope.14 A sample intensity-vs.-time trajectory collected on a labeled
polyproline molecule is displayed in Fig. 5a. All subsequent analysis is concerned with the
region of the trajectory before the acceptor probe photo-bleach in which energy transfer is
occurring. The first step in determining whether the acceptor and donor channel have
significant correlation is to test each individually for significant auto-correlation. This can be
achieved by applying the previously developed statistical test for auto-correlation in a time-
series.3 Intensity auto-correlation functions for donor (blue line) and acceptor (red line) were
calculated by discrete Fourier transform with a bin-size of 1 ms and are plotted in Fig 5b. The
previously developed test statistic for auto-correlation indicates that both correlation functions
in Fig 5b are uncorrelated to 95% confidence3 (Donor: test statistic = 1.8 × 10−3, critical region
= 6.6 × 10−2; Acceptor: test statistic = 2.4 × 10−1, critical region = 3.3 × 10−1). Only the first
nt = 25 time lags from each auto-correlation function were used in the test. Since both time-
series display vanishing auto-correlation, the new test for cross-correlation can be applied
directly. A discrete Fourier transform intensity cross-correlation function with a bin size of 1
ms has been calculated for the trajectory in Fig. 5a and is displayed in Fig. 5c. Applying Eq.
5 to the first nt = 25 time lags in this cross-correlation function gives a test statistic ZN = 4.3 ×
10−2 (Eq. 4) and a critical region with a false-positive rate of 5% of c0.05 = 1.5 · 10−1 (Eq. 5).
Accordingly, this demonstrates to 95% confidence that the trajectory in Fig. 5a has no
significant cross-correlation in the region before the acceptor bleaches for timescales longer
than 1 ms, as expected for a polyproline molecule under ideal energy transfer conditions.

To illustrate the usefulness of cross-correlation analysis in data selection, a non-ideal trajectory
has been displayed and analyzed in Fig. 5d–f. The intensity-vs.-time trajectory in Fig. 5d (5
ms bin size) displays both donor and acceptor “blinking” events (indicated by arrows). While
this trajectory could easily be eliminated by visual inspection, it was chosen to demonstrate
the types of non-ideal photo-physical behavior commonly seen in single-molecule fluorescence
experiments. Auto-correlation analysis of each intensity trace with a 1 ms bin size reveals that
both have significant correlation (Fig. 5e).3 Each auto-correlation was fit to a single exponential
in order to determine the number of independent observations for use in the scaled critical
region (Eq. 6; donor relaxation  time lags, acceptor relaxation  time lags). A
discrete Fourier transform cross-correlation function with a 1 ms bin size is plotted in Fig. 5f.
Error bars have been calculated according to Eq. 2 with N = N eff = N/mt, where

. According to Eq. 4 and Eq. 6, the test statistic ZN = 7.6 while the scaled
critical region with a false positive rate of 5% . Since |ZN| > cα and ZN > 0,
this indicates that the trajectory in 5d is positively correlated to 95% conficdence. Thus, this
single-molecule trajectory could rigorusly be eliminited from further data analysis and
interpretation due to non-ideal photophysical effects of the probes during the FRET
measurements since the interpretation of these blinking events as distance changes which
would result in erronious results.

6.2 Anti-correlated fluctuations due to conformational dynamics: Adenylate Kinase
Correlation function analysis can also play an important role in analysis of single-molecule
FRET trajectories since the technique is frequently employed in systems that are believed to
have time dependent behavior.18–20 The experimentalist is interested in two questions
regarding the time scale of the process under investigation: (1) What is the average rate? (2)
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What is the molecule-to-molecule variation of the rates? Since distance fluctuations lead to
anti-correlated intensity fluctuations in single-molecule experiments, one is now interested in
testing for significant anti-correlation in the intensity fluctuations before the data can be fit to
a model describing the underlying motions, an application for which the statistical test for
cross-correlation is well suited.

As an example, cross-correlation analysis is applied to an Adenylate Kinase (AK) enzyme
undergoing conformational fluctuations. AK serves as a model system for the functional role
of conformational dynamics in enzymes.21 This enzyme’s active site is covered by a lid domain
which undergoes a large amplitude conformational transition from open to closed that has been
proposed to be an elementary step in AK’s reaction mechanism.22 A His6-tagged, dual cysteine
mutant AK was prepared, labeled with AlexaFluor 555/647 C2-maleimide (Invitrogen), and
immobilized on a quartz cover slip as described previously.22 A single-molecule fluorescence
intensity-vs.-time trajectory collected on substrate-free E. Coli AK is presented in Fig 6a. Fig.
6b shows intensity auto-correlation functions calculated for both donor (blue) and acceptor
(red) time series individually with a bin size of 1 ms. Here, both trajectories show significant
auto-correlation to 95% confidence3 (donor: test statistic = 8.6 × 10−2, critical region = 1.3 ×
10−2; acceptor: test statistic = 8.5 × 10−1, critical region = 1.1 × 10−1). In order to calculate the
number of effective independent observations for use in the scaled critical region (Eq. 6), both
auto-correlation functions in Fig. 6b were fit to a single exponential, yielding a donor relaxation
time of  time lags and an acceptor relaxation time of  time lags. A discrete fourier
transform intensity cross-correlation function for the trajectory in Fig. 6a is displayed in Fig.
6c. Error bars are calculated according to Eq. 2 with N = Neff = N/mt, where

. Accordingly, the test statistic for the existence of cross-correlation gives
ZN = −3.2 × 10−1 (Eq. 4) while the scaled 95% confidence region is  (Eq. 6).
Since  and ZN < 0, the trajectory in Fig. 6a displays significant anti-correlation with
95% confidence, as expected for a protein undergoing conformational fluctuations. A fit the
cross-correlation function in Fig. 6c to a single exponential yields a relaxation time for
conformational fluctuations of 18 ms for the trajectory in Fig. 6a. Even though the single-
exponential model is a gross simplification of complicated protein dynamics, it should capture
the basic features of the protein movements. Indeed, the relaxation time simmilar to the the
average interconversion time of 2.9 ± 0.7 ms predicted by the simplified two-state motional-
narrowing model previously used to measure the mean opening and closing rates of AK’s lid
domain.22

7 Concluding Remarks
Analytical expressions have been derived for the variance in a cross-correlation function, based
on which a statistical test has been proposed for the existence and direction of the correlation.
An empirical test has also been proposed for time series with non-vanishing auto-correlation
and verified by computer simulation. This test is general—independent of explicit knowledge
of the processes under investigation—and capable of dealing with a short, low signal-to-
background ratio time series. The new test is particularly useful to the field of single-molecule
spectroscopy, where all of these experimental challenges are frequently encountered. Two
applications to single-molecule FRET have been demonstrated. Cross-correlation function
analysis can be used to identify single-molecule trajectories with non-ideal energy transfer due
to changes in emissive properties in the probes, blinking for instance. Such non-ideal
trajectories are seen in every single-molecule data set and, whether or not it is reported in the
literature, their removal is a critical element of subsequent data analysis. Identification is
frequently accomplished by visual inspection, which tends to be biased to events that occur on
a time scale of seconds and will vary from person to person; thus, a standard, non-biased criteria
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for removal of non-ideal trajectories will allow greater reliability and consistency in single-
molecule data interpretation. Cross-correlation function analysis is also frequently applied to
single-molecule FRET trajectories in order to characterize the time scale at which the process
under investigation is occurring. The newly developed statistical test for the existence of cross-
correlation allows one to rigorously determine whether a significant correlation exists before
subsequent analysis is performed. A frequent finding in single-molecule experiments on
biological systems is that the behavior of individual molecules is often quite heterogeneous.
23 While some molecules may be highly dynamic, others may be relatively static under the
period of investigation. This phenomenon is no doubt due to the complexity in the energy
landscape of bio-molecules and its characterization is one of the motivations for performing
single-molecule experiments. For structure-function dynamics studies, the statistical test for
the existence of cross-correlation could be used to group molecules into classes based on
whether or not they display significant anti-correlated intensity fluctuations. Though
motivations for and applications of the methods described in this article are focused on single-
molecule FRET, they are expected to be widely applicable whenever a cross-correlation must
be analyzed.
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Appendix

A Variance of Cross-Correlation for Observables with Vanishing Auto-
Correlation

In the following derivation, the elements in {xi} are assumed to be mutually independent; that
is,  for i ≠ j. Similarly, {yi} are assumed to be mutually
independent, to give  for i ≠ j. Finally, X and Y are assumed
to be independent, giving . When there is correlation among
{xi} or {yi} or both, the above reduction becomes invalid. The difficulty mainly arises from
such terms as the xkxiyk+myi+m term in Eq. 8 and the , and  terms in
Eq. 10.

The cross-correlation function is defined by,

where m = 0,1,…., N – 1. The variance of the cross-correlation function is evaluated by,

(7)

The first term in Eq. 7 is,
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(8)

The second term in Eq. 7 is,

(9)

The last term in Eq. 7 is,

(10)
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B Simulation Details for a Two-State Stochastic Switching Model
Consider a single molecule stochastically switching from two states, X and Y, following the
reaction scheme,

in which the molecule gives a low FRET signal (greater donor intensity) when it is at the X
state and a high FRET signal (greater acceptor intensity) when it is at the Y state. The rejection
method was used to simulate the switching dynamics. Basically, a random number r between
0 and 1 was generated and compared with kf or kb. For the system staring from the X state, a
jump is said to occur when r < kf (here the time unit is assumed to be 1); otherwise, the system
will stay at the X state. The same procedure was used for the Y → X transition.

The traces in Fig. 1 were generated using kf = kb = 1/20 and a signal-to-background ratio of 2
for both channels. The background is assumed to have, on average, 20 photon counts per time
unit. The actual number of counts was generated using the Poisson random number generator
that comes with the Statistical Toolbox in Matlab. The donor and acceptor traces were
generated separately so that they are independent of each other. The traces in Fig. 4 were
generated in the same way, except that the acceptor trace was generated so that it is exactly
out of phase with respect to the donor trace, mimicking a FRET signal. All simulations were
done using Matlab.
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Figure 1.
Identification of anti-correlated FRET traces based on visual inspection alone can be
misleading, (a) A scenario that can lead to seemingly anti-correlated FRET traces which, in
fact, should be uncorrelated. (b) Simulated intensity time traces for the donor (blue) and the
acceptor (red) appear as if they are anti-correlated. The inset displays a zoom-in for the traces
between the 230–290 index range, (c) A cross-correlation analysis of the donor and acceptor
traces, and presented after log10 averaging—a practice not encouraged. Without a quantitative
assessment, the cross-correlation curve may lead one to believe that the two traces in (b) are
anti-correlated.
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Figure 2.
Comparison of the analytical expression (Eq. 2) for expected variance of Cxy(m) with computer
simulations for independent {xi} and {yi}. The dashed lines denote expected 95% confidence
intervals (~3.9 for this data set). (a) The results plotted on the linear index lag (m) scale, (b)
The trace in (a) averaged over log-m scale.
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Figure 3.
(a) The auto-correlation functions of the donor (Cxx) and the acceptor (Cyy) traces for the traces
shown in Fig. 1b, showing that {xi} and {yi} are not mutually independent within their
respective set. (b) The cross-correlation, Cxy. It is clear that the unscaled confidence region,
c1-α at α = 0.05, does not encompass the cross-correlation function because the different time
lags (m) in Cxy(m) are no longer independent.
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Figure 4.
Power of the statistical test for an exponential model, (a) Typical FRET donor (blue, x) and
acceptor (red, y) traces from computer simulations. (b) Auto-correlations, Cyy (red) and Cxx
(blue), and the cross-correlation, Cxy (dashed-dot), of the data in (a). Panels (c) to (f) displays
the detection power of the statistical test in Eq. 4 and Eq. 6 plotted as a function of signal-to-
background ratio (S/B = 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0) and the test length (nt/mτ).
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Figure 5.
Single-molecule polyproline FRET trajectory and cross-correlation analysis, (a) Intensity-vs.-
time trajectory for a single polyproline molecule binned at 5 ms. Acceptor emission is in red
and donor emission in blue. Photo-degradation of the probes is indicated by arrows, all
subsequent analysis of this trajectory is performed on the region before the acceptor probe
bleaches, (b) Discreet Fourier transform auto-correlation function for donor (CDD, blue) and
acceptor (CAA, red) from the region of the trajectory from a with a bin size of 1 ms. A previously
developed statistical test for the existence of auto-correlation in a time series3 allows us to
determine that neither probe has significant auto-correlation with 95% confidence. Error bars
are plotted to one standatrd deviation.3 Correlation functions have been normalized by their
standard devieations. (c) Discreet Fourier transform cross-correlation (CDA) for the trajectory
in a with a bin size of 1 ms. According to the newly proposed test for the existance of cross-
correlation, the test statistic |ZN| = 4.3 × 10−2 (Eq. 4) while the critical region with a false-
positive rate of 5% is c0.05 = 1.5 × 10−1 (Eq. 5), demonstrating that this trajectory has no
significant cross-correlation to 95% confidence, (d) Intensity-vs.-time trajectory for a single-
molecule displaying non-ideal photo-physics with a 5 ms bin size. Arrows indicate the
”blinking” of each probe, (e) Auto-correlation function for each trajectory in a with a 1 ms bin
size showing significant correlation, (f) Cross-correlation function for the trajectory in a with
a 1 ms bin size. Application of the statistical test for cross-correlation (Eq. 4 and Eq. 6)
demonstrates that this trajectory has significant positive correlation to 95% confidence.
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Figure 6.
Single-molecule FRET trajectory on substrate-free Adenylate Kinase (AK) and cross-
correlation analysis, (a) Intensity-vs.-time trajectory for a single substrate-free AK molecule
binned at 5 ms. Acceptor emission is in red and donor emission in blue. Photo-degradation of
the probes is indicated by arrows, all subsequent analysis of this trajectory is performed on the
region before the acceptor probe bleaches, (b) Discreet Fourier transform auto-correlation
function for donor (CDD, blue) and acceptor (CAA, red) from the region of the trajectory from
panel a before the acceptor probe bleaches with a bin size of 1 ms. Both probes show significant
auto-correlation to 95% conficence.3 Each correlation function was fit to a single-exponential
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decay giving a donor relaxation of  time lags and an acceptor relaxation of  time
lags. Error bars are plotted to one standatrd deviation.3 Correlation functions have been
normalized by their standard devieation. (c) Discreet Fourier transform cross-correlation
(CDA) for the trajectory in panel a with a bin size of 1 ms. According to the newly proposed
test for the existance of cross-correlation, the test statistic ZN = −3.2 × 10−1 (Eq. 4) while the
critical region with a false-positive rate of 5% is  (Eq. 6). Since |ZN| > cα and
ZN < 0, we conclude that this trajectory has significant anti-correlation with 95% confidence.
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Table 1
False-positive rate (probability) for the statistical test of correlation in a time series characterized by computer
simulations. The statistics were obtained from 10,000 simulations of independently identically distributed Gaussian
random variables for X and Poisson random variables for Y. The parameters used to generate the simulated data are
the same as those used to generate Fig. 2.

N = 200 N = 400 N = 800 N = 1600 N = 3200

1 × σxy 0.32 0.32 0.32 0.32 0.31

1.64 × σxy 0.10 0.10 0.10 0.10 0.10

1.96 × σxy 0.05 0.05 0.05 0.05 0.05
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Table 2
Computer-simulation characterization of false-positive rates for the statistical test (Eq. 6) of cross-correlation between
two time series, {xi} and {yi}, both of which have non-vanishing auto-correlations. The statistics were obtained from
10,000 simulations of a two-state model randomly switching between two photon-counting levels; that is, both X and
Y follow Poisson statistics. Numbers in the parentheses are results using the test for uncorrelated observables (Eq. 4).
Simulation details are in Appendix B.

N = 200 N = 400 N = 800 N = 1600 N = 3200

1 × σxy 0.28 (0.72) 0.28 (0.74) 0.31 (0.75) 0.31 (0.75) 0.32 (0.75)

1.64 × σxy 0.08 (0.56) 0.09 (0.58) 0.09 (0.59) 0.10 (0.60) 0.10 (0.60)

1.96 × σxy 0.04 (0.49) 0.05 (0.51) 0.04 (0.52) 0.05 (0.53) 0.05 (0.54)
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