
A new probabilistic rule for drug–dug interaction prediction

Jihao Zhou,
Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109,
USA

Zhaohui Qin,
Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109,
USA

Sara K. Quinney,
Division of Biostatistics, Department of Medicine, School of Medicine, Indiana University,
Indianapolis, IN 46032, USA

Seongho Kim,
Division of Biostatistics, Department of Medicine, School of Medicine, Indiana University,
Indianapolis, IN 46032, USA

Zhiping Wang,
Division of Biostatistics, Department of Medicine, School of Medicine, Indiana University,
Indianapolis, IN 46032, USA

Menggang Yu,
Division of Biostatistics, Department of Medicine, School of Medicine, Indiana University,
Indianapolis, IN 46032, USA

Jenny Y. Chien,
Clinical Pharmacology, Eli Lilly Inc., Indianapolis, IN 46202, USA

Aroonrut Lucksiri,
Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University,
Indianapolis, IN 46032, USA

Stephen D. Hall, and
Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University,
Indianapolis, IN 46032, USA

L Li✉
Division of Biostatistics, Department of Medicine, School of Medicine, Indiana University,
Indianapolis, IN 46032, USA

Abstract
An innovative probabilistic rule is proposed to predict the clinical significance or clinical
insignificance of DDI. This rule is coupled with a hierarchical Bayesian model approach to
summarized substrate/inhibitor's PK models from multiple published resources. This approach
incorporates between-subject and between-study variances into DDI prediction. Hence, it can predict
both population-average and subject-specific AUCR. The clinically significant DDI, weak DDI, and
clinically insignificant inhibition are decided by the probabilities of predicted AUCR falling into
three intervals, (– ∞, 1.25), (1.25, 2), and (2, ∞). The main advantage of this probabilistic rule to
predict clinical significance of DDI over the deterministic rule is that the probabilisticrule considers
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the sample variability, and the decision is independent of sampling variation; while deterministic
rule based decision will vary from sample to sample. The probabilistic rule proposed in this paper is
best suited for the situation when in vivo PK studies and models are available for both the inhibitor
and substrate. An early decision on clinically significant or clinically insignificant inhibition can
avoid additional DDI studies. Ketoconazole and midazolam are used as an interaction pair to illustrate
our idea. AUCR predictions incorporating between-subject variability always have greater variances
than population-average AUCR predictions. A clinically insignificant AUCR at population-average
level is not necessarily true when considering between-subject variability. Additional simulation
studies suggest thatpredicted AUCRs highly depend on the interaction constant Ki and dose
combinations.

Keywords
Area under the concentration curve ratio (AUCR); Bayesian model; Drug–drug interaction (DDI);
Pharmacokinetics; Prediction

Introduction
Drug–drug interactions (DDI) have become a significant concern for both pharmaceutical
industries and FDA, since being exemplified by the interaction of ketoconazole and
terfenadine, which caused potentially life-threatening ventricular arrhythmias [1], and the
interaction between sorivudine and fluorouracil which resulted in fatal toxicity [2,3]. The
possible sites of DDI and static mechanistic models which can predict the change of
pharmacokinetic (PK) profiles include (1) gastrointestinal absorption, (2) plasma and/or tissue
protein binding, (3) carrier-mediated transport across plasma membranes, and (4) metabolism
[4,5]. Recently, the static metabolic DDI mechanism was integrated with PK models to predict
the effects of dose staggering on DDIs [6]. Thesuccess of this approach has shown great
potential in predicting in vivo DDI based on either in vitro or in vivo PK data. Both FDA and
pharmaceutical industry have recognized the importance of early DDI detection, in which early
negative findings can eliminate the need for later clinical investigations. FDA has recently
issued a draft Guidance for Industry on Drug Interaction Studies
(http://www.fda.gov/cder/guidance/6695dft.pdf) discussing study design, data analysis, and
implications for dosing and labeling.

The extent of an in vivo DDI is measured by the ratio of the area under the substrate
concentration-time curve (AUC) in the presence of inhibitor to the substrate's AUC in the
absence of an inhibitor (AUCR). The current rule proposed by FDA suggests that an AUCR
greater than 2 is a clinically significant DDI, and an AUCR less than 1.25 is considered
clinically insignificant. This rule has been implemented in literature of model-based DDI
predictions [6,7]. However, stochastic features of data from an individual drug's PK study, PK
models, and their parameters are not fully considered. To fulfill this imminent need, a
probabilistic decision ruleis proposed to facilitate DDI prediction. This probabilistic decision
is built upon our Bayesian hierarchical PK model on individual drug's PK data [8,9]. The DDI
can be predicted at either a subject-specific level, or a population-average level. This paper
utilizes a previously reported Bayesian model predicting the in vivo effect of the potent CYP3A
inhibitor ketoconazole (KETO) on the pharmacokinetics of midazolam (MDZ) [8,9] to
illustrate this novel probabilistic DDI prediction methodology. MDZ is a highly selective
CYP3A substrate in vivo that is not dependent on membrane transporters for intracellular
access [10]. The KETO/MDZ pair is employed as an inhibitor-substrate example to illustrate
our model based DDI prediction.
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Methods
KETO and MDZ PK models

Development of the KETO and MDZ interaction model has previously been described in detail
[8,9]. PK of both drugs were fit to a two-compartment model with occurring from the central
compartment and systemic clearance assumed to be equivalent to hepatic clearance. Orally
administered KETO was absorbed into the central circulation through a first-order process with
no lag time. MDZ was administered to the systemic compartment by intravenous bolus. When
KETO and MDZ are administrated separately, PK models (1) and (2), describe the plasma
concentration time course, respectively, and these differential equations can be independently
solved.

(1)

where subscript I indicates the inhibitor, KETO; the initial amount of KETO in two
compartments (A1I, A2I)|t=0 = (0, 0); FI is the bioavailability which is assumed to be known,
0.7 [11]; kaI is the absorption rate constant; (V1I, V2I) are volumes of distribution in systemic
and peripheral compartments, respectively; CL12I is the between-compartment rate constant;
CLI is the hepatic (systemic) clearance, which is described by the well-stirred model CLI =
Qh × CLint,I/(Qh + CLint,I), in which hepatic blood-flow, Qh = 80 l/h [12] is known, and intrinsic
hepatic clearance, CLint,I = fuI × V maxI/(KmI + fuI × A1I/V1I), where fuI = 0.03 [13].

(2)

where subscript S represents substrate MDZ; (V1S, V2S) are volumes of distribution in systemic
and peripheral compartments, respectively; CL12S is the inter-compartment rate constant;
CLS is the hepatic (systemic) clearance, which follows a well-stirred model CLS = Qh ×
CLint,S/(Qh + CLint,S), and intrinsic clearance CLint,S =fuS × V maxS/(KmS +fuS × A1S/V1S), in
which KmS = 2.11 and fuS = 0.04, and the amount of drug in blood is transformed to plasma
by multiplying 0.86. When the drugs are administrated simultaneously, KETO competitively
inhibits the clearance of MDZ such that

(3)

A range of inhibition constants, Ki = 0.18 to 0.0037, as set forth in the FDA's Guidance was
tested (http://www.fda.gov/cber/gdlns/interaction.pdf). This model assumes that the clearance
of KETO is not affected by MDZ administration. In addition, KETO has no effect on protein
binding or disposition of MDZ other than altering its apparent Km. The concentration of drug
at the enzyme site is assumed to be equivalent to the plasma concentration.
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A common criterion to evaluate the extent of interaction is the AUC ratio (AUCR) of substrate
after and before inhibitor administration.

(4)

where, AUCS,W is the substrate AUC in the presence inhibitor and AUCS,WO is its AUC without
inhibitor. AUC is estimated via the trapezoidal rule with extrapolation to infinity [14].

A hierarchical Bayesian meta-analysis model for published sample mean KETO and MDZ
data sets

Published data (Table 1) are available in the form of sample average plasma drug concentration
and its standard deviation [8,9]. A hierarchical Bayesian meta-analysis model was developed
to reconstruct a drug PK model from these published data. More details are illustrated in the
Appendix. The following models from (5) to (8) are a brief summary,

Sample mean PK model

(5)

Sample variance model

(6)

Study-specific PK parameter model:

(7)

Prior Distributions:

(8)

where, .

In this hierarchical model, f(βk, tjkh) denotes the predicted sample average log-transformed
drug concentration at jth time point from phase h of study k. The sample mean data ȳ•jkh
provides information about study specific PK parameters βk and study to study variation

parameter Σ. The standard deviation data  provides information about subject level
heterogeneity parameter Ω and technical variance, . Variance components , l = 1,…, q,
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denote all the variance parameters. The estimation procedure is implemented with a Monte
Carlo Markov chain process [8,9], and is illustrated in the appendix. In particular, β = (V1S,
V2S, VmaxS, KmS, CL12S)T for MDZ, and β = (V1I, V2I, V maxI, KmI, CL12I, kaI)T for KETO.
The posterior 95% creditable intervals for population average PK parameters are summarized
in Table 2.

Population average DDI prediction
Denote AUCRpop(β, Ki) as the population average DDI, where β are PK parameters from KETO
and MDZ. Based on posterior distributions of PK parameters from the mean-variance model,
we are able to obtain a predictive distribution of AUCRpop at the population-average level.

(9)

This distribution can be sampled by , where {β(u)}u=1, …, U
are their posterior draws. A sample size of U = 1000 issufficiently large.

Subject-specific DDI prediction
The subject-specific DDI is defined as AUCRsubj(βmk, ki) with a posterior distribution of

(10)

This distribution can be sampled by

(11)

where  are their posterior draws. A sample size of U = 1000
is sufficiently large. In this context, subject-specific DDI prediction means that random samples
are drawn from the between-subject distributions that don't correspond to real subjects. It
doesn't mean subject-specific predictions related to specific datasets, especially in the Bayesian
context.

Both population-average and subject-specific DDI predictions are improvements over the
deterministic approach [6], in which β were chosen as a set of fixed numbers(i.e. their
estimates), and their estimation error and between-study/subject variation information were
totally ignored.

Probabilistic DDI prediction rule
The current rule proposed by the FDA suggests that an AUCR greater than 2 is considered to
be a clinically significant inhibition, an AUCR less than 1.25 is treated as clinically
insignificant, and any AUCR falling into between 1.25 and 2 is claimed as a weak inhibition.
By taking account of the uncertainty of PK parameter estimates, and their between subject and
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study variations, a probabilistic rule is proposed: if 90% of predicted AUCR > 2, the inhibition
is concluded as statistically significant at the clinically significant level; if 90% of predicted
AUCR is below 1.25, the inhibition is statistically significant at the non-clinical level;
otherwise, the inhibitor is concluded to be weak. In particular, the population average and
subject-specific probabilities are estimated as,

(12)

where E = (– ∞, 12.5), (1.25, 2), (2, ∞).

KETO/MDZ inhibition predictions and sensitivity analysis
The dose combination of KETO/MDZ is chosen as 200/2 mg and 800/10 mg. Following the
FDA's guideline, Ki is tested on two ends of the interval (0.0037, 0.18). In addition, the time
interval between the administration of KETO and MDZ are tested between −12 and 12 h. In
addition, the effect of food and dosage formulation of KETO on the AUCR of MDZ was
examined.

Results
Population-average DDI prediction

Given a 200/2 mg KETO/MDZ dose combination, the population average AUCR is predicted
from 1.21 ×/÷ 1.013 (geometric mean ×/÷ (1 + CV)) to 3.02 ×/÷ 1.11 for Ki = (0.18, 0.0037),
respectively (Table 3). Its probabilities in three intervals are, (0.98, 0.02, 0.0) and (0.0, 0.0,
1.0), respectively (Fig. 1a, b). Therefore, the conclusion of the inhibition can be either clinically
or non-clinically significant, which depends on Ki.

With a much higher dose combination, 800/10 mg, a Ki of 0.18 leads to a predicted
AUCRpop = 1.78 ×/÷ 1.027 (Table 3). Its probabilities in three intervals are (0.0, 1.0, 0.0) (Fig.
2d), and the inhibition is concluded as a weak one. On the other hand, for a much smaller Ki,
0.0037, AUCRpop is predicted as 3.93 ×/÷ 1.14 with probabilities, (0.0, 0.0, 1.0) (Fig. 2c), and
inhibition is concluded to be both statistically and clinically significant.

Subject-specific DDI prediction
Providing a 200/2 mg KETO/MDZ dose combination, the predicted AUCRsubj based on
between-subject variation is from 1.19 ×/÷ 1.084 to 2.95 ×/÷ 1.26 for Ki of 0.18 and 0.0037,
respectively (Table 4). Its probabilities in three intervals are (0.75, 0.25, 0.0) and (0.0, 0.06,
0.94), respectively (Fig. 2a, b). Therefore, Ki = 0.18 will lead to a weak DDI conclusion, and
Ki = 0.0037 will lead to a statistically and clinically significant DDI. Given a much higher dose
combination, 800/10 mg, a Ki of 0.18 leads to a predicted AUCRsubj = 1.69 ×/÷ 1.15 (Table 4).
Its probabilities in three intervals are (0.01, 0.85, 0.14) (Fig. 3d), and the inhibition is concluded
as a weak one. On the other hand, for a much smaller Ki, 0.0037, AUCRsubj is predicted as 3.61
×/÷ 1.28 with probabilities, (0.0, 0.02, 0.98) (Fig. 3c), and inhibition is concluded both
statistically and clinically significant.

The effect of dosing interval on KETO/MDZ interaction
Administration of the KETO PO dose (800 mg) was simulated from 12 h before to 12 h after
the MDZ IV dose (10 mg), with Ki set at 0.0037. According to the previous analysis,
simultaneous KETO/MDZ interaction showed the highest interaction based on this dose and
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Ki combination. Figure 3a presents the relationship between the time between KETO and MDZ
doses and predicted subject-specific level AUCR. The solid line is AUCRsubj, and the dashed
lines are its 95% credit intervals. The maximum AUCRsubj happens when KETO is
administrated about 4.5 h before MDZ, AUCRsubj = 4.02 ×/÷ 1.31. At the mean level, this is
11% greater than the AUCRsubj when the drugs are administered simultaneously, 3.61 ×/÷ 1.28.

If KETO is administrated after MDZ, its inhibition effect is quickly diminished. In order to tell
the probabilities of AUCRsubj falling into three DDI intervals, they are displayed in a heatmap
(Fig. 3b). The blue represents Pr{AUCRsubj > 2}, the green represents Pr{1.25 < AUCRsubj <
2}, the red represents Pr{AUCRsubj < 1.25}, with these probabilities represented across the
differences in dosing times. The top black solid horizontal line represents the probability = 0.9,
and it crosses the red region when KETO is administered 8.8 h after MDZ. Thus, if PO KETO
is administrated more than 8.8 h after MDZ IV, their inhibition will be clinically insignificant
with probability larger that 90%. The black solid line at the bottom of Fig. 3 represents a
probability = 0.1 and intersects the blue region at +3.0 h, indicating that if PO KETO is
administrated before or within 3 h after MDZ IV, it will cause a clinically significant reduction
in MDZ clearance with probability greater that 90%. Otherwise, their DDI will be a weak
interaction.

The effect of KETO formulation and food on subject specific AUCR prediction
Published KETO PK studies used to develop the model [8,9] utilized various KETO
formulations and conditions: tablet fasting (TF), tablet with a meal (TM), suspension fasting
(SPF), solution with a meal (SLM), and solution fasting (SLF), respectively. The corresponding
ka posterior distributions were estimated from published sample mean data. The effects of food
and formulation on the predicted AUCRsubj are displayed in Fig. 4. When KETO/MDZ dose
combination is 800/10 mg and Ki = 0.0037, they all have similar distributions, and the
probabilities in three DDI intervals are very similar.

Discussion
An innovative probabilistic rule is proposed to predict the clinical significance or clinical
insignificance of DDI. A KETO/MDZ inhibition combination is used as an example. This rule
can be applied to predictions of both population-average and subject-specific level AUCR's to
determine the extent of a DDI. As shown, AUCRsubj prediction always exhibit larger variances
than the corresponding AUCRpop. Hence, a clinically insignificant AUCRpop is not necessarily
true when considering between-subject variability. For example, under the 200/2 mg KETO/
MDZ dose combination and a Ki = 0.18, the population-average DDI claim an insignificant
KETO/MDZ interaction (Fig. 1b). On the other hand, its subject-specific level prediction is
concluded as a weak DDI (Fig. 2b).

It is very clear that AUCR highly depends on the Ki and dose combination chosen. Simulations
were run with Ki set at 0.0037 or 0.18 μM, the values set forth in the FDA Guidance
(http://www.fda.gov/cder/guidance/6695dft.pdf). This nearly 50-fold range in the in vitro Ki
values can greatly impact the conclusion of DDI significance. This variability may arise from
different buffer conditions, the enzyme source, and the concentration of substrate and inhibitor
studied. Hepatocyte and microsomal studies may yield different results as hepatocytes require
that the drug access an intact cell system [15]. Standardization and optimization of the in vitro
assay to determine Ki is necessary to accurately predict DDI potential of a new compound.
Similarly, the design of the clinical trial can influence the effect of the DDI. The trial should
be designed to determine the “worst-case scenario,” i.e. doses of KETO and MDZ should be
administered at a time when maximal inhibition is likely to occur. As shown in Fig. 4, KETO
administered 4.5 h before MDZ would result in the maximal interaction.
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The main advantage of probabilistic rule to predict clinical significance of DDI over the
deterministic rule is that the probabilistic rule considers the sample variations, while
deterministic rule does not. For example, for a dose combination 200/2 mg and Ki = 0.18 μM,
predicted AUCRsubj is 1.19 ×/÷ 1.084 and its probabilities in the three intervals are 0.75, 0.25,
0.0. Based on this, it is classified as a weak inhibitor. However, if it is judged under the
deterministic rule, 75% of time it will be declared insignificant inhibition, and 25% of time it
will claimed to be a weak inhibitor.

We utilized a hierarchical Bayesian meta-analysis model designed to summarize published
sample mean and sample variance data [8,9]. It is capable of recovering between subject and
between study variances. Information from these recovered variances information became the
foundation for the AUCR prediction at the subject level. On the other hand, if the data from
original PK studies are available with PK parameters for each individual, many conventional
Bayesian PK models can be applied [16–21].

There are several limitations in the MDZ/KETO model that we applied to illustrate our
probabilistic rule. For instance, the current MDZ model (2) assumes that 100% of clearance is
by hepatic CYP3A. However, approximately 10% of MDZ's clearance is through non-CYP3A
mechanisms. Incorporating non-inhabitable elimination will reduce the extent of the DDI.
These models also assume that the concentration of substrate (MDZ) and inhibitor (KETO) at
the active site is equivalent to the concentration in the central compartment. A potentially higher
active site concentration of KETO will lead to a larger AUCR. This paper only considers the
inhibition of MDZ administered by IV route. A similar model for PO MDZ is more complex
as it would need to incorporate information on inhibition of CYP3A in the intestine. The model
does not take any correlation between the PK of MDZ and KETO for an individual person into
account. While we recognize that the CL of the two drugs may be related, e.g. to body weight
or genotype, we do not currently have the information required to build this correlation into
our model.

While we utilized our Bayesian MCMC model to estimate between-subject variability in PK
parameters, the probabilistic rule proposed in this paper may be applied to any situation in
which the individual PK models, incorporating variability, are available for both the inhibitor
and substrate. It fits well with newly developed FDA guidelines for exploratory IND studies
(http://www.fda.gov/cder/ guidance/6695dft.pdf). This document highly recommends a PK
study of an investigational drug at a very low dosing level and of a short duration. The purpose
is to obtain this drug's PK, instead of investigating its pharmacologic effects. If this
investigational drug is an inhibitor, its PK data and model may be incorporated with PK data
that is available for many common substrates and the Ki values determined in vitro for the
substrate-inhibitor combination. The interaction potential of this new agent can thus be
predicted at both subject-specific and population-average levels. This same strategy can be
applied to a new compound that is a substrate by nature, utilizing PK data for the enzyme
inhibitor (e.g. KETO). If one is able to predict either a clinically significant or insignificant
DDI with probability greater than 90%, no further in vivo DDI study may be required. Only
when predicted as a weak DDI, a further in vivo DDI may be required to assess the clinical
extent of the interaction. In these cases, utilizing the predictive PK interaction model may
enhance the design of a trial to determine a DDI. As shown in Fig. 3, the time interval between
administration of inhibitor and substrate may impact the AUCR.

If a drug's in vivo pharmacokinetics variability isn't available, they can be built up with data
known for drugs in the same class, or information on enzyme variability (e.g. genetic variation),
or variability seen in vitro (e.g. in hepatocytes obtained from different individuals). This
bottom-up strategy is described in the literature [22]. The challenge of this approach is to
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establish and validate the equivalence between predicted DDI variability and clinical DDI
variability.

The probabilistic decision rule presented here provides an alternative to the deterministic rule
commonly utilized. This novel method takes into account stochastic variability in the
determination of a clinically significant DDI. While DDI may be predicted using both
population-average and subject-specific data, we recommend subject-specific DDI prediction
since it contains more information on variation across the population.
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Appendix

Appendix

Meta-analysis models for individual level data
When individual level data are available for each study, summarizing PK parameters from
multiple sources by meta-analysis has been addressed by applying Bayesian methods to
construct a drug PK model from several clinical study data sets. (See, e.g. Wakefield and
Rahman [20]). In general, the following set of models are used

• subject-specific PK model:

(13)

• subject-specific PK parameter model in study k:

(14)

• study-specific PK parameter model:

(15)

In (13), ymjkh represents log-transformed drug concentration at time tjkh for subject m in phase
h of study k. Here we use a generic notation zjkh to denote available data and constants for a
study subject at time tjkh. It includes dosage, dosing route, and fixed constants such as Qh, FI,
KmI, fuI, MWI, KmS, fuS, and time point tjkh at which plasma concentration is measured. The
mean value f(βmk, zjkh) is the predicted log-transformed drug concentration for subject m at
jth time point from phase h of study k. In the case that ymjkh is the KETO concentration observed
from the first compartment, then f(βmk, zjkh) = log(A1I/V1I). The measurement error variation,

, is assumed equal across studies. The variance components Σ and Ω are for subject-specific
and study-specific PK parameters.

However, published data are often available in the form of sample average plasma

concentration. In other words, only , instead of yijkh are published. But model (13)
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obviously needs ymjkh, and hence cannot be directly implemented to perform meta-analysis

with summarized data. Reconstructing a drug PK model from  needs a new meta-
analysis formulation and different Bayesian sampling algorithm.

Meta-analysis models with sample mean and standard deviation data
As individual data are not available, it is an unrealistic goal to estimate subject level PK
parameters. The sample mean data ȳ•jkh at most provide information about study specific PK

parameters βk and study to study variation parameters Ω. The sample variance data  at most
provide information about between-subject heterogeneity parameter Σ. As a result, models
based on (13)–(15) are only suitable when working on subject level data. When only sample
mean and sample variance data are available, they need to be modified to make estimation
feasible. In other words, the models should not involve βmk. A natural approach is to base
estimation methods on marginalized likelihood where βmk is integrated out. However, as no
analytic form is available for f(βmk, zjkh), direct integration is not feasible. The alternative we
take is to first derive an approximation for f(βmk, zjkh) and then marginalize. Specifically, we
adapt as follows.

By Taylor expansion at βk, f(βmk, zjkh) can be approximated as

(16)

Denote . Instead of individual level PK model (16), we assume the following

approximated model . Now by
integrating out βmk using the conditional distribution of βmk given βk, we have

(17)

As a result,

(18)

To obtain the approximate distribution for sample variance,

, we use the known fact the normalized sample variance
of m i.i.d. normal variables has a Chi-square distribution with degree of freedom m – 1. From
the approximate model (18), we immediately obtain
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(19)

Notice that (18) and (19) depend only on βk, Σ, and . Hence estimation of these parameters
is feasible with mean and standard deviation data. Our estimation will be based on the following
hierarchical models.

• Sample mean PK model

(20)

• Sample variance PK model

(21)

• Study-specific PK parameter model:

(22)

Many times, a main purpose of determining variability is to identify individuals at risk.
However as our model is based on summarized data, no individual information is available.
All we can do is to quantify variance for a given population. Of course if individual data are
available, subject covariates can be used in explaining variability using individual level models.

Prior specification and posterior distributions

(23)

Variance components all follow a uniform prior because practically they rarely exceed the
bound (a, b) = (0.012, 22). Let Ȳ• = {Ȳ•jkh; j = 1,…, Tkh; k = 1,…, K; h = 1,…, Hk} be the

sample mean data and  the sample variance
data. Then, the posterior probability distribution based on (20)–(22) and priors (23) is,
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(24)

The estimation procedure is implemented with a Monte Carlo Markov chain method. The

posterior probability functions, 
are derived in the following.

(25)

(26)

for l = 1,…,q; where  Variance components:

(27)

where  (0.012,22) equals 1 when  is inside (0.012, 22) and 0 otherwise.

(28)

(29)
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Here  (0.012,22) and  (0.012,22) are similarly defined as  (0.012,22).

MCMC convergence
Samples are drawn through the Metropolis Hasting (MH) algorithm (Hastings et al. 1970). At
each step, a random walk chain is used and the random perturbation is taken to mean normal
with mean 0 and standard deviation of 10%. The mixing is well with such proposed density
and the acceptance rate varies. For most of the study specific parameters βk, the acceptance
rates are close to 25%. Five independent chains were run simultaneously to determine the
convergence with dispersed starting values on population parameters. It needed less than 4000
iterations for the estimated potential scale reduction criterion of Gelman and Rubin [23] to be
less than 1.2. By visual inspection of trace plots, almost all chains start to mix well after 500
iterations. The final results are based on a single chain of 50,000 iterations after a burn-in of
10,000. Every tenth iteration after burn-in was extracted for summarizing results.
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Fig. 1.
Population average DDI prediction. The green bars cut the axis into three intervals, (– ∞, 1.25),
(1.25, 2), (2, ∞). The probabilities on the top represent the probabilities falling into these
intervals. a–d The predicted population average DDI at various dose combinations and Ki
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Fig. 2.
Subject-specific DDI prediction. The green bars cut the axis into three intervals, (– ∞, 1.25),
(1.25, 2), (2, ∞). The probabilities on the top represent the probabilities falling into these
intervals. a–d The predicted subject-specific DDI at various dose combinations and Ki
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Fig. 3.
Effects of dosage separation on DDI when KETO(PO)/MDZ(IV) combination is 800/10 mg
and Ki = 0.0037. a The mean and 90% credit intervals for AUCR predicted based on between-
subject variability across the interval from −12 to 12 h. Negative values indicate that KETO is
administrated before MDZ, and positive that MDZ administered prior to KETO. b The blue
represents Pr{AUCRsubj > 2}, the green represents Pr{1.25 < AUCRsubj < 2}, the red represents
Pr{AUCRsubj < 1.25}. The top black solid horizontal line represents the probability = 0.9, and
it crosses the red region when the interval between administration is 8.8, indicating that if PO
KETO is administrated 8.8 h after MDZ IV or later, the effect on AUCR will be clinically
insignificant with probability larger that 90%. The black solid line at the bottom represents
probability = 0.1, and it crosses the blue region when the time interval between dosage of
interacting drugs is 3.0, meaning that if PO KETO is administrated within 3 h after MDZ IV,
the inhibition will be clinically significant with probability larger that 90%. Otherwise, their
DDI will be a weak interaction
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Fig. 4.
The effect of KETO administration route on AUCR. Predictions incorporated individual
subject variability. The notations (TF, TM, SPF, SLM, SLF) represent tablet fasting (a), tablet
meal (b), suspension fasting (c), solution meal (d), and solution fasting (e), respectively. The
KETO(PO)/MDZ(IV) combination is 800/10 mg and Ki = 0.0037
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Table 1
Published KETO and MDZ data sets

Sources Dose (mg) Sample size per
subject (time frame)

Size (M/F) Meal

KETO

[24] 200 capsule 5 (1–24 h) 3 (N/A) Fasting

200 solution 5 (1–24 h) 3 (N/A) Fasting

100,200,400 tablet 8 (0.5–48 h) 12 (N/A) Meal

200 solution 8 (0.5–48 h) 12 (N/A) Meal

[25] 200, 400 tablet 14 (0.5–48 h) 28–44 6(6/0) Meal

[26] 200 tablet, 7(0–24 h) 10 (0.5–8 h) 8 (8/0) Fasting

[27] 200, 400, 600 800, tablet 13 (0.5, 32 h) 8 (3/5) (20–31) Meal

[28] 200 solution suspension,
tablet

12 (0.5–48 h) 24 (24/0) Fasting

200, 400, 800 solution 12 (0.5–48 h) 12 (24/0) Fasting

Novopharm Ltd 200 tablet 17 (1/4–24 h) 39 (39/0) Fasting

(FDA, 1999) 200 tablet 17 (1/4–24) 23 (24/0) Meal

TEVA Pharm. 200 tablet 15 (1/3–48) 24 (24/0) Fasting

(FDA, 1999) 200 tablet 15 (1/3–48) 17 (17/0) Meal

MDZ

[29] 2 IV fusion 27 (1/2–6 h) 12 (6/6) Fasting

[10] 2 IV 12 (1/4–8 h) 9 (6/3) Fasting
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Table 3
Population average DDI prediction

Ki KETO (mg)/MDZ (mg)

200/2 800/10

0.18 1.21 ×/÷ 1.013 1.78 ×/÷ 1.027

0.0037 3.02 ×/÷ 1.11 3.93 ×/÷ 1.14

Geometric mean ×/÷ (1 + CV) of the predicted AUCR
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Table 4
Subject-specific average DDI prediction

Ki KETO (mg)/MDZ (mg)

200/2 800/10

0.18 1.19 ×/÷ 1.084 1.69 ×/÷ 1.15

0.0037 2.95 ×/÷ 1.26 3.61 ×/÷ 1.28

Geometric mean ×/÷ (1 + CV) of the predicted AUCR

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2009 September 4.


