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Abstract
The acquisition of multiple brain imaging types for a given study is a very common practice. There
have been a number of approaches proposed for combining or fusing multitask or multimodal
information. These can be roughly divided into those that attempt to study convergence of multimodal
imaging, for example, how function and structure are related in the same region of the brain, and
those that attempt to study the complementary nature of modalities, for example, utilizing temporal
EEG information and spatial functional magnetic resonance imaging information. Within each of
these categories, one can attempt data integration (the use of one imaging modality to improve the
results of another) or true data fusion (in which multiple modalities are utilized to inform one another).
We review both approaches and present a recent computational approach that first preprocesses the
data to compute features of interest. The features are then analyzed in a multivariate manner using
independent component analysis. We describe the approach in detail and provide examples of how
it has been used for different fusion tasks. We also propose a method for selecting which combination
of modalities provides the greatest value in discriminating groups. Finally, we summarize and
describe future research topics.
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I. Introduction
MANY STUDIES are currently collecting multiple types of imaging data and information from
the same participants. Each imaging method reports on a limited domain and is likely to provide
some common information and some unique information. This motivates the need for a joint
analysis of these data. Most commonly, each type of image is analyzed independently and then
perhaps overlaid to demonstrate its relationship with other data types (e.g., structural and
functional images). A second approach, called data fusion, utilizes multiple image types
together in order to take advantage of the “crossinformation.” In the former approach, any
crossinformation is “thrown” away; hence, such an approach, for example, would not detect a
change in functional magnetic resonance imaging (fMRI) activation maps that are associated
with a change in the brain structure while the second approach would be expected to detect
such changes.
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Many studies are currently collecting multiple types of imaging data from the same participants.
Each imaging method reports on a limited domain and typically provides both common and
unique information about the problem in question. Approaches for combining or fusing data
in brain imaging can be conceptualized as having a place on an analytic spectrum with meta-
analysis (highly distilled data) to examine convergent evidence at one end and large-scale
computational modeling (highly detailed theoretical modeling) at the other end [1]. In between
are methods that attempt to perform a direct data fusion [2].

Current approaches for combining different types of imaging information for the most part
elect to constrain one type with another type of information—as in EEG [3], [4] or diffusion
tensor imaging (DTI) [5], [6] being constrained by fMRI or structural MRI (sMRI) data. While
these are powerful techniques, a limitation is that they impose potentially unrealistic
assumptions upon the EEG or DTI data, which are fundamentally of a different nature than the
fMRI data. An alternative approach—which we call data integration [7], [8]—is to analyze
each data type separately and overlay them—thereby not allowing for any interaction between
the data types. For example, a data integration approach would not detect a change in fMRI
activation maps that is related to a change in brain structure (in the example we provide the
change is in gray matter (GM) concentration between patients and controls). One promising
direction is to take an intermediate approach in which the processing of each image type is
performed using features extracted from different modalities. These features are then examined
for relationships among the data types at the group level (i.e., variations among individuals)
and specifically, differences in these variations between patients and controls. This approach
allows us to take advantage of the “crossinformation” among data types [7], [8].

Methods such as structural equation modeling (SEM) or dynamic causal modeling (DCM)
[9]-[11] can be used to examine the correlational structure between regions activated by
different tasks [12] or between functional and structural variables [13], [14]. Such approaches
are useful for model testing; however, these approaches do not provide an examination of the
full set of brain voxels, nor do they allow testing of unknown connections. Alternatively, one
could choose to examine correlation (and potentially extend to nonlinear relationship through
the use of other criteria such as mutual information) between all points of the data. This
approach has been applied to examine functional connectivity in fMRI by computing a 6-D
matrix of correlations [15]. Such computations are straightforward; however, the drawback is
that they are high in dimensionality and hence potentially difficult to interpret. A natural set
of tools for avoiding the disadvantages of the aforementioned techniques includes those that
transform data matrices into a smaller set of modes or components. Such approaches include
those based upon singular value decomposition (SVD) [16], [17] as well as more recently,
independent component analysis (ICA) [18]. An advantage of ICA over variance-based
approaches like SVD or principal component analysis (PCA) is the use of higher order statistics
to reveal hidden structure [19], [20]. We have recently done work showing the value of
combining multitask fMRI data [21], fMRI and sMRI data [22], and fMRI and ERP data
[23]. One important aspect of the approach is that it allows for the possibility that a change in
a certain location in one modality is associated with a change in a different location in another
modality (or, in the case of ERP, one is associating time in ERP with space in fMRI) as we
demonstrate with a number of examples in this paper.

In this paper, we first review the basic approaches for fusing information from multiple medical
imaging data types. Next, we present a feature-based fusion approach that provides a general
framework for fusing information from multiple data types, such as multitask fMRI data, or
fMRI and event-related potential (ERP) data. The extracted features for each data type are
fused using a data-driven analysis technique, ICA, which has proved quite fruitful for medical
image analysis [23]-[27]. The fusion framework we present thus enables the discovery of
relationships among data types for given samples, for example, at the group level, to study
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variations between patients and controls. In the following sections, after a background of some
of the common fusion approaches, we introduce the feature-based fusion framework. In
particular, we discuss the nature of features and their computation. Next, we present several
examples showing the fusion of data from different modalities. The final section discusses the
importance of selecting the important features for the joint analysis.

II. Brief Description of Imaging Modalities and Feature Generation
fMRI measures the hemodynamic response related to neural activity in the brain. sMRI
provides information about the tissue type of the brain—GM, white matter (WM), and
cerebrospinal fluid (CSF). A different type of structural information is captured by DTI that
measures the diffusion of water in the brain and provides information about fiber direction.
Another useful measure of brain function is EEG, which measures brain electrical activity with
a higher temporal resolution than fMRI (and lower spatial resolution).

A. fMRI
fMRI data provide a measure of brain function on a millimeter spatial scale and a subsecond
temporal scale. There are a considerable number of available fMRI processing strategies
[28], [29]. Two primary approaches include model-based approaches assuming certain
hemodynamic properties and often utilizing the general linear model (GLM) [30], and data-
driven approaches; one that has proven particularly fruitful is ICA [18], [31], which does not
impose a priori constraints upon the temporal hemodynamic evolution.

A strength of GLM approaches is that they allow one to perform specific hypothesis tests, e.g.,
“where in the brain do these temporal patterns (i.e., the activation) occur?” In contrast, a
strength of ICA is its ability to characterize fMRI activations without an a priori hemodynamic
model in an exploratory manner, e.g., “what are the temporal and spatial patterns occurring in
the brain?” Both approaches have obvious advantages. We next give a brief discussion of
preprocessing and GLM analysis.

There are a number of preprocessing steps important for fMRI. Phase correction is often applied
because each slice is typically acquired sequentially, rather than acquiring all slices
simultaneously [32], [33]. Registration is also required because of subject motion during an
fMRI experiment. There are numerous algorithms for estimating and correcting for this motion
including those based upon Fourier methods [34], Taylor approximations, Newton's method
[35], and others. The third preprocessing stage, normalization, is necessary to: 1) compare
brains across different individuals and 2) use standardized atlases to identify particular brain
regions. There are also many methods for applying spatial normalization including maximum
likelihood and Newton's methods [36] as well as localized methods.

The most common analysis approach for fMRI is based upon the general linear model,
assuming a specific form for the hemodynamic response. In the simplest case, the data are
modeled as

(1)

for R regressors, where ym, xi, and εm are K × 1 for time points k = 1,2, ⋯, K at brain locations
m = 1,2, ⋯, M. The error is typically modeled as Gaussian, independent and identically
distributed, zero-mean, with variance .
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B. sMRI
We define structural MRI analysis as the acquisition and processing of T1-, T2-, and/or proton-
density-weighted images. Multiple structural images are often collected to enable multispectral
segmentation approaches. Both supervised and automated segmentation approaches have been
developed for sMRI analysis [37]-[39]. The near-exponential pace of data collection [40] has
stimulated the development of structural image analysis. Advanced methods include the rapidly
growing field of computational anatomy [41]-[43]. This field combines new approaches in
computer vision, anatomical surface modeling [42], [44], differential geometry [41], and
statistical field theory [45], [46] to capture anatomic variation, encode it, and detect group-
specific patterns. Other approaches include voxel-based methods [47] and manual region-of-
interest approaches. Each technique is optimized to detect specific features, and has its own
strengths and limitations.

The primary outcome measure in a structural image may include a measure of a particular
structure (e.g., volume or surface area) or a description of the tissue type (e.g., GM or WM).
There are many methods for preprocessing sMRI data that may include bias field correction
[intensity changes caused by RF or main magnetic field (Bo) inhomogeneities] [48], [49],
spatial linear, or nonlinear [50] filtering normalization. MRIs are typically segmented using a
tissue classifier producing images showing the spatial distribution of GM, WM, and CSF.
Tissue classifiers may be supervised (where a user selects some points representing each tissue
class to guide classification) or unsupervised (no user intervention). Bayesian segmentation
methods [47], [51], [52] assign each image voxel to a specific class based on its intensity value
as well as prior information on the likely spatial distribution of each tissue in the image. The
classification step may be preceded by digital filtering to reduce intensity inhomogeneities due
to fluctuations and susceptibility artifacts in the scanner magnetic field. In expectation-
maximization (EM) techniques, RF correction and tissue classification steps are combined,
using one to help estimate the other in an iterative sequence [37], [38].

C. DTI
Diffusion MRI is a technique that measures the extent of water diffusion along any desired
direction in each voxel [53]. Such measurements have revealed that diffusion of brain water
has strong directionality (anisotropy) attributed to the presence of axons and/or myelination
[54]. Diffusion of brain water is often confined to a direction parallel to neuronal fibers. If there
is a region where fibers align in a direction, diffusion of water may be restricted to a direction
perpendicular to the fibers and tend to diffuse parallel to them. The properties of such water
diffusion can be expressed mathematically as a “3 × 3 tensor” [55]. The tensor can be further
conceptualized and visualized as an ellipsoid, the three main axes of which describe an
orthogonal coordinate system. This ellipsoid can be characterized by six parameters; diffusion
constants along the longest, middle, and shortest axes (λ1, λ2, and λ3) and the directions of
these axes. Once the diffusion ellipsoid is fully characterized at each pixel of the brain images,
local fiber structure can be deduced. For example, if λ1⪢λ2>λ3 (diffusion is anisotropic), it
suggests the existence of dense and aligned fibers within each pixel, whereas isotropic diffusion
(λ1 ~ λ2 ~ λ3) suggests sparse or nor aligned fibers. When diffusion is anisotropic, the direction
of λ1 tells the direction of the fibers. The degree of anisotropy can be quantified using these
parameters obtained from diffusion MRI measurements [56], [57].

Among the metrics for quantifying diffusion anisotropy, fractional anisotropy (FA) is
considered to be the most robust [58]:
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(2)

where λ = (λ1 + λ2 + λ3)/3

Within the constraints of in-plane resolution, some regions of WM normally have very high
FA, and this probably represents architectural differences in fiber tract organization at the
intravoxel level, i.e., intact fibers crossing within a voxel. Many pathologic processes that cause
changes at the microstructural level, such as demyelination and corruption of microtubules,
are likely to cause a significant measurable decrease in FA due to the diminished intravoxel
fiber incoherence.

D. EEG
EEG is a technique that measures brain function by recording and analyzing the scalp electrical
activity generated by brain structures. Like MRI, it is a noninvasive procedure that can be
applied repeatedly in patients, normal adults, and children with virtually no risks or limitations.
Local current flows are produced when brain cells are activated. It is believed that contributions
are made by large synchronous population although it is not clear if small populations also
make a contribution. The recorded electrical signals are then amplified, digitized, and stored.

ERPs are small voltage fluctuations resulting from evoked neural activity and are one of many
ways to process EEG data. These electrical changes are extracted from scalp recordings by
computer averaging epochs (recording periods) of EEG time-locked to repeated occurrences
of sensory, cognitive, or motor events. The spontaneous background EEG fluctuations, which
are typically random relative to when the stimuli occurred, are averaged out, leaving the event-
related brain potentials. These electrical signals reflect only that activity which is consistently
associated with the stimulus processing in a time-locked way. The ERP thus reflects, with high
temporal resolution, the patterns of neuronal activity evoked by a stimulus.

Due to their high temporal resolution, ERPs provide unique and important timing information
about brain processing and are an ideal methodology for studying the timing aspects of both
normal and abnormal cognitive processes. More recently, ICA has been used to take advantage
of EEG activity that may be averaged out by computing an ERP [59]. Magnetoencephalography
(MEG) is a complementary technique that senses the magnetic field produced by
synchronously firing neurons. The MEG system is much more expensive, requiring
superconducting sensors, but also has the advantage that the magnetic field is not attenuated
by the scalp and skin.

III. Brain Imaging Feature Generation
Often it is useful to use existing analysis approaches to derive a lower dimensional feature from
the imaging data. These features can then be analyzed in order to integrate or fuse the
information across multiple modalities. The data types on which we focus in this paper are
fMRI, sMRI (including T1- and T2-weighted scans), and EEG. Processing strategies for each
of these data types have been developed over a number of years. Each data type, after being
preprocessed as before, is reduced into a feature, which contributes an input vector from each
modality for each subject and each task to the joint ICA framework we introduce in this paper.
A feature is a subdataset extracted from one type of data, related to a selected brain activity or
structure. A summary of some features is provided in Table I.
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In the table, the first two modalities are fMRI, each of which has two stimuli that activate the
brain differently. The first is a Sternberg task (SB) and the second is an auditory oddball task
(AOD). The third modality is structural MRI for which three tissue segmentations can be
computed. The fourth modality is EEG, also collected during an AOD task. The final modality
is DTI, for which a measure of fractional anisotropy is computed.

IV. Feature-Based Fusion Framework Using ICA
ICA is a statistical method used to discover hidden factors (sources or features) from a set of
measurements or observed data such that the sources are maximally independent. Typically,
it assumes a generative model where observations are assumed to be linear mixtures of
independent sources, and unlike PCA that uncorrelates the data, ICA works with higher order
statistics to achieve independence. A typical ICA model assumes that the source signals are
not observable, statistically independent, and non-Gaussian, with an unknown, but linear,
mixing process. Consider an observed M-dimensional random vector denoted by x = [x1, ⋯,
xM]T that is generated by the ICA model:

(3)

where s = [s1, s2, ⋯., sN]T is an N-dimensional vector whose elements are assumed to be
independent sources and AM × N is an unknown mixing matrix. Typically, M ≥ N, so that A is
usually of full rank. The goal of ICA is to estimate an unmixing matrix WN × M such that y
[defined in (4)] is a good approximation to the “true” sources s:

(4)

ICA has been shown to be useful for fMRI analysis for several reasons. Spatial ICA finds
systematically nonoverlapping, temporally coherent brain regions without a specific
assumption about the shape of the temporal response. The temporal dynamics of many fMRI
experiments are difficult to study with fMRI due to the lack of a well-understood brain-
activation model. ICA can reveal intersubject and interevent differences in the temporal
dynamics. A strength of ICA is its ability to reveal dynamics for which a temporal model is
not available [60]. Spatial ICA also works well for fMRI as it is often the case that one is
interested in spatially distributed brain networks.

ICA has demonstrated considerable promise for the analysis of fMRI [18], EEG [61], and sMRI
[62] data. In this section, we present a data fusion framework utilizing ICA, which we call the
joint ICA (jICA). Note that the ICA approach we described earlier for fMRI data is a first-level
analysis (i.e., is applied directly to the 4-D data without reduction into a feature, and though
the basic algorithm is similar, with the same basic assumptions, the application details are
different from the ICA we propose to utilize at the second level, on the generated features). An
amplitude map generated by ICA at the first level would be considered a feature similar to an
amplitude map generated by the GLM approach (Fig. 1).

Given two sets of data (can be more than two, for simplicity, we first consider two), XF and
XG, we concatenate the two datasets side-by-side to form XJ and write the likelihood as

(5)
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where uJ = WxJ. Here, we use the notation in terms of random variables such that each entry
in the vectors uJ and xJ correspond to a random variable, which is replaced by the observation
for each sample n = 1,⋯, N as rows of matrices UJ and XJ. When posed as a maximum
likelihood problem, we estimate a joint demixing matrix W such that the likelihood L (W) is
maximized.

Let the two datasets XF and XG have dimensionality N × V1 and N × V2, then we have

(6)

Depending on the data types in question, the previous formula can be made more or less
flexible.

This formulation assumes that the sources associated with the two data types (F and G)
modulate the same way across N samples (usually subjects). This is a strong constraint;
however, it has a desirable regularization effect to the problem simplifying the estimation
problem significantly, which is important especially when dealing with different data types.
Also, the framework provides a natural link to two types of data by constraining the
contributions to be similar. In addition, it is important to normalize the two data types
independently so that they have similar contributions to the estimation and that V1 ≈ V2. The
normalization process is important and should be modality specific (see examples in [22],
[23], [27], and [63]). The assumption of the same linear covariation for both modalities is fairly
strong; however, we have demonstrated their utility in a variety of cases and they appear to
provide meaningful results [22], [23], [27], [63], [64]. In addition, we are exploring other
formulations that do not require the same linear covariation for the different modalities [65],
[66].

The underlying assumptions for the form given in (5) depend on the data types used for F and
G. For example, when the two data types belong to the same data type but different tasks, the
assumption of pJ = pF = pG is more plausible than when dealing with different data types. On
the other hand, when little is known about the nature of the source distributions in a given
problem, imposing a distribution of the same form provides significant advantages yielding
meaningful results as we demonstrate with an fMRI-ERP fusion example. In addition, certain
nonlinear functions such as the sigmoid function has been noted as providing a robust solution
to the ICA problem providing a good match for a number of source distributions, especially
when they assume super-Gaussian statistics.

Hence, there are different ways to relax the assumptions made in the earlier formulation, such
as instead of constraining the two types of sources to share the same mixing coefficients, i.e.,
to have the same modulation across N samples, we can require that the form of modulation
across samples for the sources from two data types are correlated but not necessarily the same.
We have implemented such an approach, called parallel ICA [66], [67].

V. Application of the Fusion Framework
In this section, we show examples of the application of jICA introduced in Section V to real
data from multiple tasks/modalities using: 1) multitask fMRI data; 2) fMRI/sMRI; and 3) ERP/
fMRI and sMRI/DTI data. Furthermore, we address the selection of best input features for the
jICA data fusion to achieve the best performance, in terms of identifying components that
convey differences between two groups.
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In the examples we present, fMRI data were preprocessed using the software package SPM2
[68]. sMRI data were segmented into GM, WM, and CSF images using the same program.
ICA was used to remove ocular artifacts from the EEG data [69]. The EEG data were then
filtered with a 20 Hz low-pass filter. ERPs were constructed for trials in which participants
correctly identified target stimuli from the midline central position (Cz) because it appeared
to be the best single channel to detect both anterior and posterior sources.

A. Multitask fMRI
We performed a joint analysis of fMRI data collected from a Sternberg (SB) task and an AOD
task. Data in each task were collected from 15 controls and 15 patients with schizophrenia.
Additional details of the tasks and subjects are provided in [27]. A single-joint component was
found to discriminate schizophrenia patients and healthy controls. A joint histogram was
computed by ranking voxels surviving the threshold for the AOD and SB parts of the joint
source in descending order and pairing these two voxel sets. Single subject and group-averaged
joint histograms are presented in Fig. 2(a) and (b) and the marginal histograms for the AOD
and SB tasks are presented in Fig. 2(c) and (d).

In general, more AOD task voxels were active in the controls, and the SB task showed a slight
increase standard deviation for the patients. Results also revealed significantly more correlation
between the two tasks in the patients (p < 0.000085). A possible synthesis of the findings is
that patients are activating less, but also activating with a less unique set of regions for these
very different tasks, consistent with a generalized cognitive deficit.

B. fMRI-sMRI
It is also feasible to use jICA to combine structural and functional features. Our approach
requires acceptance of the likelihood of GM changes being related to functional activation.
This is not an unreasonable premise when considering the same set of voxels [70] or even
adjacent voxels [13], but as the current study shows, it also requires the acceptance of related
GM regions and functional regions that are spatially remote. Given the functional
interconnectedness of widespread neural networks, we suggest that this is also a reasonable
conception for the relationship between structural and functional changes.

The next example is from a jICA analysis of the fMRI data of AOD task and GM segmentation
data [22]. AOD target activation maps and segmented GM maps were normalized to a study-
specific template in order to control for intensity differences in MRIs based on scanner,
template, and population variations [71].

Results are presented in Fig. 3. The AOD part of the joint source is shown in Fig. 3(a), the GM
part of the joint source is shown in Fig. 3(b), and the ICA loading parameters separated by
group and shown in Fig. 3(c). Only one component demonstrated significantly different
loadings (p ~ 0.0012) in patients and controls (loading for controls was higher than that for
patients). Different regions were identified for the fMRI and sMRI data. For display, AOD and
GM sources were converted to Z-values and thresholded at |Z| > 3.5.

The main finding was that the jICA results identified group differences in bilateral parietal and
frontal as well as right temporal regions in GM associated with bilateral temporal regions
activated by the AOD target stimulus. This finding suggests that GM regions may serve as a
morphological substrate for changes in (functional) connectivity. An unexpected corollary to
this finding was that, in the regions showing the largest group differences, GM concentrations
were increased in patients versus controls, suggesting that these increases are somehow related
to decreases in functional connectivity in the AOD fMRI task.
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C. fMRI-ERP
The feature-based jICA framework was used for ERP and fMRI data collected from 23 healthy
controls and 18 chronic schizophrenia patients during the performance of the AOD task. Fifteen
joint components were estimated from the target-related ERP time courses and fMRI activation
maps via the jICA. One joint component was found to distinguish patients and controls using
a two-sample t-test (p < 0.0001) on patient and control loading parameters. This identified
component shows a clear difference in fMRI at bilateral frontotemporal regions implicated in
schizophrenia (Fig. 4, right), and in ERP at times during the N2/P3 complex (Fig. 4, left) that
have been previously implicated in patients.

In the same way as for Fig. 2 significant voxels/time points were used to generate an ERP
versus fMRI histogram for controls (orange) and patients (blue), shown in Fig. 5. The controls
are clearly showing increases in both fMRI and ERP data.

D. sMRI-DTI
We now present an example showing GM and FA maps in a jICA analysis in 11 participants.
Seven components were estimated and a template of the occipital lobe generated from a
previous study was used to select the FA and joint GM map. A picture of the resulting joint
source (for each modality, the slice corresponding to the maximal coupling is displayed) is
shown in Fig. 6 and demonstrates GM regions in occipital lobe, and bilateral lateral geniculate
regions are associated with WM occipital lobe regions consistent with the optic radiations (that
is, higher FA in optic radiations is associated with lower GM values in lateral geniculate and
visual cortex).

The group was then split into an old (mean age 63 ± 10) and young (mean age 44 ± 10) cohort.
The weight parameter calculated from the earlier ICA estimation is plotted in Fig. 6 (right) as
a function of cohort membership. A highly significant difference was observed with young
participants showing higher FA and GM (see) and older participants showing lower FA and
GM. This is consistent with the loss of GM volume (and WM FA)with age.

Analyzing GM maps and FA maps together can be challenging as the FA images are warped
due to the various gradient directions used. In the earlier analysis, GM and FA are coupled
together at an image level, but not at a voxel level. Thus, misregistration between image types
will not directly affect the results.

E. Parallel ICA
As discussed in Section V, the strong regularization imposed by the jICA framework can be
relaxed in a number of ways to allow for more flexibility in the estimation. One such approach
we investigated is called parallel independent component analysis (paraICA). As a framework
to investigate the integration of data from two imaging modalities, this method is dedicated to
identify components of both modalities and connections between them through enhancing
intrinsic interrelationships. We have applied this approach to link fMRI/ERP data and also
fMRI and genetic data (single nucleotide polymorphism arrays) [65]-[67]. Results show that
paraICA provides stable results and can identify the linked components with a relatively high
accuracy.

The result for fMRI/ERP data is consistent with that found by the jICA algorithm [72], where
a shared mixing matrix is used for both modalities. The fundamental difference is that paraICA
assumes that the fMRI and ERP data are mixed in a similar pattern but not identically. The
paraICA pays more attention to individually linked components and their connections, while
the jICA studies intereffects between EEG and fMRI as a whole [72]. It provides a promising
way to analyze the detail coupling between hemodynamics and neural activation.
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The methods in this section along with some example data are available in a new Matlab toolbox
called Fusion ICA Toolbox or FIT (http://icatb.sourceforge.net).

VI. Selection of Joint Components
In some cases, it is important to define criteria for selecting among joint components. For
example, when studying two groups, e.g., patients and controls, we may want to determine
which combination of joint features is optimal in some sense. We apply our approach to the
problem of identifying image-based biomarkers in schizophrenia. A biomarker is a
characteristic that is objectively measured and evaluated as an indicator of normal biologic
processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In
our proposal, a biomarker would be the joint component resulting from the optimal combination
of fMRI, EEG, and sMRI features. We have used two criteria for this: separation of the mixing
parameters and separation of the source distributions.

The estimated source distributions for these components are computed separately for each
group and the Kullback-Leibler (KL) divergence is computed between the patient (sz) and
control (hc) distributions [i.e., DKL (psz (f) ∥phc (f)),where f is a multidimensional feature/
modality vector [73]]. There are several possible divergence measures including J, KL, and
Renyi. J divergence is simply a symmetric KL divergence, such that

.

Typical reasons for selecting one divergence over another are the ability to express the solution
analytically, given a particular assumed distributional form or to sensitize the divergence to
particular distributional features [e.g., minimizing the Renyi (α) divergence with α = 0.5 has
been shown to be optimal for separating similar feature densities [74]; the limiting case of α =
1 results in the KL divergence].

We compute features for: 1) AOD target-related fMRI activity (AOD_T); 2) AOD novel-
related fMRI activity (AOD_N); 3) SB recognition fMRI activity (SB); and 4) sMRI GM values
(GM). All four of these features were collected on each of 15 controls and 15 patients with
schizophrenia.

In order to evaluate the impact of the choice of divergence measures, we have computed results
for several divergence measures. An example of the results is shown in Table II. The number
in parenthesis indicates the relative gain (ratio of current row/next row) where larger numbers
indicate better patient/control separation. We compare the KL and Renyi divergences with α
= 0.5 as well as their symmetric counterparts.

The results shown in Fig. 7 are ranked according to a divergence measure, in order to determine
which combination of features/modalities provides better separation. For example, the result
shows us that combining the SB feature with the AOD_N or AOD_T features provides
increased separation beyond SB or AOD_T alone. It also suggests that the incorporation of
GM tends to decrease the separation. Note that, though we have demonstrated earlier a
comparison of patients and controls, this method is a general one, useful for studying a variety
of questions. For example, instead of patient versus controls, we could have examined age-
related activity only in healthy controls.
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In summary, we have presented a data fusion approach based upon ICA and have shown
multiple examples that demonstrate the feasibility of combining multimodal data. The results
we show appear to be clinically plausible and may be useful in improving our understanding
of schizophrenia. There is also some possibility to use multimodal approaches to develop new
tools for classification and treatment prediction in schizophrenia. We have made some progress
in this regard [75], [76]; however, much more work is needed, including validation and
comparison with currently used approaches in the clinic. The methods and much of the data
shown in the paper are provided as part of our Matlab toolbox called FIT.

VII. Conclusion
We present a general framework for combining different types of brain imaging data at the
group level via features computed from each data type. We also show that by combining
modalities in certain ways, performance is improved. This approach enables us to take
advantages of the strengths and limitations of various modalities in a unified analytic
framework and demonstrates that data fusion techniques can be successfully applied to joint
brain imaging data to reveal unique information that cannot be evaluated in any one modality.
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Fig. 1.
Illustration of model in which loading parameters are shared among features. The feature matrix
is organized by placing the features (e.g., SPM map and GM map) from the two modalities
side by side (with one row containing data collected from the same subject for both modalities).
This matrix is then modeled as containing spatially independent joint source images that share
common mixing matrix parameters.
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Fig. 2.
Cross-task 2-D histograms for AOD versus SB fMRI activation: joint 2-D histograms for
voxels identified in the analysis. Individual (a) and group average difference (b) histograms
[with orange areas larger in controls and blue areas larger in patients] are provided along with
the marginal histograms for the AOD (SPM contrast image for “targets”) (c) and Sternberg
(SPM contrast image for “recall”) (d) data.
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Fig. 3.
AOD/GM jICA analysis: only one component demonstrated a significant difference between
patients and controls. The joint source map for the AOD (left) and GM (middle) data is
presented along with the loading parameters for patients and controls (far right).
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Fig. 4.
ERP/fMRI jICA: joint component that showed significantly different loading parameters (p <
0.0001) for patients versus controls. Control (yellow) and patient (blue) average ERP plots
along with the ERP part of the identified joint component (pink) (left). Thresholded fMRI part
of the joint component showing bilateral temporal and frontal lobe regions (right).
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Fig. 5.
ERP/fMRI histograms: joint histograms for patients (blue) and controls (orange) (left).
Simulated data from two Gaussians (a) showing a case in which marginal histograms (b) and
(c) are less able to detect differences between groups whereas the histogram in the direction
of maximal separation (d) clearly shows the two distributions from patients and controls (right).
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Fig. 6.
GM and FA spatial correspondence (left) and corresponding weights (right) comparing older
and younger participants (p < 0.002).
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Fig. 7.
Example of evaluation of KL divergence for combinations of features comparing two-way
fusion with nonfusion. Larger KL divergence values represent better patient versus control
separation.
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TABLE I
Core Features for FMRI (Sternberg Working Memory Task [SB], AOD), sMRI, and EEG (AOD task)

Modality Core-Feature

fMRI Recognition related activity [77]

SB task Encode-related activity [77]

fMRI Target-related activity [78]

AOD task Novel-related activity [78]

sMRI GM concentration [79]

WM concentration [79]

CSF concentration [79]

EEG Target-related ERP [80]

AOD task Novel-related ERP [80]

DTI Fractional anisotropy [58]

The fMRI features are computed using the SPM software and represent fMRI activity in response to certain stimuli. The sMRI measures are the result of
segmentation of T1-weighted brain images, and the EEG features are time-locked averages to the stimuli.
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TABLE II
Several Divergence Measures for Three Combinations of fMRI Features

KL J Renyi (0.5)

Oddball & Stemberg 0.497 (7.4) 0.480 (5.9) 0.2874 (7.4)

Oddball 0.067 (1.3) 0.081 (1.6) 0.039 (1.5)

Steinberg 0.050 0.050 0.0254
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