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Abstract
Sudden infant death syndrome (SIDS) is defined as the sudden and unexpected death of an infant
less than 12 months of age that occurs during sleep and remains unexplained after a complete autopsy,
death scene investigation, and review of the clinical history. It is the leading cause of postneonatal
mortality in the developed world. The cause of SIDS is unknown, but is postulated to involve
impairment of brainstem-mediated homeostatic control. Extensive evidence from animal studies
indicates that serotonin (5-HT) neurons in the medulla oblongata play a role in the regulation of
multiple aspects of respiratory and autonomic function. A subset of SIDS infants have several
abnormalities in medullary markers of 5-HT function and genetic polymorphisms impacting the 5-
HT system, informing the hypothesis that SIDS results from a defect in 5-HT brainstem-mediated
control of respiratory (and autonomic) regulation. Here we review the evidence from postmortem
human studies and animal studies to support this hypothesis and discuss how the pathogenesis of
SIDS is likely to originate in utero during fetal development.

1. The Sudden Infant Death Syndrome
The sudden infant death syndrome (SIDS) is defined as the sudden death during sleep of an
infant less than one year of age, that remains unexplained after a thorough investigation
including performance of a complete autopsy, and review of the circumstances of death and
the clinical history (Willinger et al. 1991). Despite significant reductions in SIDS rates in recent
years due to successful risk-reduction campaigns, SIDS remains the leading cause of death for
infants between 1 month and 1 year of age in developed countries (Mathews et al. 2002). The
majority (90%) of SIDS deaths occur within the first 6 postnatal months, with the peak
incidence observed at 2-4 months of age (Stewart 1975a; Stewart 1975b). Multiple studies have
identified robust associations between SIDS and environmental risk factors, including prone
or face down sleeping (Fleming et al. 1990; Fleming et al. 1996; Blair et al. 2006), bed sharing
(Blair et al. 1999; Hauck et al. 2003; Tappin et al. 2004; Tappin et al. 2005; Pelayo et al.
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2006; Mitchell 2007; O'Mara 2007; Vennemann et al. 2009), and over-bundling (Fleming et
al. 1990; Fleming et al. 1996). Several risk factors for SIDS relate to the mother and pregnancy,
including prematurity, low birth weight, prenatal and postnatal cigarette smoke exposure
(Schoendorf et al. 1992; Haglund 1993; Blair et al. 1996; Fleming et al. 1996; MacDorman et
al. 1997; Wisborg et al. 2000; Anderson et al. 2005; Mitchell et al. 2006) and prenatal alcohol
ingestion (Scragg et al. 1993; Alm et al. 1999; Iyasu et al. 2002; Kinney et al. 2003; Klug et
al. 2003; Duncan et al. 2008b). There is also a male bias in SIDS with twice as many boys than
girls dying of SIDS (Froggatt et al. 1968; Beal 1972; Stewart 1975b; Arneil et al. 1985; Millar
et al. 1993). Likewise, there is a noted ethnic disparity with significantly increased SIDS rates
among African American infants and Native American infants (Mathews et al. 2002). The
Triple Risk hypothesis of SIDS has proven useful in thinking about SIDS etiology (Filiano et
al. 1994). It posits that SIDS occurs when three factors impinge on the infant simultaneously–
an underlying vulnerability in the infant, a critical period in development (the first 6 postnatal
months when 90% of SIDS occurs), and homeostatic stressors heightening the infant's
vulnerability (e.g. at the time of infant death hypercapnia from rebreathing exhaled air as a
result of sleeping prone in the face-down position). While the pathogenesis of SIDS remains
unknown, consensus of opinion implicates impairment of brainstem-mediated respiratory and
autonomic control, including reduced chemoreceptor sensitivity (Shannon et al. 1977; Hunt et
al. 1981), respiratory rhythm abnormalities (Steinschneider 1977; Kelly et al. 1979), failure to
initiate inspiration (Hunt 1981; Hunt et al. 1981), and gasping deficit (Hunt 1981) leading to
the infant death. Extensive evidence from animal studies indicates that brainstem serotonin (5-
HT) systems influence several aspects of respiratory function (Richerson 2004; Hodges et al.
2008a). Multiple abnormalities in markers of 5-HT function are present in the brainstem of
approximately 70% of SIDS infants (Paterson et al. 2006b). This observation informs the
hypothesis that a defect in brainstem 5-HT networks resulting in failure of protective
respiratory (and autonomic) responses to potentially life-threatening, but normally occurring
sleep-related events (e.g., face down position) with sequelae including hypoxia, hypercapnia
might account for SIDS in a subset of cases. In this review we discuss the evidence from human
and animal studies to support the hypothesis that defective 5-HT mediated regulation of
respiratory and autonomic function contributes to the SIDS death and how specific features of
5-HT neuronal function and development are synergistic with the environmental and genetic
risk factors associated with SIDS.

2. Distribution of 5-HT Neurons in the Brainstem
Neurons synthesizing 5-HT (and expressing tryptophan hydroxylase [TPH]), localized
exclusively to the brainstem in distinct cell groups classically defined as B1-B9, differentially
project to virtually all regions of the neuraxis (Dahlstrom et al. 1964; Steinbusch 1981;
Steinbusch et al. 1981; Törk et al. 1990; Jacobs et al. 1992; Hornung 2003). These cell groups
are divided into a rostral domain consisting of groups B4-B9 in the midbrain and a caudal
domain consisting of groups B1-B3 in the medulla (Fig 1). The two domains of the brainstem
5-HT neurons are distinct in their developmental origins, functions, and connectivity
(Dahlstrom et al. 1964; Steinbusch 1981; Steinbusch et al. 1981; Törk et al. 1990; Jacobs et
al. 1992; Hornung 2003). The rostral domain, located in upper brainstem, projects “rostrally”
and diffusely to the cerebral cortex, thalamus, hypothalamus, basal ganglia, hippocampus, and
amygdala. It participates in the mediation of arousal, cognition, mood, motor activity, and
cerebral blood flow. The caudal domain in the medulla projects “caudally” and diffusely to
other brainstem sites (see below), cerebellum, and spinal cord (Dahlstrom et al. 1964;
Steinbusch 1981; Steinbusch et al. 1981; Törk et al. 1990; Jacobs et al. 1992; Hornung 2003)
and influences breathing, cardiovascular control, autonomic output, motor control, and pain
processing.
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3. Medullary 5-HT Neurons and Respiratory Function
In rodents, medullary 5-HT neurons are located in the midline raphé (including, the raphé
pallidus, raphé magnus and raphé obscurus) and in the parapyramidal region at the ventrolateral
medullary surface. These neurons project to the nucleus of the solitary tract (NTS), nucleus
ambiguus (nAm) retrotrapezoid nucleus (RTN), preBötzinger Complex (preBötC),
hypoglossal motor nucleus (HG) in the brainstem, and phrenic motor nucleus in the cervical
cord (Steinbusch 1981; Steinbusch et al. 1981; Holtman et al. 1986; Holtman et al. 1987;
Holtman 1988; Connelly et al. 1989; Smith et al. 1989; Zhan et al. 1989; Pilowsky et al.
1990; Voss et al. 1990; Jacobs et al. 1992; Manaker et al. 1993; Feldman et al. 2003) and
modulate several aspects of respiratory function including respiratory rhythmogenesis, central
chemosensitivity, and long-term changes in respiratory function (i.e., respiratory plasticity).

3.1 Respiratory Rhythm Generation
Medullary 5-HT neurons play an important role in the generation and modulation of respiratory
rhythmogenesis. Raphé 5-HT neurons have reciprocal connections with neurons in the preBötC
(the central pattern generator) and stimulation of these neurons releases 5-HT stimulating
respiratory output-effects that are blocked by 5-HT receptor antagonists (Morin et al. 1990;
Morin et al. 1991a; Morin et al. 1991b; Di Pasquale et al. 1992; Al-Zubaidy et al. 1996; Ptak
et al. 2002; Schwarzacher et al. 2002; Ptak et al. 2009). While 5-HT is predominantly excitatory
(Hodges et al. 2008a), specific aspects of preBötC function and respiratory rhythm are mediated
by specific 5-HT receptor subtypes including 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B and 5-
HT4A receptors (Morin et al. 1990; Morin et al. 1991a; Morin et al. 1991b; Di Pasquale et al.
1992; Onimaru et al. 1998; Manzke et al. 2003; Cao et al. 2006; Gunther et al. 2006; Qin et al.
2007; Manzke et al. 2008). Evidence suggests that the 5-HT2A receptor is particularly important
in preBötC function and is necessary for the generation of normal respiration (Pena et al.
2002) and for gasping (Tryba et al. 2006; St-John et al. 2008).

3.2 Respiratory Chemosensitivity
Medullary 5-HT neurons, located in close proximity to large arteries entering the brainstem,
are thought to detect arterial changes in PCO2 (see Corcoran et al., 2009 this issue), thereby
impacting respiratory chemosensitivity. 5-HT neurons are intrinsically chemosensitive in
vitro, and some increase their firing rate in vivo in response to hypercapnia (Richerson et al.
2001; Wang et al. 2001; Bradley et al. 2002; Richerson 2004; Hodges et al. 2008b). Raphé 5-
HT neurons modulate the function of chemosensitive neurons in the retrotrapezoid nucleus
(RTN) (Mulkey et al. 2007; Guyenet et al. 2008) (see Guyenet et al. and Onimaru et al., this
issue) and application of 5-HT receptor agonists to the classic chemoreceptor zones on the
ventral medullary surface stimulates respiration in anaesthetized rats and cats (Millhorn et al.
1986; Holtman et al. 1994; Lalley et al. 1994; Lalley et al. 1995; Richter et al. 1999; Valic et
al. 2008).

3.3 Respiratory Plasticity
Medullary 5-HT neurons also play a significant role in several forms of respiratory plasticity
(Feldman et al. 2003) including long term facilitation (LTF) of respiration following hypoxia.
Long-term facilitation is an enhancement of ventilation or respiratory motor output that persists
for hours after intermittent hypoxia (Mitchell et al. 2001). Activation of 5-HT2A receptors in
the phrenic nerve nucleus is necessary to trigger a cascade of downstream events that ultimately
result in a glutamatergic-mediated enhancement of respiratory drive to the diaphragm and
accessory respiratory musculature (Baker-Herman et al. 2004; Mahamed et al. 2007; Mahamed
et al. 2008). Similarly, 5-HT2A receptors are necessary for the induction of LTF in the
hypoglossal nucleus following episodic hypoxia and evoke a persistent increase in
genioglossus and hypoglossal nerve activity (Fuller et al. 2001; McKay et al. 2005). A recent
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study also suggests that 5-HT integrates cardio-respiratory responses to hypoxia as 5-HT3
receptor antagonists inhibit respiratory-related excitation of cardio-vagal neurons in the nAm
during hypoxia (Dergacheva et al. 2009).

4. Lesion of Medullary 5-HT Neurons in Animals Results in Respiratory and
Autonomic Dysfunction

Animals in which medullary 5-HT neurons have been lesioned or inhibited pharmacologically
display respiratory and autonomic dysfunction. Permanent lesion of medullary 5-HT neurons
via injection of 5-HT neuronal toxins (Nattie et al. 2004; Penatti et al. 2006) or focal acute
inhibition of 5-HT neurons by dialysis of 8-hydroxy-2-[di-N-propylamino]-tetralin (8-OH-
DPAT) (5-HT1A autoreceptor agonist) in the medullary raphé (Messier et al. 2004; Taylor et
al. 2005) decreases the ventilatory response to CO2 in newborn piglets. Transgenic mice with
near complete (Lm×1b knockout) and severe (Pet-1 knockout) loss of 5-HT neurons show
distinct abnormalities in breathing during early postnatal life (Erickson et al. 2003), reduced
ventilatory response to CO2 and an inability to maintain body temperature in cold stress
(Hodges et al. 2008a; Hodges et al. 2008b). Notably, transgenic mice overexpressing the 5-
HT1A auto-receptor (which arguably have reduced extracellular 5-HT levels) die suddenly and
unexpectedly in postnatal life (Audero et al. 2008). These mice exhibit spontaneous episodes
of bradycardia accompanied by a drop in body temperature, with some animals dying during
these episodes (Audero et al. 2008). Animal models where 5-HT is in excess also display
respiratory dysfunction. Injection of neonatal rats with the 5-HT precursor L-tryptophan
increases brain 5-HT level and induces potentially fatal apneas (Hilaire et al. 1993). Similarly,
mice lacking monoamine oxidase (MAO), the major enzyme for 5-HT breakdown, have
elevated levels of 5-HT and display an increased frequency of respiratory pauses compared to
wild-type mice, defects which are resolved by pharmacological blockade of 5-HT receptors or
5-HT biosynthesis (Real et al. 2007). In addition, 5-HTT knockout mice show a dramatic
decrease in the ventilatory response to CO2 (Li et al. 2008); while mice lacking 5-HT2A protein
display an increased frequency of respiratory pauses during non-REM sleep (Popa et al.
2005). The observations in these animal models support the idea that altering medullary 5-HT
function is detrimental to physiological control systems and may contribute to sudden
unexpected death. Taken together, these data provide conclusive evidence that medullary 5-
HT neurons regulate multiple aspects of respiratory function including respiratory rhythm
generation and chemosensitivity, and respiratory and autonomic plasticity.

5. The Medullary 5-HT System in Humans
In humans, medullary 5-HT neurons are located in regions homologous to the 5-HT neurons
in the rodent brainstem, including the midline raphé (raphé obscurus and raphé pallidus), extra-
raphé (gigantocellularis [GC], paragigantocellularis lateralis [PGCL] and intermediate
reticular nucleus [IRZ]), and in the arcuate nucleus (Arc) at the ventral medullary surface
(Kinney et al. 2004) (Fig 2). These cell groups constitute the Medullary 5-HT System as defined
by Kinney et al., (2007). Evidence from neuron tract tracing studies with the lipophilic
fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)
indicates that these 5-HT neurons send projections to one another as well as to nuclei with
respiratory-related function including the NTS and HG (Zec et al. 1997; Zec et al. 2001; Zec
et al. 2003); a hypothesis supported by the presence of serotonin transporter (5-HTT), 5-
HT1A receptor, and 5-HT2A receptor binding sites in each of these regions (Paterson et al.
2004; Paterson et al. 2006b; Paterson et al. 2009). Comparative anatomy indicates that the Arc
is homologous to the respiratory chemosensitive fields at the ventral medullary surface of
rodents and cats (Filiano et al. 1990; Paterson et al. 2006a). It is proposed to play a similar role
in respiratory CO2 sensitivity in humans as it expresses both 5-HT and glutamate neurons
(Paterson et al. 2006a), recognized respiratory chemosensors (Mulkey et al. 2004; Richerson
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2004; Weston et al. 2004). Similarly, the PGCL in the rostral ventrolateral medulla of the
human is homologous to the medullary region in which the preBötC is located in rats (Kinney
et al. 2007; Paterson et al. 2009). We have previously identified neurons in the PGCL that co-
express immunoreactivity for neurokinin-1 (NK1) receptors, and somatostatin (SST), markers
in combination for rodent preBötC neurons (Paterson et al., unpublished observations), raising
the possibility that these neurons are homologues of rodent preBötC neurons and, likewise,
play a role in respiratory rhythm generation. In addition, these neurons express
immunoreactivity for both 5-HT1A and 5-HT2A receptors (Fig 3) suggesting that, as in rodents,
respiratory rhythmogenesis in the human is modulated by 5-HT. These observations support
the idea that 5-HT neurons in the human medulla play similar roles in the modulation of
respiratory function as demonstrated for 5-HT neurons in rodents.

6. Medullary 5-HT System Abnormalities, Respiratory and Autonomic
Dysregulation, and SIDS

Abnormalities in markers of 5-HT function have been observed in the medullary 5-HT system
(i.e., raphé obscurus, PGCL, IRZ, Arc, HG, NTS) in SIDS infants, including an increased
number of 5-HT neurons, many of which are immature (Paterson et al. 2006b), reduced 5-
HT1A and 5-HT2A receptor expression (Panigrahy et al. 2000; Ozawa et al. 2002a; Ozawa et
al. 2002b; Kinney et al. 2003; Paterson et al. 2006b), reduced 5-HTT binding (Paterson et al.
2006b), abnormal TPH expression (Sawaguchi et al. 2003; Machaalani et al. 2008), reduced
brain 5-HT levels (Sparks et al. 1991), altered 5-HT turnover (Cann-Moisan et al. 1999) and
altered 5-HT breakdown (Sparks et al. 1991). These observations inform the idea that multiple
elements of respiratory and autonomic regulation, mediated by the 5-HT System, are defective
in SIDS, including but not restricted, to respiratory rhythmogenesis and respiratory responses
to hypercapnic and/or hypoxic challenge. This idea is supported by a SIDS infant who was
observed to have subtle respiratory and cardiac dysfunction at birth and 5-HT receptor binding
abnormalities at autopsy 2 weeks later (Kinney et al. 2005). Taken together, the above
observations provide evidence to support the idea that medullary 5-HT abnormalities cause
respiratory dysfunction that potentially contributes to the death of the infant in SIDS, i.e., in
terms of the Triple Risk Model of SIDS, the medullary 5-HT defect is, or is part of, the
underlying abnormality that predisposes the infant to sleep related death particularly when
combined with an environmental stressor, such as prone sleeping, during the critical
developmental period.

7. Medullary 5-HT System Abnormalities in SIDS Originate During Fetal
Development

Several observations indicate that SIDS is a developmental disorder that originates during fetal
life: the incidence of SIDS is greater in preterm and growth restricted infants; the peak incidence
of SIDS is related to a critical and finite early developmental period (2-4 postnatal months);
and prenatal exposure to environmental toxins including cigarette smoke (Schoendorf et al.
1992; Haglund 1993; Blair et al. 1996; Fleming et al. 1996; MacDorman et al. 1997; Wisborg
et al. 2000; Anderson et al. 2005; Mitchell et al. 2006) and alcohol (Scragg et al. 1993; Alm
et al. 1999; Iyasu et al. 2002; Kinney et al. 2003; Klug et al. 2003; Duncan et al. 2008b; Lavezzi
et al. 2009) are major risk factors for SIDS. Evidence from post-mortem human studies suggests
that the development of the medullary 5-HT System is abnormal in SIDS, including an
increased number of 5-HT neurons with immature morphology (Paterson et al. 2006b),
abnormal/immature synapse formation (Paterson et al. 2006b), and differential age-related
changes in 5-HT receptor binding (i.e., binding decreases significantly with postnatal age in
SIDS cases but not controls) in the medulla of SIDS cases compared to controls (Panigrahy et
al. 2000; Kinney et al. 2003). These observations offer a possible explanation for the low
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incidence of SIDS during the first postnatal month, followed by the period of peak incidence
at 2-4 months: at birth 5-HT function is relatively normal, but becomes progressively defective
during the first postnatal month as 5-HT receptor binding decreases; by 2-4 months 5-HT
dysfunction reaches the “threshold” whereby the infant is unable to respond appropriately to
an environmental stressor (e.g., hypoxia), ultimately leading to the sudden death of the infant.

7.1 Altering Fetal 5-HT Levels Results in Postnatal Respiratory Dysfunction in Animals
In both rodents (Gaspar et al. 2003; Nakamura et al. 2007) and humans (Kinney et al. 2007)
5-HT neurons are among the first to be expressed during embryogenesis: they develop from
embryonic days 10-12 in mice and are present as early as 7 gestational weeks in humans
(Kinney et al. 2007). During development 5-HT has neurotrophic actions and plays a role in
regulating cell division, migration, differentiation and synaptogenesis (Lauder 1988; Lauder
1990). Thus, alterations in 5-HT levels during fetal life may adversely affect the intrauterine
and postnatal development of the 5-HT and other related neuronal systems. Indeed, both
depletion and elevation of 5-HT during gestation adversely affect respiratory neuronal network
development and function in animals in the postnatal period. MAOA-deficient mice, who have
endogenous levels of 5-HT that are 5 to 10-fold higher than wild type mice during the fetal
and neonatal periods (Cases et al. 1995; Lajard et al. 1999), display abnormal expression of 5-
HT1A and 5-HT1B receptors (Bou-Flores et al. 2000a; Bou-Flores et al. 2000b; Bras et al.
2008), abnormal phrenic nerve nucleus morphology, are unable to generate stable respiration
in the postnatal period (Bou-Flores et al. 2000a; Bou-Flores et al. 2000b) and have attenuated
respiratory responses to hypoxia (Burnet et al. 2001). Increasing 5-HT levels in wild type mice
by pharmacological blockade of MAOA increases the number of sleep apneas (Real et al.
2007) and mice with absence of the 5-HTT protein show a dramatic decrease in the ventilatory
response to CO2 (Li et al. 2008). Similarly, transgenic mice with significant deficits in 5-HT
during gestation (i.e., lm×1b and Pet-1 knockout mice) display abnormal respiratory rhythm
and attenuated respiratory responses to CO2 (Erickson et al. 2003; Hodges et al. 2008b). In
addition, depletion of maternal 5-HT by injection of pregnant rats with para-
chlorophenylalanine (pCPA) reduces 5-HT levels in the raphé nuclei and delays 5-HT neuronal
development in the progeny (Nakajima et al. 1998; Butkevich et al. 2003).

7.2 Prenatal Exposure to Cigarette Smoke and Alcohol Adversely Affects Brainstem 5-HT
System Development and Function

Exposure of the developing fetus to cigarette smoke and alcohol through the maternal
circulation are major risk factors for SIDS. The mechanisms through which these toxins
adversely affect the infant to predispose the baby to succumbing to SIDS are unknown, but
may involve, at least partly, disruption of the developing 5-HT system as described above.
Indeed, maternal cigarette smoking 3 months before or during pregnancy results in lower 5-
HT receptor binding in the infant postnatally (Fig 4) (Kinney et al. 2003). In addition, a recent
study identified an association between prenatal exposure to cigarette smoke and hypoplasia
of the medullary 5-HT system in SIDS (Lavezzi et al. 2009). Similarly, in experimental
animals, prenatal exposure to nicotine and cigarette smoke results in altered 5-HT neuron firing,
5-HT receptor expression (Kenny et al. 2001; Slotkin et al. 2006a; Slotkin et al. 2006b; Slotkin
et al. 2006c; Slotkin et al. 2007b), 5-HTT expression (Muneoka et al. 2001;Xu et al. 2001;
Slotkin et al. 2007a; Slotkin et al. 2007b), 5-HT turnover and depletion of brain 5-HT in the
postnatal period (King et al. 1991;Muneoka et al. 1997). These adverse effects appear to result
from the binding of nicotine to nicotinic and/or 5-HT receptors on 5-HT neurons (Bitner et al.
2002;Cucchiaro et al. 2003;Aznar et al. 2005). In the developing human medulla, nicotinic
receptors are expressed by 5-HT neurons throughout the medullary 5-HT system, including in
the raphé obscurus and arcuate nucleus (Duncan et al. 2008a), thus nicotine may act directly
on medullary 5-HT neurons to alter their development and/or function. Indeed, a recent study
identified that prenatal nicotine exposure abolishes 5-HT mediated activation of cardio-vagal
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neurons in response to hypoxia/hypercapnia (Kamendi et al. 2009). Prenatal exposure to
alcohol in the maternal circulation is also associated with reduced 5-HT receptor binding (Fig
4) (Kinney et al. 2003). In animal models of prenatal alcohol exposure, various abnormalities
of the 5-HT system have been observed, including reduced 5-HT levels and reduced 5-HT
receptor binding (Druse et al. 1988), retarded process outgrowth and migration of 5-HT
neurons, reduced density of 5-HT fibers in the medial forebrain bundle, and reduced 5-HT
neurons in the median and dorsal raphé (Sari et al. 2001;Zhou et al. 2002) and lower brainstem
(Druse et al. 2004). Prenatal alcohol also adversely affects signaling molecules and
transcription factors necessary for 5-HT development, e.g., sonic hedgehog which is involved
in the early specification of 5-HT precursors (Ahlgren et al. 1999;Ahlgren et al. 2002), and
results in defective neurogenesis, cell migration, synaptogenesis, and dendritic organization
(Haydon et al. 1987;Lauder 1990;Ivgy-May et al. 1994;Mazer et al. 1997;Werner et al.
1998;Faber et al. 1999;Luo et al. 2003;Kondoh et al. 2004). Notably, the delivery of the 5-
HT1A agonists buspirone and ipsapirone in maternal rats prevents the alcohol-induced loss of
brainstem 5-HT neurons in the pups, indicating a critical role for the 5-HT1A receptor in
neuronal development and alcohol neurotoxicity (Kim et al. 1996;Druse et al. 2004). These
observations indicate that prenatal exposure to cigarette smoke and/or alcohol adversely affects
the development and function of brainstem 5-HT systems in the postnatal period. Pre and/or
perinatal exposure to these (and other toxins) may, therefore, disrupt the development of the
medullary 5-HT system and account, at least in part, for the increased SIDS risk associated
with maternal smoking and alcohol ingestion during pregnancy. Observations in our laboratory
indicate that the human medullary 5-HT system is not fully developed at birth but continues
to mature at least through the end of the first year of life (Kinney et al. 2007). This observation
suggests an extended period from gestation through infancy where the medullary 5-HT system
is potentially vulnerable to environmental toxins and pharmacologically active agents that may
disrupt its development and function.

8. 5-HT Gene Polymorphisms and SIDS
Several studies have identified significant associations between SIDS and gene polymorphisms
resulting in alterations in 5-HT neuronal function and development. These polymorphisms
include two polymorphisms in the 5-HTT gene: an insertion-deletion polymorphism in the
promoter region (5-HTTLPR) (Heils et al. 1997; Lesch et al. 1998) and variable number tandem
repeat (VNTR) polymorphism in the second intron (Ogilvie et al. 1996; Narita et al. 2001;
Weese-Mayer et al. 2003a; Weese-Mayer et al. 2003b; Maher et al. 2006; Nonnis Marzano et
al. 2008; Opdal et al. 2008; Lavezzi et al. 2009), both of which are associated with increased
5-HTT expression. Similarly, a VNTR polymorphism in the promoter region of the MAOA
gene resulting in increased transcription and protein expression has also recently been
associated with SIDS (Filonzi et al. 2008). Individuals with these polymorphisms are postulated
to have a relative reduction in synaptic 5-HT, as a result of increased 5-HT uptake and
breakdown of 5-HT associated with elevated 5-HTT and MAO protein expression, respectively
(Heils et al. 1997; Lesch et al. 1998; Greenberg et al. 1999; van Dyck et al. 2004). Thus, these
polymorphisms may predispose an infant to increased SIDS risk by contributing to the
development of, or exacerbating existing, medullary 5-HT dysfunction. Moreover, they may
reduce the resilience of the infant to environmental toxins that disrupt the development and/or
function of 5-HT neurons as described above. Indeed, this idea is supported by a recent study
identifying an association between the LL genotype of the 5-HTT promoter polymorphism and
hypoplasia in the medullary raphé and arcuate nucleus in stillborns and in SIDS cases (Lavezzi
et al. 2009). Similarly, a rare mutation (IVS2 191_190insA) upstream of the third exon of the
human fifth Ewing variant (FEV) gene may contribute to the development of medullary 5-HT
abnormalities in a subset of SIDS (Rand et al. 2007). FEV is the human homologue of the ETS
domain transcription factor Pet1 that is necessary for differentiation and development of 5-HT
neurons (Hendricks et al. 1999) including regulation of TPH, 5-HTT and 5-HT1A receptor gene
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expression (Hendricks et al. 1999; Pfaar et al. 2002; Hendricks et al. 2003; Maurer et al.
2004; Iyo et al. 2005). Loss of the Pet1 gene in mice results in failure of approximately 70%
ofl 5-HT neurons to differentiate (Hendricks et al. 1999) and deficient expression of genes
required for 5-HT synthesis, uptake, and vesicular storage in the remaining 5-HT neurons
(Hendricks et al. 2003). The FEV gene mutation may, therefore, result in or predispose an
infant to medullary 5-HT dysfunction and, thus, SIDS. Interestingly, both the 5-HTT intron 2
gene polymorphism and the FEV gene mutation were significantly associated with SIDS in
African American but not Caucasian populations (Weese-Mayer et al. 2003b; Rand et al.
2007), while the 5-HTT promoter polymorphism is present in greater frequency in Caucasian
compared to African American SIDS cases (Weese-Mayer et al. 2003a). These differences
among ethnic-specific gene polymorphisms/mutations may pre-dispose African American
infants to greater SIDS risk than Caucasian infants and may, therefore, help explain the ethnic
disparity in SIDS rates. However, despite these encouraging findings, several reports have
observed no significant association between SIDS and polymorphisms in other genes pertinent
to the 5-HT system, including the 5-HT1A receptor (Morley et al. 2008), 5-HT2A receptor,
(Rand et al. 2009), and tryptophan hydroxylase 2 (Nonnis Marzano et al. 2008) genes and a
polymorphism in the untranslated region downstream of the 5-HTT gene (Maher et al. 2006).
These observations support the idea that the medullary 5-HT abnormalities in SIDS results
from a combination of environmental and genetic factors and involves exposure of an infant
with a predisposing genetic background to environmental toxins during a critical period in
development, which in humans may extend from the preconceptional period through the first
postnatal year.

9. Sexual Dimorphism in 5-HT Function may Predispose Male Infants to
Increased SIDS risk

Twice as many male infants die of SIDS as female infants (Hoffman et al. 1992; Brooke et al.
1997; Vennemann et al. 2005). The reason for this is unknown, but identification of a
significantly lower density of 5-HT1A receptor binding in male compared to female SIDS
infants (Fig 5) (Paterson et al. 2006b) suggests that sexual dimorphism in 5-HT function may
play a role in predisposing male infants to SIDS. Indeed, significant differences in TPH, 5-HT,
5-HT metabolites, and 5-HT receptor expression, including a lower level of 5-HT1A receptors,
normally exist between males and females in several brain regions (Dillon et al. 1991; Arango
et al. 1995; Ferrari et al. 1999; Bethea et al. 2002; Parsey et al. 2002). Interestingly, a recent
study also observed that variations in the coding sequence of the 5-HT1A receptor gene occur
more frequently in males compared to females (Morley et al. 2008). Evidence from studies in
animals with 5-HT lesions have reported male gender-specific abnormalities in respiration,
chemosensitivity and thermoregulation (Penatti et al. 2006; Hodges et al. 2008b; Li et al.
2008)-responses that are modulated in part by 5-HT1A receptors in the medullary raphé and
extra-raphé (Messier et al. 2004; Darnall et al. 2005; Hoffman et al. 2007; Brown et al.
2008). These observations raise the possibility that male human infants may similarly have
reduced sensitivity to CO2 and temperature and that loss of medullary 5-HT1A receptors, as
observed in SIDS, may attenuate protective homeostatic responses to a greater extent in male
compared to female infants, thus placing them at greater risk for SIDS. Evidence from animal
studies also suggests reduced plasticity in 5-HT neuron function in males compared to females.
Deficits in postnatal brain levels of 5-HT1A receptor expression following prenatal cocaine
and cigarette smoke exposure persist for a greater length of time in male compared to female
rats (Johns et al. 2002; Slotkin et al. 2007a; Slotkin et al. 2007b), suggesting that the neonatal
male infant brain is less resilient to exposure to at least some pharmacologically active toxins
affecting 5-HT function in the maternal circulation than the neonatal female brain. Testosterone
and estrogen also influence the 5-HT system and its control of respiration (Matsumoto et al.
1985; Pickett et al. 1989; Bayliss et al. 1990; Regensteiner et al. 1990; Bayliss et al. 1992;
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Emery et al. 1994; Fogel et al. 2001; Liu et al. 2003; Zhou et al. 2003). Elevated levels of serum
testosterone have been observed in both male and female SIDS infants compared to controls,
with the highest level of testosterone observed in male SIDS infants (Emery et al. 2005). The
cause(s) of elevated serum testosterone in SIDS is unknown, although prenatal exposure to
nicotine increases fetal plasma testosterone in rats via inhibition of cytochrome p450
aromatase, the enzyme which converts testosterone to estradiol (Lephart et al. 2001; Stoffel-
Wagner 2001). Also noteworthy is the overlap in peak SIDS incidence between 2-4 months of
age and peak postnatal increase in gonadal steroids (Winter et al. 1976; Peterson et al. 1979;
Forest et al. 1980). Likewise, preterm infants, a group at heightened SIDS risk, have
significantly higher adrenal-derived androgens in the first year of life compared to term infants
(Tapanainen et al. 1981). Thus, the normal higher levels of testosterone in male infants
compared to female infants may be responsible for blunted respiratory responses to homeostatic
challenges such as hypercapnia, thereby contributing to their greater SIDS risk. Taking these
observations together, intrinsic differences in baseline brain 5-HT function, 5-HT neuronal
plasticity, and CO2 sensitivity between males and females provide evidence that may explain,
at least in part, the greater risk of SIDS in male infants.

10. Conclusions and Remaining Questions
The data reviewed here provide evidence that the medullary 5-HT neuronal system assumes
varied roles in mediating respiratory regulation and that disruption of medullary 5-HT
neurotransmission by pharmacological, chemical, or genetic means produces defects in
baseline respiratory and autonomic regulation as well as respiratory responses to perturbation
such as hypoxic and hypercapnic challenges. These observations support the hypothesis that
the medullary 5-HT abnormalities identified in SIDS cases result in respiratory and autonomic
dysfunction that heightens the vulnerability of the infant. The data reviewed here also support
the idea that the pathogenesis of the medullary 5-HT defect(s) in SIDS originates in utero and
involves a combination of environmental and genetic factors. Moreover, evidence suggests
that intrinsic differences in 5-HT function between males and females contribute to the
increased incidence of SIDS in boys. However, the specific nature of the 5-HT dysfunction in
SIDS is still unclear, i.e., is there an excess or a deficit of available 5-HT? The abnormalities
in markers of 5-HT function observed in the medulla of SIDS infants may be interpreted as
evidence of either 1) an increased number of 5-HT neurons leading to an excess of extracellular
5-HT and a compensatory downregulation of 5-HT receptors, or 2) 5-HT synthesis and/or
release may be dysfunctional in the 5-HT neurons (which are overabundant in compensation)
resulting in a deficiency of extracellular 5-HT. Indeed, both an excess and a deficit in 5-HT
levels during development and in the postnatal period produce respiratory dysfunction in
animal models. Determination of the level of available 5-HT in the medulla under “normal”
and pathological states is therefore critical in determining the specific nature and pathogenesis
of 5-HT dysfunction in SIDS. Such studies are currently underway in our laboratories. Is 5-
HT the only abnormal neurotransmitter system in SIDS? It seems unlikely that this is the case.
An important potential consequence of the 5-HT neuronal abnormalities in SIDS is the
possibility of associated defects in GABA and substance P, known co-transmitters with 5-HT,
that also regulate respiratory function. In addition, multiple other neurotransmitter systems in
the medulla regulate respiratory and autonomic function in conjunction with 5-HT, including
glutamate, acetylcholine, norepinephrine, somatostatin and glycine (Liu et al. 2005; Wong-
Riley et al. 2005). Therefore, we propose that SIDS results from a complex interaction of
multiple dysfunctional neurotransmitter systems in the brainstem of which the abnormalities
in 5-HT markers are the most widely identified thus far. A systematic analysis of multiple
transmitters/modulators that interface with the medullary 5-HT system is needed to establish
the precise neurochemical pathology in all or subsets of SIDS cases. Without such information,
the pathogenesis of the disorder cannot be established, and optimal interventions cannot be
determined and implemented.
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Figure 1. Distribution of 5-HT Neurons in the Brainstem
Neurons synthesizing 5-HT distribute in distinct cell groups in the brainstem classically defined
as B1-B9. The rostral domain, consisting of groups B4-B9 projects “rostrally” and diffusely
to the cerebral cortex, thalamus (Th), hypothalamus (Hy), basal ganglia, hippocampus (Hi),
and amygdala and mediates arousal, cognition, mood, motor activity, and cerebral blood flow.
The caudal domain consisting of groups B1-B3 in the medulla projects “caudally” and diffusely
to other brainstem sites, cerebellum, and spinal cord and influences breathing, cardiovascular
control, autonomic output, motor control, and pain processing.

Paterson et al. Page 21

Respir Physiol Neurobiol. Author manuscript; available in PMC 2010 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. The Medullary 5-HT System in the Human Brainstem
The Medullary 5-HT System consists of 5-HT neurons (areas in red) in the midline raphé (i.e.,
raphé obscurus (Rob), extra-raphé (i.e., (gigantocellularis [GC], paragigantocellularis lateralis
[PGCL], intermediate reticular nucleus [IRZ], and at the ventral medullary surface (arcuate
nucleus [Arc]) and sites to which they project (blue areas) that do not contain 5-HT neurons
but mediate homeostatic functions (e.g., hypoglossal nucleus [HG], nucleus of the solitary tract
[NTS]). Figure shows coronal sections at the level of the Caudal, Mid, and Rostral medulla.
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Figure 3.
Double-label immunofluorescent staining of putative preBötC neurons in the human infant
PGCL with immunoreactivity for multiple neurotransmitter receptors that modulate preBötC
function in rats. NK1 receptor immunofluorescent neurons (red) in the PGCL co localize with
A. 5-HT1A receptors, B. 5-HT2A receptors. Images at ×40.
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Figure 4. 5-HT receptor binding is significantly lower in the arcuate nucleus of infants exposed to
cigarette smoke prenatally
Graphs comparing the effects of prenatal smoking and prenatal alcohol on the effects of 5-HT
receptor binding measured with 3H LSD autoradiography in the infant postnatally. Maternal
smoking during pregnancy is associated with a 40% reduction (*p=0.011) and maternal alcohol
ingestions during pregnancy is associated with a 32% reduction (p=0.075) in 5-HT receptor
binding postnatally in infants.
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Figure 5. 5-HT1A receptor binding is lower in male SIDS cases
Graph comparing 5-HT1A receptor binding density measured with 3H 8-OH DPAT
autoradiography in the raphé obscurus in male and female SIDS cases compared to controls
infants. 5-HT1A receptor binding density in male SIDS infants is significantly lower compared
to female SIDS infants (*p=0.04). 5-HT1A receptor binding in both male (p=0.02) and female
(p=0.05) SIDS infants is significantly lower compared to controls.
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