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Abstract
Rationale and Objectives—The Dorfman-Berbaum-Metz (DBM) method has been one of the
most popular methods for analyzing multireader receiver operating characteristic (ROC) studies since
it was proposed in 1992. Despite its popularity, the original procedure has several drawbacks: it is
limited to jackknife accuracy estimates, it is substantially conservative, and it is not based on a
satisfactory conceptual or theoretical model. Recently, solutions to these problems have been
presented in three papers. Our purpose is to summarize and provide an overview of these recent
developments.

Materials and Methods—We present and discuss the recently proposed solutions for the various
drawbacks of the original DBM method.

Results—We compare the solutions in a simulation study and find that they result in improved
performance for the DBM procedure. We also compare the solutions using two real data studies and
find that the modified DBM procedure that incorporates these solutions yields more significant results
and clearer interpretations of the variance component parameters than the original DBM procedure.

Conclusions—We recommend using the modified DBM procedure that incorporates the recent
developments.
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Introduction
There are several different statistical methods for analyzing multireader receiver operating
characteristic (ROC) studies, with the Dorfman-Berbaum-Metz (DBM) method [1–3] being
one of the most frequently used methods. The DBM method involves an analysis of variance
(ANOVA) of pseudovalues computed with the Quenouille-Tukey jackknife [4–6]. The basic
data for the analysis are pseudovalues corresponding to test-reader ROC accuracy measures,
such as the area under the ROC curve (AUC), computed by jackknifing cases separately for
each test-reader combination. Throughout we use the term test to refer to a diagnostic test,
modality, or treatment. A mixed-effects ANOVA is performed on the pseudovalues to test the
null hypothesis that the average accuracy of readers is the same for all of the diagnostic tests
studied. Accuracy can be characterized using any accuracy measure, such as sensitivity,
specificity, area under the ROC curve, partial area under the ROC curve, sensitivity at a fixed
specificity, or specificity at a fixed sensitivity. Furthermore, these measures of accuracy can
be estimated parametrically, semiparametrically or nonparametrically; the DBM method
accuracy estimates are the corresponding jackknife estimates.

Although the DBM method may be the most frequently used analysis method for multireader
ROC studies since it was proposed in 1992, having been used in over 100 published studies
[7], the original procedure has several drawbacks: it requires that the analysis be based on
jackknife accuracy estimates, it is substantially conservative, and it is not based on a satisfactory
conceptual or theoretical model. Recently, solutions to these problems have been presented in
three papers [8–10]. We summarize these recent developments and compare the solutions in a
simulation study and in two examples.

Materials and Methods
Original DBM Method

The DBM method is typically used with the test×reader × case factorial study design where
each case (i.e., patient) undergoes each of several diagnostic tests and the resulting images are
interpreted once by each reader. Throughout this paper, we assume that the data have been
collected using this factorial design. The competing modalities can be compared using the
DBM method; in particular, the null hypothesis of no test effect can be tested and confidence
intervals for test differences can be computed. Results generalize to both the population of
cases and the population of readers. To simplify the narration here, we assume that the outcome
is AUC.

For the original DBM method, AUC pseudovalues are computed using the Quenouille-Tukey
jackknife separately for each test-reader combination as described in Dorfman et al [1]. Let
Yijk denote the AUC pseudovalue for test i, reader j, and case k; by definition Yijk = cθ ̂ij−(c−1)
θ ̂ij(k), where c denotes the number of cases, θ ̂ij denotes the AUC estimate based on all of the
data for the ith test and jth reader, and θ ̂ij(k), denotes the AUC estimate based on the same data
but with data for the kth case removed. Thus, in effect, Yijk represents the contribution of the
kth case to the accuracy estimate for the ith test and jth reader, θ ̂ij. Then using the Yijk as the
data to be evaluated by conventional statistical analysis, the DBM procedure tests for a test
effect using a fully-crossed three-factor ANOVA with test treated as a fixed factor and reader
and case as random factors. A “jackknife estimate” of AUC for the ith test and jth reader is
given by the mean of the corresponding pseudovalues:

(1)

Hillis et al. Page 2

Acad Radiol. Author manuscript; available in PMC 2009 September 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We refer to θ ̂ij as the original AUC estimate, Ȳij· as the jackknife AUC estimate, and the Yijk
as the raw pseudovalues.

The analysis model is expressed by

(2)

i=1,…,t; j=1,…,r;k=1,…,c; where τi denotes the fixed effect of test i, Rj denotes the random
effect of reader j, Ck denotes the random effect of case k, the multiple symbols in parentheses
denote interactions, and εijk is the error term. The interaction terms are all random effects. The
random effects are assumed to be mutually independent and normally distributed with zero
means and respective variances  and . Since there are no
replications,  and  are inseparable.

The DBM F statistic for testing for a test effect is the conventional mixed-model ANOVA F
statistic based on the pseudovalues. Letting MS(T), MS(T*R), MS(T*C), and MS(T*R*C)
denote the mean squares corresponding to the test, test×reader, test×case and test×reader ×
case effects, respectively, the F statistic for testing for a test effect for model (2) is given by

(3)

Under the null hypothesis of no test effect, F has an approximate Fdf1,df2 distribution, where
df1 = t−1 and df2 is the Satterthwaite [11,12] degrees of freedom approximation given by

(4)

In the original DBM formulation, extensive model-based simplification is performed to prevent
the F statistic (3) from becoming negative (due to a negative denominator). Specifically, model
(2) is simplified by omitting (or equivalently, setting to zero) the test×reader and the test×case
variance components if the corresponding ANOVA estimates are not positive. For the
simplified model the appropriate F statistic and denominator degrees of freedom (ddf) are used;
the appropriate F statistic for each simplified model contains only one mean square in the
denominator and hence cannot be negative. Thus equations (3–4) are used only when both of
the variance component estimates are positive.

The test×reader and the test×case variance component ANOVA estimates are

(5)

Taking into account possible model simplification, the F statistic and ddf for the original DBM
method are given by
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(6)

and

(7)

The numerator degrees of freedom for F in equation (6) is t−1. We refer to this approach, using
Forig and ddforig, as original DBM. Note that the conditions in equations (6) and (7) can also
be written in terms of the mean squares; e.g.,  is equivalent to MS(T*R) > MS
(T*R*C), MS(T*C) > MS(T*R*C).

Problem 1: DBM is limited to jackknife accuracy estimates
One problem with original DBM is that it requires that the analysis be based on jackknife AUC
estimates. Although it is possible for the jackknife AUC estimator to perform better that the
corresponding original AUC estimator, clearly it would be preferable to have the flexibility to
base the analysis on either the jackknife or original accuracy estimator, especially if (as is
typically the case) it has not been shown that the jackknife AUC estimator performs as well as
the original AUC estimator. For trapezoidal-rule (trapezoid) AUC estimates [13] this is not a
problem, since the trapezoid and corresponding jackknife AUC estimates are equal [8].

Hillis et al [8] provide a solution to this problem by showing that the DBM method can be

based on normalized pseudovalues , defined by . That is, the normalized
pseudovalue for patient k, reader j, and test i is equal to the sum of the raw pseudovalue Yijk
and the difference between the ijth test-reader original and jackknife AUC estimates. The

estimate for θij based on the normalized pseudovalues, given by , is equal to
the original AUC estimate θ ̂ij. Thus, the DBM procedure with normalized pseudovalues yields
single test and test-difference confidence intervals centered on the original accuracy estimates
and their differences, averaged across readers.

Problem 2: DBM is substantially conservative
Another problem with original DBM is that it is substantially conservative. Dorfman et al [3]
conclude from simulations that the DBM method provides a “moderately conservative
statistical test of modality differences,” with the degree of conservatism greatest with very
large ROC areas and decreasing as the number of cases increases. Using the Roe and Metz
[2] simulation structure, Hillis and Berbaum [14] report that, using semiparametric estimation
with either normalized or raw pseudovalues, the average type I error across 144 combinations
of reader-sample size, case-sample size, AUC, and variance components is.036, considerably
lower than the nominal.05 significance level. The downside of a conservative test is that power
is diminished compared to the same test with the critical value adjusted to yield significance
levels closer to the nominal level.
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In simulations Hillis [10] shows that the DBM procedure attains a type I error much closer to
the nominal level when two modifications are incorporated: (1) less data-based model
simplification is performed, and (2) a different ddf formula is used. We now discuss these two
modifications.

Less data-based model simplification—Hillis et al [8] propose that, similar to original
DBM, the test×case variance component be omitted if its ANOVA estimate is not positive;
however, they stipulate that the test×reader variance component should never be omitted, even
when its estimate is zero or negative. We refer to this approach as new model simplification.
Like original DBM, new model simplification ensures that the F test statistic will not be
negative. However, an important advantage of new model simplification is that it results in a
less conservative test, with the type I error rate considerably closer to the nominal level [9].
Another advantage is that this approach avoids making inferences under the unrealistic
assumption that differences between tests are the same for all readers in the population, which
is implied when the test×reader variance component is omitted [14].

Using new model simplification, the F statistic for testing the null hypothesis of no test effect
is the same as that given by equation (3) when , whereas it is set equal to MS(T)/MS
(T*R) when . We denote this F statistic using new model simplification by FDBM. Thus,

(8)

Since  is equivalent to MS(T*C)− MS(T*R*C) ≤ 0, this F statistic can be succinctly
written in the following form that takes model simplification into account:

(9)

The corresponding conventional ANOVA ddf is given by

(10)

Thus, new model simplification uses FDBM and ddfD.

In Appendix A we derive the following relationships: (1) if  then FDBM = Forig and
ddfD = ddforig; and (2) if  then FDBM ≥ Forig but ddfD < ddforig. However, we have
found that typically the larger F statistic under new model simplification, when , will
result in a more significant conclusion (smaller p-value), compared to that obtained using
original DBM, even though the ddf is smaller under new model simplification. In this way new
model simplification produces a less conservative test.

New denominator degrees of freedom—Hillis [10] proposes a new ddf given by
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(11)

Equation (11) can be written more compactly in the form

(12)

The quantity ddfH is derived by assuming that new model simplification is used – that is, it is
to be used with FDBM (9). We refer to this approach, using FDBM and ddfH, as new model
simplification plus ddfH.

In Appendix A we show that ddfH > ddfD if , whereas ddfH = ddfD if . Since new
model simplification and new model simplification plus ddfH both use FDBM, it follows that
new model simplification plus ddfH results in a lower p-value when  and the same p-
value when ; hence, it is less conservative than new model simplification.

Table 1 presents a summary of the three different DBM approaches – original DBM, new model
simplification, and new model simplification plus ddfH – and Table 2 presents their
relationships.

Problem 3: DBM model is unsatisfactory conceptually and theoretically
The original DBM procedure does not provide a satisfactory conceptual model since the the
model parameters are expressed in terms of pseudovalues rather than AUC values. The model
is also unsatisfactory theoretically since it assumes that the pseudovalues are independent and
normally distributed -- but they are neither. Thus, desirable statistical properties of the DBM
procedure do not directly follow from the model assumptions, since the assumptions are not
true; rather, the validity of the model must be determined through simulation studies.

Hillis et al [8] provide a solution to this problem by showing that the DBM procedure is
equivalent to another procedure that is based on an acceptable conceptual and theoretical
model. Specifically, they show that the DBM model can be viewed as a “working” model that
produces the same inferences as obtained using the test×reader ANOVA model with correlated
errors proposed by Obuchowski and Rockette (OR) [15,16]. The OR model is given by

(13)

i=1,…,t; j=1,…,r; where θ ̂ij is the AUC estimate (or other accuracy estimate) for the ith test
and jth reader, τ̃i denotes the fixed effect of test i, Rj denotes the random effect of reader j,
(τR)ij denotes the random test×reader interaction, and εij is the error term having mean zero

and variance . The random effects Rj and (τR)ij are assumed independent and normally

distributed with zero means and variances  and , respectively, and are assumed
independent of the εij. We use the tilde symbol “~” to distinguish OR model parameters from
analogous DBM model parameters. Since the same cases are read by each reader using each
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test, the error terms are not assumed to be independent. Instead, equi-covariance of the errors
between readers and tests is assumed, resulting in three possible covariances given by

(14)

Obuchowski and Rockette [15] suggest the following ordering: Cov1 ≥ Cov2 ≥ Cov3.

Conditional on the reader and test×reader effects (that is, treating readers as fixed), it follows
from model (13) that Cov1, Cov2, and Cov3 are also the corresponding covariances of the AUC
estimates; for example, Cov2 is the covariance between the AUCs for two fixed readers using
the same test, while Cov3 is the covariance between the AUCs for two fixed readers using
different modalities.

The OR F statistic for testing for a test difference is given by

(15)

where MS(T)θ ̂ij and MS(T*R)θ ̂ij are the test and test×reader mean squares corresponding to
the OR model (13), and where  and  are covariance estimates; the subscript “θ ̂ij” is
used here to indicate that the mean squares are computed from the AUCs rather than the
pseudovalues. The quantities  and  are estimated by averaging corresponding
covariance estimates for pairs of AUCs, estimated using covariance estimation methods that

treat readers as fixed. For example, , where 
is an estimate of the covariance between AUCs for fixed readers j and j′ using test i, estimated
using a fixed reader method such as bootstrapping or jackknifing.

The DBM and OR procedures are related as follows [8]. Note that the jackknife procedure
provides both AUC point estimates, defined by equation (1), and covariance and variance
estimates for the AUCs, as discussed in Reference [8]. The DBM and OR F statistics, FDBM
and FOR defined by equations (9) and (15), are equal if  and  are jackknife covariance
estimates and normalized pseudovalues are used with the DBM procedure. This relationship
does not require any particular estimation method for the θ ̂ij in equation (13). On the other
hand, if raw pseudovalues are used, then the relationship still holds if, additionally, the θ ̂ij in
equation (13) are jackknife estimates. More generally, for any given AUC estimation method
and any given method of estimating Cov2 and Cov3, FDBM = FOR if the DBM procedure is
used with quasi pseudovalues, as defined in Reference [8]. These conditions which ensure that
FDBM = FOR are summarized in Table 3. The appropriate ddf to use with either the DBM or
OR procedure is ddfH, given by equation (12) for the DBM procedure. In terms of the OR
procedure mean squares, Reference [10] shows that ddfH is given by

(16)
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Under any of the conditions described above that result in FDBM = FOR, the same value for
ddfH is obtained using either equation (12) or (16), and there is a one-to-one correspondence
between the DBM and OR computed quantities, as shown in Table 4.

The OR model is a satisfactory conceptual model since it is expressed in terms of meaningful
reader-level accuracy outcomes (e.g., AUC values). In addition, the model assumptions are
reasonable. The assumed independence of the reader effects follows from the independent
selection of readers, and the assumption of independent test×reader interactions and equi-
covariant errors allows for a fairly general covariance structure. Normality for the error terms
is reasonable since typically there are many cases for each reader, and normality for the reader
and test×reader effects is a typical assumption for generalizing from a sample to a population
when we do not know the exact population distribution. Of course, these assumptions may not
always hold, and topics for future research include the robustness of the DBM and OR
procedures to violations of these assumptions and generalization of the procedures to
accommodate less restrictive assumptions.

The equivalence of the DBM and OR procedures allows for interpretation of the DBM
parameters in terms of the meaningful OR parameters. Table 5 shows the relationships between
the DBM and OR parameters. We see that the DBM parameters μ, τi, , and  have the same

interpretation as the analogous OR parameters μ̃, τ̃i,  and , while  and

 are equal to linear functions of , Cov1, Cov2 and Cov3, and vice versa. For example,
we see from Table 5 that ; hence, setting , as is done with new model
simplification when , is equivalent to assuming that Cov2 = Cov3, which is a reasonable
assumption. On the other hand, we see that setting , as is done with original DBM when

, is equivalent to assuming that the test×reader variance component of the OR model

( ) is zero, implying that differences between tests are the same for all readers in the
population. As mentioned earlier, this is an unreasonable assumption and is one reason why
we no longer recommend original DBM.

Other examples of interpreting functions of OR parameters are the following. The expected
accuracy measure across readers for the ith test is given by μ+ τi; the variance of the inherent

(or latent) reader accuracy measure is given by , with  denoting the component due

to the main effect of readers and  the component due to test×reader interaction; the variance

of the reader accuracy measure estimate is given by ; and the measurement error
variance that is attributable to cases and within-reader variability that describes how a reader

interprets the same image in different ways on different occasions is given by . The
interpretations of Cov1, Cov2 and Cov3 have been discussed earlier. Various correlations are

functions of the parameters. For example, define  and

; then ρBR is the correlation between AUC estimates for two different readers
using the same test, and ρBR|readers is the analogous correlation but treating readers as fixed.
See Appendix B for derivations of these last two correlations.

Formulas for computing the DBM variance components are presented in Table 6. Estimates
for the OR variance components and covariances result from using Table 5 with the DBM
variance components replaced by their estimates.
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Summary of related papers
The relationship between the DBM and OR methods is described by Hillis et al [8]. They
generalize the DBM method, using new model simplification, to include the use of normalized
and quasi pseudovalues and determine the conditions under which the DBM and OR methods
produce equal test statistics. They also show how the DBM method can be used when readers
are treated as fixed and show the relationship between the DBM and OR methods for fixed
readers. Hillis and Berbaum [9] show empirically that new model simplification performs
better than original DBM, as well as showing that use of normalized pseudovalues has little
effect on the type I error compared to raw pseudovalues. Hillis [10] derives ddfH for both the
DBM and OR procedures and empirically shows that new model simplification plus ddfH
performs better than new model simplification. Hillis and Berbaum [14] show how to compute
the power for the DBM method using new model simplification; updated power software using
new model simplification plus ddfH can be downloaded from
http://perception.radiology.uiowa.edu

Results
Simulation Study

In a simulation study we examined the performance of the three DBM approaches –original
DBM, new model simplification, and new model simplification plus ddfH – with respect to the
empirical type I error rate for testing the null hypothesis of no test effect. The simulation model
of Roe and Metz [2] provided continuous decision-variable outcomes generated from a
conventional binormal model that treats both cases and readers as random. We used this
simulation model to create discrete rating data by computer simulation. The discrete rating
data, taking integer values from one to five, were created by transforming the continuous
outcomes using the cutpoints reported by Dorfman et al [3]. The combinations of reader and
case sample sizes, AUC values, and variance components were the same as those used in Roe
and Metz [2] and Dorfman et al [3]. Briefly, rating data were simulated for 144 combinations
of three reader-sample sizes (readers = 3, 5, and 10); four case sample sizes (10+/90−, 25+/25
−, 50+/50−, and 100+/100−, where “+” indicates a diseased case and “−” indicates a normal
case); three AUC values (AUC = 0.702, 0.855, and 0.961) that describe the separation between
the normal and diseased case populations, averaged across readers; and four combinations of
reader and case variance components. Two thousand samples were generated for each of the
144 combinations; within each simulation, all Monte Carlo readers read the same cases for
each of two equal tests.

The data from each simulated sample were analyzed by all three approaches. Both maximum
likelihood (semiparametric) estimation assuming a latent binormal model [17,18] and the
trapezoidal-rule (nonparametric) method were used to estimate AUC from the 5-category
discrete rating data. Analyses that employed semiparametric AUC estimation were performed
using both raw and normalized pseudovalues, while for nonparametric AUC estimation no
distinction was made since raw and normalized pseudovalues produce the same AUC
estimates. For each of the 144 combinations, the empirical type I error rate was taken as the
proportion of samples for which the null hypothesis was rejected at the alpha = 0.05 level. Data
simulation was performed using the IML procedure in SAS [19]. The semiparametric AUC
pseudovalues were computed using a dynamic link library (DLL), written in Fortran 90 by Don
Dorfman and Kevin Schartz, that was accessed from within the IML procedure; this DLL, as
well as a SAS macro that performs the different analyses used in this paper, can be downloaded
from http://perception.radiology.uiowa.edu.

From the results, summarized in Tables 7 and 8, we draw the following conclusions. (1) New
model simplification plus ddfH has the mean empirical type I error rate closest to the nominal.
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05 level: 0.051 (raw pseudovalues) and 0.049 (normalized pseudovalues) for semiparametric
estimation, and 0.053 for nonparametric estimation. (2) Original DBM has the most
conservative type I error rates: 0.036 (raw and normalized pseudovalues) for semiparametric
estimation and 0.041 for nonparametric estimation. (3) New model simplification gives type I
error rates midway between those obtained from the other two approaches. (4) With
semiparametric estimation, the mean type I error rates for raw and normalized pseudovalues
differ only slightly for each approach. (5) New model simplification confidence intervals can
be extremely wide, due to a small proportion of proportion of samples where ddfD approaches
zero [10]. We note that new model simplification plus ddfH does not have this problem, since
ddfH is bounded below by (t−1)(r−1). (6) For semiparametric estimation using either original
DBM or new model simplification plus ddfH, normalized pseudovalue confidence interval
widths are 4% smaller, on average, than those for raw pseudovalues, For new model
simplification the confidence interval widths are 40% smaller, although here outliers are
affecting the results as noted above. These results suggest that the original AUC estimator has
more precision and power for semiparametric estimation than the jackknife AUC estimator.

Example 1: Spin-Echo versus CINE MRI for Detection of Aortic Dissection
The data for this example were provided by Carolyn Van Dyke, MD, who had obtained them
in a study [20] that compared the relative performance of single Spin-Echo Magnetic
Resonance Imaging (SE MRI) and CINE MRI in detecting thoracic aortic dissection. There
were 45 patients with an aortic dissection and 69 patients without a dissection imaged with
both SE MRI and CINE MRI. Five radiologists independently interpreted all of the images
using a 5-point ordinal scale.

Table 9 presents the analysis results for raw and normalized pseudovalues obtained with
semiparametric AUC estimation. We note that the jackknife and original semiparametric AUC
estimates are similar, so there is little difference in the population estimates: the test AUC
estimates based on the raw pseudovalues are.920 for CINE and.951 for Spin Echo, whereas
the estimates based on normalized pseudovalues are.911 for CINE and.952 for Spin Echo.
Since  for both types of pseudovalues, both original DBM and new model simplification
yield the same results. For the normalized pseudovalues, Forig = FDBM = 2.619, ddforig =
ddfDBM = 10.31 and p = 0.1358 in assessing the difference in AUC. (We note that results for
this and the following example differ slightly from those in References [8,9,14] because we
have used an updated AUC algorithm). From equation (12) we have ddfH = 10.99, resulting
in p = 0.1339 with new model simplification plus ddfH. Hence, the latter approach produces a
slightly more significant result, illustrating a point made earlier: if , then new model
simplification plus ddfH will yield a more significant result than new model simplification,
since ddfH > ddfDBM. We note that the raw pseudovalues analysis produced less significant
results, with p =.2579 for new model simplification and p =.2563 for new model simplification
plus ddfH.

Table 10 presents the DBM and OR variance components obtained on the basis of normalized
pseudovalues. The DBM variance components were computed using the equations in Table 6,
whereas the OR variance components and covariances were computed by replacing the DBM
variance components in Table 5 with their estimates. The OR parameter estimates allow us to
make statements such as the following about the variability in the reader-level AUC outcomes.
The estimated variance of the inherent reader accuracy measures is

; thus, we estimate that, with probability.95, the
inherent (or latent) AUC of a randomly selected reader lies within  of the
population test AUC. The estimated variance of the observed reader accuracy measures is
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. The estimated measurement error variance due

to cases and within-reader variability is . The estimated correlation between
observed AUC values for a randomly selected reader reading the same cases in different

modalities is given by , and the
analogous correlation for a given (or fixed) reader is

.

Example 2: Picture archiving communication system versus plain film interpretation of
neonatal examinations

Franken et al [21] compared the diagnostic accuracy of interpreting clinical neonatal
radiographs using a picture archiving and communication system (PACS) workstation versus
plain film. The case sample consisted of 100 chest or abdominal radiographs (67 abnormal and
33 normal). The readers were four radiologists with considerable experience in interpreting
neonatal examinations. The readers indicated whether each patient had normal or abnormal
findings and their degree of confidence in this judgment using a five-point ordinal scale.

Table 11 presents the ANOVA tables for the raw and normalized pseudovalues using
semiparametric AUC estimation. For either type of pseudovalue we have MS(T*R) < MS
(T*R*C) and MS(T*C) < MS(T*R*C); thus  and  from equation (5). Hence for
original DBM we assume  and use MS(T*R*C) as the denominator for Forig with
ddforig = (t−1)(r−1)(c−1) = 297; in contrast, for new model simplification and new model
simplification plus ddfH we only assume  and use MS(T*R) as the denominator for
FDBM with ddfD =ddfH = (t−1)(r−1) = 3. Using the normalized pseudovalues with original
DBM yields Forig = 0.796, ddforig = 297 and p = 0.3729, while new model simplification and
new model simplification plus ddfH yield FDBM = 8.888, ddfD = ddfH = 3 and p = 0.0585. The
raw pseudovalues analysis produces less significant results, with p = 0.0647 for both new model
simplification and new model simplification plus ddfH.

Discussion
We have summarized recently proposed solutions for the various drawbacks of the original
DBM method and examined the performance of these solutions in a simulation study. The
solutions include using normalized pseudovalues which allow DBM results to be based on
either the original or the jackknife accuracy estimates; using less data-based model reduction
and ddfH to make DBM less conservative with a type I error rate much closer to the nominal
level; and showing that the DBM model can be viewed as a “working” model that produces
the same inferences as obtained using the acceptable conceptual and theoretical OR model.
This last solution is especially important, since it establishes a solid theoretical justification
for using DBM, allows us to make meaningful statements about the variability and covariances
of the accuracy estimates by computing OR model parameter estimates from the DBM model
parameter estimates, and allows for generalization in future research. Thus we recommend the
revised DBM procedure (“new model simplification plus ddfH”) that incorporates these recent
developments. Stand-alone software as well as a SAS macro that incorporates these
modifications are available to the public [22–24].

The DBM and OR approaches complement each other. We can think of each approach as
consisting of a model and a procedure, where procedure denotes the computational algorithm
steps and model denotes the statistical model used to motivate the procedure and justify
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inferences. The OR model is conceptually and theoretically more acceptable. However, the
DBM procedure is easier to implement, because after computing the pseudovalues (for each
test-reader combination) the F statistic is easily obtained by subjecting the pseudovalues to a
conventional 3-way ANOVA analysis. Furthermore, the DBM model, though not statistically
acceptable, makes the DBM procedure easier to initially comprehend, especially for users
without an extensive statistical background.

Finally, we note that the choice between using the original or corresponding jackknife AUC
estimator should depend on which estimator has superior performance properties. For the
trapezoidal method AUC this is not an issue, since the original and jackknife estimates are
equal; however, for semiparametric estimation our simulation study and examples (both
examples had a smaller p value using normalized pseudovalues) suggest that the original
estimator has higher precision and power.
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Appendix

APPENDIX A
In this section we derive the relationships given in Table 2 between Forig and FDBM, as defined
by equations (6) and (8), respectively, and between ddforig, ddfD, and ddfH, as defined by
equations (7), (10), and (11), respectively. We do this for the four possible situations
corresponding to the test-by-reader and test-by-case variance component estimates being either
positive or nonpositive. We make the reasonable assumptions that none of the mean squares
are zero (and hence must be positive) and that the number of cases exceeds two (c>2).

First we derive the relationship between ddfD and ddfH. If  then

If  then
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Thus ddfD < ddfH if  and ddfD = ddfH if . These relationships hold regardless of
the value of . Now we consider each of the four situations separately for the other
relationships.

Situation 1

. For this situation we have

Situation 2

. From equation (5) we have . Hence

with Forig = FDBM if and only if . Also,

That is, ddfD<ddforig. In the proof we have utilized the relationship MS(T*R) −MS(T*R*C)
+ MS(T*C)>0, since from equation (5) we have .

Situation 3

. For this situation we have
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Situation 4

. From equation (5) it follows that MS(T*R)≤MS(T*R*C), with equality if and
only if . Thus

with equality if and only if . Also,

Note that we require the assumption that c>2 for this last relationship.

APPENDIX B
In this section we show how to derive AUC correlations assuming the OR model (13). Let

 and  denote two AUC estimates, with the first subscript denoting test and the
second reader. Their correlation is defined by

where  is the covariance. To find the covariance and variances, we write
 and  as functions of random and fixed effects using the OR model (13). It follows

from well known statistical properties that the variance for each AUC estimate is the sum of
the OR model variance components corresponding to the random effects, and

 is the sum of the variance components corresponding to the reader or
test×reader random effects that the AUC estimates have in common (i.e., they have the same
subscript values for each AUC estimate), plus the covariance between the error terms.

For example, the between-reader correlation between AUC estimates for two different readers
using the same test is given by

(17)

where j≠j′. From equation (13), with  taking the place of θ ̂ij, we have
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(18)

Each AUC estimate has the same variance, equal to the sum of all of the variance components
corresponding to the random effects; that is,

Examination of equations (18) shows that the AUCs do not have any reader or test×reader
random effects in common since j≠j′. Thus the covariance is equal to Cov2, the covariance
between the error terms for different readers using the same test:

(19)

It follows from equations (17), (18) and (19) that

Now we derive the between-reader correlation between AUC estimates for two different
readers using the same test, but this time treating readers as fixed. In this case the correlation
is a measure of the association between the deviation of one reader’s AUC estimate from that
reader’s underlying AUC, due to case variation and reader error, with the deviation of the other
reader’s AUC estimate from that reader’s underlying AUC. In contrast, ρBR is a measure of
association between deviations of randomly chosen readers’ AUC estimates from the reader
population AUC.

To derive this correlation we treat the reader and test×reader effects as fixed in model (13) by
conditioning on them; thus these effects do not have corresponding variance components, but
rather are treated like constants. We denote this correlation by ρBR|readers to indicate that it is
for two fixed readers. The correlation is defined as before, except now the covariance and
variances are conditional on the reader and test×reader random effects:

(20)

When we condition on the reader and test×reader random effects, the only random effects in

equations (18) are the error terms. Thus each AUC has the same variance, equal to :

(21)
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Similarly, the covariance is equal to Cov2, the covariance between the error terms:

(22)

It follows from equations (20), (21) and (22) that

These correlations can be written in terms of the DBM model parameters using the relationships

in Table 5. For example, since  and , where
 and  denote the DBM model variance components, then

 in terms of the DBM variance components. This
last expression is also given in equation (4) of Reference [2].
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Table 1
Summary of the different DBM approaches

a) Original DBM

Forig ddforig condition

MS(T)
MS(T ∗ R) + MS(T ∗ C) − MS(T ∗ R ∗ C)

Equation (4)
σ̂τR

2 > 0, σ̂τC
2 > 0

MS(T)/MS(T*R) (t−1)(r−1)
σ̂τR

2 > 0, σ̂τC
2 ≤ 0

MS(T)/MS(T*C) (t−1)(c−1)
σ̂τR

2 ≤ 0, σ̂τC
2 > 0

MS(T)/MS(T*R*C) (t−1)(r−1)(c−1)
σ̂τR

2 ≤ 0, σ̂τC
2 ≤ 0

b) New model simplification

FDBM = MS(T)
MS(T ∗ R) + max MS(T ∗ C) − MS(T ∗ R ∗ C), 0

ddfD = {equation (3) σ̂τC
2 > 0

(t − 1)(r − 1) σ̂τC
2 ≤ 0

c) New model simplification plus ddfH

FDBM = MS(T)
MS(T ∗ R) + max MS(T ∗ C) − MS(T ∗ R ∗ C), 0 same as in (b)

ddfH =
{MS(T ∗ R) + max MS(T ∗ C) − MS(T ∗ R ∗ C), 0 }2

MS(T ∗ R)2

(t − 1)(r − 1)

.

These approaches can be used with raw, normalized, or quasi pseudovalues. See Table 6 for computational formulas for  and .
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Table 2
Relationships between the DBM F statistics and between the DBM denominator degrees of freedom.

στR
2 στC

2
F relationship Ddf relationship

>0 >0 Forig = FDBM ddforig = ddfD < ddfH

≤0 >0
Forig ≤ FDBM (equality iff στR

2 = 0)
ddfD < ddforig, ddfD < ddfH

>0 ≤0 Forig = FDBM ddforig = ddfD = ddfH

≤0 ≤0
Forig ≤ FDBM (equality iff στR

2 = 0)
ddfD = ddfH < ddforig

These relationships are derived in Appendix A. Iff: if and only if.
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Table 3
Conditions which result in FDBM = FOR as defined by equations (9) and (15)

1
Normalized pseudovalues are used with DBM and  and  are jackknife variance and covariance estimates.

or

2
Raw pseudovalues are used with DBM,  and  are jackknife variance and covariance estimates, and θ ̂ij are jackknife
accuracy estimates.

or

3 Quasi pseudovalues are used with DBM.

Note: any one of the above conditions results in FDBM = FOR.
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Table 4
Relationship between DBM and OR computed quantities.

OR computed quantity Equivalent function of DBM computed quantities

MS(T)θ ̂ij
= 1

c MS(T)

MS(R)θ ̂ij
= 1

c MS(R)

MS(T*R)θ ̂ij
= 1

c MS(T ∗ R)

σ
∗
^
ε
2 = 1

trc MS(C) + (t − 1)MS(T ∗ C) + (r − 1)MS(R ∗ C) + (t − 1)(r − 1)MS(T ∗ R ∗ C)

Cov̂1 = 1
trc {MS(C) − MS(T ∗ C) + (r − 1) MS(R ∗ C) − MS(T ∗ R ∗ C) }

Cov̂2 = 1
trc {MS(C) − MS(R ∗ C) + (t − 1) MS(T ∗ C) − MS(T ∗ R ∗ C) }

Cov̂3 = 1
trc MS(C) − MS(T ∗ C) − MS(R ∗ C) + MS(T ∗ R ∗ C)

DBM computed quantity Equivalent function of OR computed quantities

MS(T) =cMS(T)θ ̂ij

MS(R) =cMS(R)θ ̂ij

MS(T*R) =cMS(T*R)θ ̂ij

MS(C)
= c σ

∗
^
ε
2
− (t − 1)Cov̂1 + (r − 1)Cov̂2 + (t − 1)(r − 1)Cov̂3)

MS(T*C)
= c σ

∗
^
ε
2
− Cov̂1 + (r − 1)(Cov̂2 − Cov̂3)

MS(R*C)
= c σ

∗
^
ε
2

+ (t − 1)Cov̂1 − Cov̂2 − (t − 1)Cov̂3)

MS(T*R*C)
= c σ

∗
^
ε
2
− Cov̂1 − Cov̂2 + Cov̂3

These relationships assume one of the three conditions given in Table 3.
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Table 5
Relationship between DBM and OR model parameters

OR model parameter Equivalent function of DBM model parameters

μ̃ =μ

τ̃i =τi

σ
∗

R
2 = σR

2

σ
∗
τR
2 = στR

2

σ
∗
ε
2 = (σC

2 + στC
2 + σRC

2 + στRC
2 + σε

2) / c

Cov1
= (σC

2 + σRC
2 ) / c

Cov2
= (σC

2 + στC
2 ) / c

Cov3
= σC

2 / c

DBM model parameter Equivalent function of OR model parameters

μ =μ̃

τi =τ̃i

σR
2

= σ
∗

R
2

στR
2

= σ
∗
τR
2

σC
2 =cCov3

στC
2 =c(Cov2 − Cov3)

σRC
2 =c(Cov1 − Cov3)

στRC
2 + σε

2
= c(σ

∗
ε
2
− Cov1 − Cov2 + Cov3)

These relationships assume that the constraints for the OR model parameters are those implied by the DBM model: ,
Cov1≥Cov3, Cov2≥Cov3, and Cov3≥0. They also assume the same linear constraint for the τi (e.g., Στi = 0) for both models and that either (1) normalized
or quasi pseudovalues are used; or (2) if raw pseudovalues are used, then the OR model outcome is the jackknife accuracy estimate.

Note: Adapted and reprinted, with permission, from Reference [8]
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Table 6
ANOVA estimates for DBM variance components

DBM model parameter Estimate

σR
2 1

tc MS(R) − MS(T ∗ R) − MS(R ∗ C) + MS(T ∗ R ∗ C)

σC
2 1

tr MS(C) − MS(T ∗ C) − MS(R ∗ C) + MS(T ∗ R ∗ C)

στR
2 1

c MS(T ∗ R) − MS(T ∗ R ∗ C)

στC
2 1

r MS(T ∗ C) − MS(T ∗ R ∗ C)

σRC
2 1

t MS(R ∗ C) − MS(T ∗ R ∗ C)

στRC
2 + σε

2 MS(T*R*C)

Note: These estimates, except for the last, can be negative.
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Table 9
DBM procedure analyses for Van Dyke et al [20] data

Semiparametric and corresponding jackknife AUC estimates:

test

1 (CINE) 2 (Spin Echo)

reader (j) θ ̂1j (semiparametric) Y1j· (jackknife) θ ̂2j (semiparametric) Y2j· (jackknife)

1 0.933 0.947 0.951 0.950

2 0.890 0.909 0.935 0.933

3 0.929 0.929 0.928 0.928

4 0.970 0.981 1.000 0.999

5 0.833 0.836 0.945 0.943

θ ̂1· =.911 Y1·· =.920 θ ̂2· =.952 Y2·· =.951

ANOVA table:

Source ddf Raw pseudovalue mean square
Normalized pseudovalue mean

square

T 1 0.264166 0.468996

R 4 0.315637 0.297310

C 113 0.392538 0.392538

T×R 4 0.112560 0.108062

T×C 113 0.143095 0.143095

R×C 452 0.098771 0.098771

T×R×C 452 0.072068 0.072068

T: tests; R: readers; C: cases.

Raw pseudovalues results:

a
Original DBM: Forig = 1.439, ddforig = 10.03, p = 0.2579

b
New model simplification: FDBM = 1.439, ddfD = 10.03, p = 0.2579

c
New model simplification plus ddfH: FDBM = 1.439, ddfH = 10.64, p = 0.2563

Normalized pseudovalues results:

a
Original DBM: Forig = 2.619, ddforig = 10.31, p = 0.1358

b
New model simplification: FDBM = 2.619, ddfD = 10.31, p = 0.1358

c
New model simplification plus ddfH: FDBM = 2.619, ddfH = 10.99, p = 0.1339
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Table 10
Variance component estimates for Van Dyke et al [20] data based on normalized pseudovalues

DBM OR

Variance component Estimate Variance component Estimate

σR
2 0.000713

σ
∗

R
2 0.000713

στR
2 0.000316

σ
∗
τR
2 0.000316

σC
2 0.022274 Cov1 0.000313

στC
2 0.014205 Cov2 0.000320

σRC
2 0.013351 Cov3 0.000195

στRC
2 + σε

2 0.072068
σ
∗
ε
2 0.001069
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Table 11
DBM procedure analyses for Franken et al [21] data.

ANOVA table:

Source ddf Raw pseudovalue Mean square
Normalized pseudovalue Mean

square

T 1 0.063574 0.066606

R 3 0.088782 0.097686

C 99 0.547734 0.547734

T×R 3 0.007781 0.007494

T×C 99 0.078071 0.078071

R×C 297 0.127582 0.127582

T×R×C 297 0.083643 0.083643

T: tests; R: readers; C: cases.

Raw pseudovalues results:

a
Original DBM: Forig = 0.760, ddforig = 297, p = 0.3840

b
New model simplification: FDBM = 8.171, ddfD = 3, p = 0.0647

c
New model simplification plus ddfH: FDBM = 8.171, ddfH = 3, p = 0.0647

Normalized pseudovalues results:

a
Original DBM: Forig = 0.796, ddforig = 297, p = 0.3729

b
New model simplification: FDBM = 8.888, ddfD = 3, p = 0.0585

c
New model simplification plus ddfH: FDBM = 8.888, ddfH = 3, p = 0.0585
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