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Summary
In drug-drug interaction (DDI) research, a two drug interaction is usually predicted by individual
drug pharmacokinetics (PK). Although subject-specific drug concentration data from clinical PK
studies on inhibitor or inducer and substrate's PK are not usually published, sample mean plasma
drug concentrations and their standard deviations have been routinely reported. Hence there is a great
need for meta-analysis and DDI prediction using such summarized PK data. In this paper, an
innovative DDI prediction method based on a three-level hierarchical Bayesian meta-analysis model
is developed. The three levels model sample means and variances, between-study variances, and
prior distributions. Through a ketoconazle-midazolam example and simulations, we demonstrate that
our meta-analysis model can not only estimate PK parameters with small bias, but also recover their
between-study and between-subject variances well. More importantly, the posterior distributions of
PK parameters and their variance components allow us to predict DDI at both population-average
and study-specific levels. We are also able to predict the DDI between-subject/study variance. These
statistical predictions have never been investigated in DDI research. Our simulation studies show
that our meta-analysis approach has small bias in PK parameter estimates and DDI predictions.
Sensitivity analysis was conducted to investigate the influences of interaction PK parameters, such
as the inhibition constant Ki, on the DDI prediction.

Keywords
Area under the concentration curve ratio (AUCR); Bayesian hierarchical model; Drug-drug
interaction (DDI); Meta-analysis; Monte Carlo Markov chain (MCMC); Pharmacokinetics (PK);
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1. Introduction
Pharmacokinetic approaches designed to characterize drug to absorption, distribution and
elimination were well established (Rowland and Tozer 1995) and robust statistical
methodologies were developed (Davidian and Giltinan 1995). Recently pharmacokinetic
interactions among multiple drugs have received a great deal of attention because this
phenomenon makes a significant contribution to adverse drug reaction profile of new drugs
(Ito et al. 1998). The importance of drug-drug interactions (DDI) was exemplified by the
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interaction of ketoconazole (KETO) and terfenadine, which caused potentially life-threatening
ventricular arrhythmias (Monahan et al. 1990), and the interaction between sorivudine and
fluorouracil that resulted in fatal toxicity (Watabe et al. 1996; Okuda et al. 1997).

In the DDI research, one of the central questions is whether two individual drugs'
pharmacokinetics (PK) models and their in-vitro DDI parameters can predict their in-vivo DDI
(Ito et al. 1998). All the prior PK models and their parameters are summarized from multiple
data sources (i.e. published PK studies in either literatures or public databases). Data for drug
concentrations are usually published as sample mean profiles, together with standard
deviations. Meta-analysis utilizing such summarized data is needed to obtain information from
a vast existing resource.

Li et al. (2007) did some pioneer work in fitting PK models to sample mean data and evaluate
the DDI prediction based on estimated PK parameters. They showed that it was feasible to
draw inference for important PK parameters with summarized data, which were usually only
available resource during the early phase DDI research. They proposed a mean model (see
Section 2.5) for estimating PK parameters. This paper extends their work to estimation of both
PK parameters and variance components. It also aims at predicting the both mean and variance
of DDI, which are both interesting in practice. Understanding inter-individual variability is of
great importance in PK studies. Large inter-individual variation usually means large
environmental or genetic effects, which usually lead to pharmacogenetics studies. Readers can
refer to Li et al. (2007) for a more detailed discussion of related issues and challenges for DDI
prediction.

It is well known that the majority of DDIs depend on drug metabolizing enzymes and/or cell
membrane drug transporters (www.Drug-Interactions.com). The single most important locus
of DDIs is the cytochrome P450 (CYP) family of drug monooxygenases located in the gut-
wall and liver (de Waziers et al. 1990). Among CYPs, CYP3A is the most abundant and
accounts for approximately 30% and 90% of CYP protein in liver and intestine, respectively
(Shimada et al. 1994). In addition, more than 60% of the drugs that are eliminated primarily
by metabolism are metabolized by CYP3A. KETO is a potent and extensively characterized
CYP3A inhibitor, and midazolam (MDZ) is a highly selective CYP3A substrate in vivo that
does not depend on membrane transporters for intracellular access (Tsunoda et al. 1999).
Therefore, the KETO-MDZ pair is employed as an inhibitor-substrate example to illustrate our
model based approach to DDI prediction. This paper develops an innovative hierarchical
Bayesian meta-analysis model for PK parameter and variance component estimation. In
particular, we focus on performing DDI prediction based on meta-analysis. Actual computation
is via a Monte Carlo Markov chain (MCMC) method.

2. Specification of Models for Meta-analysis
2.1 Pharmacokinetics Model Specification

KETO Pharmacokinetic Model—Table 1 and Figure 1 (a) summarize seven published
KETO PK data sets that were used to establish the PK model of KETO. These data were
obtained through digitalization from corresponding papers (Table 1). KETO was administered
orally in all studies, although dosing forms and conditions could differ. Some studies (Figure
1a) with longer blood sample collection times demonstrated biphasic decline in plasma
concentrations consistent with a two compartment PK model (Gascoigne et al. 1981;Huang et
al. 1986;FDA 1999). Following the notation of Rowland and Tozer (1995), we have the
following differential equation based models for drug quantities in two components,
(A1I,A2I), after an oral dose,
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(1)

Here subscript I indicates the inhibitor, KETO; FI is the bioavailability; kaI is the absorption
rate constant; (V1I,V2I) are the volumes of distribution in systemic and peripheral
compartments; and CL12I is the inter-compartment rate constant. CLI is the clearance and it is
modeled as CLI = Qh × CLintI/(Qh + CLintI), where hepatic blood-flow, Qh = 80 l/h (Price et
al. 2003) is known, and the intrinsic hepatic clearance CLintI =VmaxI/(KmI +A1I /V1I). As
parameters FI and KmI are not readily identifiable from data, they were assumed to be known,
FI=0.7 (Cleary et al. 1992) and KmI=0.5 (Li et al. 2007).

MDZ Pharmacokinetic Model—Table 1 and Figure 1 (b) summarize two published MDZ
data sets obtained also through digitalization. They were used to establish the PK model of
MDZ. It was assumed to follow a two-compartment model with an intravenous infusion.

(2)

Here subscript S indicates the inhibitor, MDZ; (V1S, V2S) are the volumes of distribution in
systemic and peripheral compartments; and CL12S is the inter-compartment rate constant.
CLS is the clearance and modeled as CLS = Qh × CLintS/(Qh + CLintS), and CLintS = fuS ×
VmaxS /(KmS + fuS × A1S/V1S). As the parameter KmS was not readily identifiable from data,
it was assumed to be known as 2 (Li et al. 2007). The unbound fraction parameter fuS is also
fixed at 0.04 for MDZ.

KETO/MDZ Interaction Model—When KETO and MDZ are administrated separately, their
corresponding PK data can be independently modeled by (1) and (2) respectively. However,
when they are administrated simultaneously, models (1) and (2) need to be connected by (3)
(Ito et al. 1998)

(3)

As a result, (A1I, A2I, A1S, A2S) need to be jointly solved. In (3), fuI=0.03 (Martinez-Jorda
1990) is the unbound fraction of KETO in plasma, MWI=0.53 is the molecular weight of the
inhibitor, and Ki is the inhibition constant. KETO is a potent inhibitor of CYP3A enzymes with
a Ki value ranges from 0.0037 – 0.18 μM (Bourrie, et al. 1996;Gibbs, et al. 1999. von Moltke,
et al. 1994,1996;Wrighten and Ring, 1994). In these in-vitro experiments, Ki was obtained
from incubations of KETO in human liver microsomes. Note that the equation (3) reduces to
CLintS = fuS ×VmaxS/(KmS + fuS × A1S/V1S) when there is no inhibitor (that is, when Ki = ∞).

Denote AUCS,W as the substrate area under concentration curve (AUC) with inhibitor, and
AUCS,WO is the substrate AUC without inhibitor. For any given set of PK parameters for both
inhibitor and substrate and their dose-combination, the substrate's concentration profiles (both
with and without inhibitors) can be predicted, and their AUCS,W and AUCS,WO can be calculated
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via the trapezoidal rule (Rowland and Tozer 1995). A common criterion to evaluate the extent
of interaction is the area under concentration ratio (AUCR) of substrate after and before
inhibitor administration, AUCR=AUCS,W /AUCS,WO. Let (AŨCS,W,AŨCS,WO) be calculated
AUCs based on PK parameter estimates from data, then AUCR can be calculated via
AŨCS,W/ AŨCS,WO.

Model Based DDI Prediction—In the early drug development stage, a decision of
continuing clinical trials for a candidate drug partially depends on its interaction with the other
drugs (inducers or inhibitors). PK model based DDI prediction becomes critical, and precise
prediction can guide drug development. Practically, inhibitor or inducer's PK models and
parameters are estimated from their PK studies, while substrate's PK model and parameters
are estimated from substrate's PK studies. Their interaction parameter, Ki, in (3) is measured
from in-vitro studies. Then, DDI are predicted by the joint models from (1), (2), and (3).

This model based DDI prediction has been successfully implemented for simulating and
predicting the effect of non-simultaneous substrate and inhibitor administration (Yang et al.
2003). However all PK parameters were treated as known without uncertainty in performing
DDI prediction. From the statistical point of view, this deterministic approach is incomplete,
because PK parameters of inhibitor (or inducer) and substrate estimated from published studies
must have standard errors and these uncertainties need to be translated into their DDI
prediction. On the other hand, some interaction parameters measured from in vitro studies,
such as Ki, usually do not have reported standard error. That doesn't mean that these interaction
parameters can be accurately estimated. The influence due to inaccurate estimates from these
parameters on DDI prediction needs to be evaluated. For example, the range of KETO's Ki is
cited as to be between 0.18 and 0.0037 μM from an FDA guideline document on DDI (FDA
2006) as well as in published literature (Bouurie et al. 1996, Gibbs et al. 1999, von Moltke et
al. 1994, von Moltke et al. 1996, Wrighton and Ring 1994). It is therefore worthwhile to check
how sensitive our model (in vivo) prediction is for different values of Ki.

2.2 Hierarchical Bayesian Meta-Analysis Model Specification
Notations—Before describing various models, we use the following notations throughout
our paper. The subscript i will be used for subject, j for time point, k for study and h for (dosing)
phase. We assume that there are nkh subjects in the dosing phase h of study k; study k has Hk
phases and there are total of K studies for a given drug. For ease of presentation, we assume
all subjects within a dosing phase of a specific study are measured at the same time points for
plasma concentration data. Therefore we have Tkh time points in the dosing phase h of study
k. A parameter without subscript will be invariant across studies while a parameter with
subscript varies according to the subscript. We also use bolded symbols for vectors and
matrices. As examples, α will be a vector of parameters whose values are invariant across
different studies, and βik is a vector of parameter for subject i from study k. The need for
consider some parameters as invariant across different studies is to reduce the number of
parameters. For example, in KETO, there are five different dosing routes: tablet with meal
(TM), tablet fasting (TF), solution with meal (SLM), solution fasting (SLF), suspension fasting
(SPF). The absorption rates corresponding to them satisfies the constraints kaI,TM < kaI,SLM <
kaI,SLF and kaI,TM < kaI,TF < kaI,SPF < kaI,SLF. So to reduce the number of parameters, we only
make kaI,TM,k to be study specific and introduce α =(ΔkaI,TF, ΔkaI,SLM, ΔkaI,SPF, ΔkaI,SLF),
where the elements of α are restricted to be positive. In other words, we assume that the
difference in absorption rates between different routes is study invariant.

Meta-Analysis Models for Individual Level Data—When individual level data are
available for each study, summarizing PK parameters from multiple sources by meta-analysis
has been addressed by applying Bayesian methods to construct a drug PK model from several
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clinical study data sets. (see e.g. Wakefield and Rahman 2000). In general, the following set
of models are used

• subject-specific PK model:

(4)

• subject-specific PK parameter model in study k:

(5)

• study-specific PK parameter model:

(6)

In (4), yijkh represents log-transformed drug concentration at time tjkh for subject i in phase h
of study k. Here we use a generic notation zjkh to denote available data and constants for a study
subject at time tjkh. It includes dosage, dosing route, and fixed constants such as Qh, FI, KmI,
fuI, MWI, KmS, fuS, and time point tjkh at which plasma concentration is measured, The mean
value f(α,βik,zjkh) is the predicted log-transformed drug concentration for subject i at jth time
point from phase h of study k. Basically, f(α,βik,zjkh) corresponds to (part of) a numerical
solution at given time points from (1) and (2) by input α, βik and zjkh. So in the case that yijkh
is the KETO concentration observed from the first compartment, then f(α,βik,zjkh) =log(A1I /
V1I) with A1I solved from (1). The measurement error variation, , is assumed equal across
studies. The variance components Σ and Ω are for subject-specific and study-specific PK
parameters.

However, published data are often available in the form of sample average plasma

concentration. In other words, only , instead of yijkh are published. But model (4)
obviously needs yijkh, and hence can not be directly implemented to perform meta-analysis

with summarized data. Reconstructing a drug PK model from  needs a new meta-
analysis formulation and different Bayesian sampling algorithm.

Meta-Analysis Models with Sample Mean and Standard Deviation Data—As
individual data are not available, it is an unrealistic goal to estimate subject level PK parameters.
The sample mean data ȳ•jkh at most provide information about study specific PK parameters

βk and study to study variation parameters Ω. The sample variance data  at most provide
information about between-subject heterogeneity parameter Σ. As a result, models based on
(4) – (6) are only suitable when working on subject level data. When only sample mean and
sample variance data are available, they need to be modified to make estimation feasible. In
other words, the models should not involve βik. A natural approach is to base estimation
methods on marginalized likelihood where βik is integrated out. However, as no analytic form
is available for f(α, βik, zjkh), direct integration is not feasible. The alternative we take is to first
derive an approximation for f(α, βik,zjkh) and then marginalize. Specifically, we adapt as
follows.
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By Taylor expansion at βk, f(α,βik,zjkh) can be approximated as

(7)

Denote . Instead of individual level PK model (4), we assume the following

approximated model . Now by
integrating out βik using the conditional distribution of βik given βk,we have

(8)

As a result,

(9)

To obtain the approximate distribution for sample variance, ,
we use the known fact the normalized sample variance of m i.i.d. normal variables has a chi-
square distribution with degree of freedom m‒1. From the approximate model (8), we
immediately obtain

(10)

Notice that (9) and (10) depend only on βk, Σ, and  Hence estimation of these parameters is
feasible with mean and standard deviation data. Our estimation will be based on the following
hierarchical models.

• Sample mean PK model

(11)

• Sample variance PK model
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(12)

• Study-specific PK parameter model:

(13)

Many times, a main purpose of determining variability is to identify individuals at risk.
However as our model is based on summarized data, no individual information is available.
All we can do is to quantify variance for a given population. Of course if individual data are
available, subject covariates can be used in explaining variability using individual level models.

Prior Specification and Posterior Distributions—Due to the nonlinear structure from
PK models (1) - (2), no conjugate priors exists for all parameter except Ω. Vague priors are
used for PK parameter population level PK parameters (α, β) and subject level heterogeneity
parameter, (Σ, Ω, ), where Σ = diag{ } and Ω = diag{ }.

(14)

Variance components all follow a uniform prior because practically they rarely exceed the
bound (a, b) = (0.012,22).

Let Ȳ• = {ȳ•jkh;j = 1,⋯,Tkh;k = 1, ⋯,K;h = 1, ⋯,Hk} be the sample mean data and

 the sample variance data. Then, the posterior
probability distribution based on (11) - (13) and priors (14) is,

(15)

The estimation procedure is implemented with a Monte Carlo Markov chain method. The
posterior probability functions, p(β |•), p(α |•), p(βk |•), p(  |•), p( |•), and p( |•) are
derived in the Appendix. We defer the implementation details of our computation to the data
analysis section.

An Alternative Bayesian Hierarchical Model for the Sample Mean PK Profile—In

Li et al. (2007), instead of modeling both ȳ•jkh and  as in (10) and (11), only ȳ•jkh is modeled.

The variance of ȳ•jkh is assumed to be . So instead of (10), the following is used
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(16)

In the following context, (11)-(13) are referred as the mean-variance model and (13) and (16)
are referred as the mean model. While both models are approximation models, there are two
major differences between the mean-variance model (11)-(13) and the mean model, (13) and
(16). Firstly, the mean model is not designed to recover the between-subject variance Σ, while

the mean-variance can. Secondly, by using observed sample variance  to represent the
variance of ȳ•jkh, model (16) should be more robust to model specification. It does not require
Taylor expansion for approximation of f(α,βik,zjkh). Of course the downside is observed sample
variance can deviated from the true variance, depending on the number of subject in each study
and the true variability of individual data. The MCMC algorithm for the mean model is
described in the Appendix IV of Li et al. (2007).

DDI Prediction Based on Sample Mean and Standard Deviation Data—The key to
estimate AUCR is to estimate AUCS,W andAUCS,WO. When estimates of these two AUCs are
carried out by using population level parameters α and β, the ratio of AUCS,W and AUCS,WO
leads to population level DDI which we denote by AUCR(α, β, Ki). When instead of β, study
level parameters βk are used, then we have study level DDI which we denote by AUCR (α,
βk, Ki). By the same token, we can use βik and obtain individual level DDI, AUCR(α, βik,
Ki).

Based on posterior distributions of PK parameters from the mean-variance model, we are able
to obtain a posterior distribution of AUCR at different levels. For example, a posterior sample
of the distribution of population level DDI can be obtained by AUCR(α(u), β(u), Ki)., where
{α(u),β(u)}u=1,…,U are their posterior draws. Similarly, we can have posterior sample of study
level DDI. However for subject-specific DDI, we can not proceed in the same way as no
posterior draws of individual level βik are available (note that βik is not present in the mean-
variance model). Instead we obtain samples of AUCR(α, βik,Ki) by first drawing βik from its
prior distribution (4) with Σ replaced by its posterior draws. That is, given any specific draw
of (α(u), βk(u), Σ(u)), we draw βik(v), v=1,… V, from [βik | βk(u), Σ(u)]. Corresponding to any
draw of βik(v), a sample of AUCR(α(u),βik(v), Ki) can be obtained. For any specific u, a total of
V samples AUCR(α(u),βik(v), Ki) are obtained. Due to the study level nature of our data, this
is a reasonable way for estimating subject-specific DDI. By estimating DDI distribution, our
approach provides more information about DDI prediction, compared with the deterministic
approach (Yang et al. 2003).

3. KETO/MDZ Example
The PK parameters of both KETO and MDZ are estimated from published studies using the
proposed mean-variance model and mean-model from Section 2.2. The predicted log-
transformed drug concentrations for KETO are calculated from the differential equation model
(1) and the predicted log-transformed drug concentrations for MDZ are calculated from the
differential equation model (2). Based on (known) DDI parameters, (KmI, KmS,fuI, Ki,MWI),
the DDI outcome, AUCR, is then predicted by models (1) and (2) linked by (3).

From the appendix, only p(  |•) has an explicit form and hence can be simulated directly.
Other posterior distributions, p(α |•), p(βk |•), p(  |•), and p(  |•), are drawn through the
Metropolis Hasting (MH) algorithm (Hastings et al. 1970). At each step, a random walk chain
is used and the random pertubation is taken to mean normal with mean 0 and standard deviation
of 10%. The mixing is well with such proposed density and the acceptance rate varies. For
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population parameter α, the acceptance rate is about 40% and for most of the study specific
parameters βk, the acceptance rates are close to 25%. Five independent chains were run
simultaneously to determine the convergence with dispersed starting values on population
parameters. It needed less than 4000 iterations for the estimated potential scale reduction
criterion of Gelman and Rubin (1992) to be less than 1.2. By visual inspection of trace plots,
almost all chains start to mix well after 500 iterations. The final results are based on a single
chain of 50000 iterations after a burn-in of 10000. Every 10th iteration after burn-in was
extracted for summarizing results. The numerical strategies for solutions of the differential
equations and the derivatives of differential equations were discussed in (Li et al. 2002; Li et
al. 2004). Both MCMC algorithms and numerical solutions of differential equations are
implemented in the statistical freeware R 2.2.1.

3.1 KETO Data Analysis
Table 1 and Figure 1 (a) summarize seven published KETO PK data sets that were used to
establish the PK model of KETO. All studies employed oral (PO) dosing of the Nizoral (Janssen
Pharmaceuticals) formulation. The participants in these seven studies were young and healthy.
The model is defined as in (11)-(13) together with PK model (1). Here the study specific
parameters are βk=(V1I,k, V2I,k, CL12I,k, VmaxI,k, kaI,TM,k) with corresponding population
parameters β=(V1I, V2I, CL12I,VmaxI, kaI,TM). We also take α = (ΔkaI,TF, ΔkaI,SLM,
ΔkaI,SPF, ΔkaI,SLF) where elements of α are restricted to be positive. Both the variance matrix
Σ of study specific parameters and Ω of subject specific parameters are taken to be diagonal.

We use different diagonal elements  for Ω and

 for Σ. During the actual computation, we log-transform all PK
parameters. The interpretation of the variance components is then the coefficient of variance
(CV). The prior distributions follow the same formulations as those in (14).

Estimation results are reported in Table 2 and Figure 2. The 90% credit intervals of PK
parameters are reported. Here are some highlights.

• Among the KETO PK parameter estimates, V2I and CL12I have wider 90% CI than
the others, if the CIs are normalized by their means. This is because only three studies
(Gascoigne et al. 1981; Huang et al. 1986; FDA 1999) had sampling time points late
enough to detect the terminal phase of KETO elimination from plasma, while the
other studies did not.

• V2I and CL12I's between-study CV estimates, 0.44 and 0.54 respectively, are larger
than the other between-study CV estimates.

• kaI, V2I and CL12I's between-subject CV estimates 0.92, 0.31 and 0.32 respectively,
are larger than the other between-study CV estimates. One example of fitting to
sample variances is illustrated by Figure 2(a) for a KETO study (Gascoigne et al.
1981). The within subject CV is estimated as 0.20.

• Both mean-variance model (model 2 in table 2) and mean-model (model 1 in table 2)
have comparable performance in estimating PK parameters and their between-study
CVs. All their 90% CIs are overlapped.

3.2 MDZ Data Analysis
Table 1 and Figure 1 (b) summarize two published MDZ data sets. They were used to establish
MDZ's PK model and estimate its PK parameters. MDZ (administered as Versed®, Roche
Pharmaceuticals) was administered in the fasting state in all studies. The participants in these
two studies were young and healthy. Its mean-variance model is (11)-(13) together with the
PK model (2). Here the study specific parameters are βk= (V1S,k, V2 S,k, CL12S,k, Vmax S,k).
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As there are only two studies used in the analysis, the between study variances were assumed
to be the same crossing different PK parameters, ωs,1

2. The between subject variance,

. We also log-transform the PK parameters and hence the
interpretation of all the variance components is coefficient of variance (CV). The prior
distributions follow the same formulations as those in (14). Estimation results are reported in
Table 2. Here are some highlights.

• All of MDZ PK parameter estimates have comparable 90% CIs, if they are normalized
by their means.

• The between-study CV is estimated as 0.32, within subject CV is estimated as 0.10.
between-subject CV ranges from 0.11 to 0.20. The fitting of sample CV is displayed
by an MDZ example (Lee et al. 2002) in Figure 2(b).

• Both mean-variance model (model 2 in table 2) and mean-model (model 1 in table 2)
have comparable performance in estimating PK parameters and their between-study
CVs. All their 90% CIs are overlapped.

3.3 KETO/MDZ Interaction Prediction
Assuming a simultaneous oral dose KETO and an IV dose for MDZ, the interaction PK models
follow equations (1) and (2) connected by (3). The inhibition constant Ki is assumed to take
value of (0.0037, 0.01, 0.18) μM to assess their influence on DDI prediction. In the simulation,
the blood sampling time points are (0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 12) hours after dose. MDZ is
dosed at (2, 5, 10) mg levels, and KETO/MDZ is dosed at three combinations: 200/2mg,
400/5mg, 800/10mg. The predicted MDZ plasma concentrations are simulated both with and
without KETO, and at three different Ki values. AUC and AUCR are calculated with the
trapezoid rule (Rowland and Tozer 1995). Following our proposed DDI prediction procedures
in section 2, population-average DDI, subject-specific DDI, and between-subject/study
variance of DDI are predicted and displayed in Table 3. Here are some highlights.

• The smaller the Ki, the larger the predicted AUCR. The larger the dose combination,
the larger the predicted AUCR. These results fit well to previously published
simulation studies (Yang et al. 2003).

• The smaller the Ki, the smaller between-subject/study CV. The larger the dose
combination, the larger the CVs of population-average and subject-specific AUCRs.

• Subject-specific AUCR and population-average AUCR have very comparable mean
estimates, but subject-specific AUCR has much higher CVs, which is due to the
additional between-subject/study variations.

• The predicted mean between-subject/study CV is smaller than the CV of the subject-
specific AUCR, because it doesn't contain the variability due to the uncertainties of
PK parameter estimates.

4. Simulation Studies for PK Parameter Estimation and DDI Prediction
Based on our proposed hierarchical Bayesian model, sample mean drug concentration data and
their sample variances were fitted to estimate PK parameters and variance components for
KETO and MDZ. It is not clear whether the estimates are biased, and consequently whether
the predicted AUCR and its variance are biased. To answer these questions, statistical
simulations were conducted. We carry out simulation study based on the mean-variance model
in this paper. For simulation under the mean model, readers are referred to Li et al. (2007).

In each simulated data set, eight studies for both KETO and MDZ were generated. KETO had
3 tablet dose levels (200mg, 400mg, 800mg) with meals and MDZ had IV bolus with 3 dosages
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(2mg, 5mg, 10mg). There were 24 subjects for each study. Individual data were simulated first
and then summarized as mean and standard deviation data for analysis. The blood sampling
time points were (0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 12, 24, 36) hours after dose for KETO and (0.25,
0.5, 1, 1.5, 2, 3, 4, 6, 12) for MDZ. At each KETO dose, its subject specific plasma
concentrations were simulated with a two-compartment model (1) and subject specific models
(4) – (6). The population PK parameters are β = log(V1I,V2I, CL12I,V maxI,kaI,SLF). We utilized
the similar PK parameters from prescribed data analysis as their true values (Table 2). The
between subject variance matrix is taken as  with  set to be 0.202. Study to study
variance matrix is taken as  with  set to be 0.302. The measurement error variance

 is set as 0.102. Similar to the KETO, MDZ plasma concentrations were simulated with a
two compartmental PK model (2) and subject specific models (4) – (6). The PK parameters
are β = log(V1S,V2S,VmaxS,CL12S), and the true PK parameters are listed in Table 3 and are
chosen to be close to their estimates in the prescribed MDZ data analysis. The between subject
variance matrix is taken as  with  set to be 0.202. Study to study variance matrix is
taken as  with  set to be 0.302. The measurement error variance  is set as 0.102.
Totally, 100 simulated data sets were generated for both KETO and MDZ under each dose.

To fit the PK model in each simulation data set, an M-H algorithm was implemented as in the
data example. To save computation time, initial values for PK parameters and variance
components were chosen as their true values plus a random noise with a CV of approximately
10%. This increases the convergence rate of the algorithm, yet has minimum impact for the
convergence itself. A total of 3000 iterations with 1000 burn-in were run to obtain PK parameter
posterior distributions after the MCMC reached convergence. One in every five samples was
picked to avoid autocorrelations. Both mean-variance model and mean-model were fitted to
simulated data sets. Table 4 summarizes the PK parameters and variance components
estimation biases for both approaches. Figure 3 summarizes the simulation results for AUCR
prediction; and Figure 4 summarizes the AUCR's variation prediction. Here are the highlights
for simulation results.

• In Table 4, except that CL12's relative bias is around 7.5%, all the other PK parameters
have relative bias less than 5%. CL12 and V2's estimates have larger bias than the
other PK parameters. It is true in both mean-variance model and mean-model.

• In Table 4, both the between-subject and between-study variances are estimated with
less than 5% relative bias.

• In Figure 3, both subject-specific and population-average AUCR predictions have bias
less than 5%. Their 90% CI coverage probabilities are close to their nominal levels.

• In Figure 4, AUCR's between-subject/study variation predictions have bias less than
5%, and their 90% CI coverage probabilities are close to their nominal levels.

5. Conclusions
In this paper, we have proposed a DDI prediction method based on an innovative three level
hierarchical Bayesian model. It enables us to reconstruct a drug's PK model from multiple
published PK studies. This approach can not only estimate PK parameters, but also can recover
their between-study and between-subject variations. Most importantly, the posterior
distributions of PK parameters and their variance components allow us to predict DDI at both
population-average and study-specific levels. In addition, so we can also predict the DDI
population and between-subject variance. These statistical predictions have never been
investigated in a DDI research. Our simulation studies show that our meta-analysis approach
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has small bias in PK parameter estimates and DDI prediction, when using the published sample
mean and variance data.

Both data analysis and simulation studies demonstrate that the mean-variance model proposed
in this paper and the mean-model in Li et al. (2007) have comparable performances in PK
parameter estimations. In (Li et al. 2007), it was shown that PK parameter estimation is robust
to prior distribution selection. In addition, it was shown in the paper that a second-order Taylor
expansion approximation in (10) did not reduce the bias much. This is consistent with that of
the marginal quasi-likelihood (MQL) approach in generalized linear mixed model
(Molenberghs and Verbeke 2005) (Chap. 14, p270-273). Other approximation method, such
as penalized quasi-likelihood approach (PQL) was reported to have better performance
(Breslow and Clayton 1993; Wolfinger and O'Connell 1993), which is a first order Taylor
expansion around subject-specific parameters. However, as the subject-specific level PK
parameter information is not available in the sample mean data, PQL approach is not applicable
in our meta-analysis.

The competitive inhibition interaction model (3) between MDZ/KETO has been well
established in both in-vitro studies (von Moltke et al. 1996 and Gibbs et al.1999) and in-vivo
studies (Yang et al. 2003 and Chien, et al. 2006). There are multiple MDZ/KETO DDI studies
(McCrea, et al. 1999;Lam, et al. 2003;lkkola, et al. 1994;Lee et al. 2002; and Tsunoda et al.
1999). Our proposed drug interaction models (1) ∼ (3) predict reasonably well in MDZ/KETO
interaction, given a single dose 200mg IV MDZ and a single dose 2mg KETO PO and Ki =
0.0037 μM (Table 3). The predicted average AUCR = 3.02, and the reported average AUCR
= 5.10 (Tsunoda et al. 1999). However, how to validate the model based DDI prediction is
itself a highly challenging problem. Questions remain regarding how to determine the existence
of DDI, how to test the equivalence between the predicted and the reported DDI, and how to
expand the current two-compartmental interaction model to a physiological interaction model
for possible improvement in DDI prediction. All these questions need significant joint efforts
from statisticians and pharmacologists.

In this paper, we assume that the DDI PK model framework is known and correct. The unknown
pieces are the pharmacokinetic parameters of the two drugs' two-compartment models. With
a Bayesian approach, we are able to recover both the means and between-subject variances of
the PK parameters from summarized data, which then leads to a valid DDI prediction. This
paper establishes our Bayesian approach's feasibility and validity in recovering PK parameter
means and variances from published summarized data. It serves as a fundamental building
block for follow-up DDI model development and DDI prediction. The Bayesian models also
provide a flexible framework to integrate prior knowledge into the estimation and prediction
procedures.

Acknowledgments
Drs. Lang Li, Menggang Yu, and Stephen Hall's researches are supported by NIH grants, R01 GM74217 (LL), R01
GM67308 (SH), FD-T-001756(SH).

Appendix

Appendix Posterior Distributions
The following functions are conditional distributions to draw PK parameters and their variance
components parameters in our three level hierarchical Bayesian model proposed in section 3.

Data analysis proposed in section 4 also utilized the following distributions. Assume the
dimension of α is p, of βik, βk, and β is q.
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Population PK parameters (α, β=(β1, ……, βq)T) and study level PK parameters βk:

(A1)

(A2)

(A3)

Variance components:

(A4)

where  (0.012,22) equals 1 when  is inside (0.012, 22) and 0 otherwise.

(A5)

(A6)

Here  (0 012,22) and  (0.012,22) are similarly defined as  (0 012,22).
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Figure 1.
(a) published ketoconazole studies; (b) published midazolam studies. Every curve represents
a sample mean drug concentration profile; multiple curves from one study represent multiple
phases of a pharmacokinetics study.
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Figure 2.
(a) The fitting of sample coefficient of variance from a ketoconazole study (Gascoigne et al.
1981). The solid line is the sample coefficient variance, and dots are the posterior draws of the
predicted coefficient of variance. (b) The fitting of sample coefficient of variance from a
midazolam study (Lee et al. 2002). The solid line is the sample coefficient variance, and dots
are the posterior draws of the predicted coefficient of variance.
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Figure 3.
(a), (b), and (c) are population-average AUCR prediction estimates, relative bias, and 90%
credit interval coverage probability respectively. (d), (e), and (f) are subject-specific AUCR
prediction estimates, relative bias, and 90% credit interval coverage probability respectively.
These results are based on 100 simulated data sets.
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Figure 4.
(a), (b), and (c) are between-subject/study AUCR coefficient of variance estimates, relative
bias, and 90% credit interval coverage probability respectively. These results are based on 100
simulated data sets.
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Table 1
Published KETO and MDZ Data Sets

Sources dose
(mg)

sample size per
subject
(time frame)

Size
(M/F)

meal

KETO

(Gascoigne 1981) 200 capsule 5(1 – 24h) 3(N/A) fasting

200 solution 5(1 – 24h) 3(N/A) fasting

100,200,400 tablet 8(0.5-48h) 12(N/A) meal

200 solution 8(0.5-48h) 12(N/A) meal

(Daneshmend 1981) 200, 400 tablet 14(0.5 – 48h) 28-44 6(6/0) meal

(Daneshmend 1983) 200 tablet, 7(0-24h) 10(0.5-8h) 8(8/0) fasting

(Daneshmend 1984) 200, 400, 600 13(0.5, 32h) 8(3/5) meal

800, tablet (20-31)

(Huang 1986) 200 solution suspension,
tablet

12(0.5-48h) 24(24/0) fasting

200, 400, 800 solution. 12(0.5-48h) 12(24/0) fasting

(FDA 1999) 200 tablet 17(1/4-24h) 39(39/0) fasting

200 tablet 17(1/4-24) 23(24/0) meal

(FDA 1999) 200 tablet 15(1/3-48) 24(24/0) fasting

200 tablet 15(1/3-48) 17(17/0) meal

MDZ :

(Lee 2002)† 2 IV 27(1/2-6h) 12(6/6) fasting

(Tsunoda 1999) 2 IV 12(1/4-8h) 9(6/3) fasting

†
In the original paper, MDZ was through IV fusion in a very short period to 2mg, we used the portion of data after fusion and assume IV bolus administration.
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Table 3
Population-Average and Subject-Specific AUCR Prediction

Ki Dose/Combination (KETO/MDZ)mg Population-Average AUCR Subject-Specific AUCR Between-Subject/Study CV

0.0037 200/2 3.02 ×/÷ 1.112 2.94 ×/÷ 1.258 0.242×/÷ 1.090

0.01 200/2 2.43 ×/÷ 1.084 2.35 ×/÷ 1.222 0.217×/÷ 1.116

0.18 200/2 1.21 ×/÷ 1.014 1.19 ×/÷ 1.085 0.084×/÷ 1.078

0.0037 400/5 3.72 ×/÷ 1.130 3.50 ×/÷ 1.273 0.254×/÷ 1.116

0.01 400/5 3.17 ×/÷ 1.108 2.94 ×/÷ 1.255 0.234×/÷ 1.091

0.18 400/5 1.45 ×/÷ 1.020 1.39 ×/÷ 1.124 0.120×/÷ 1.066

0.0037 800/10 3.93 ×/÷ 1.139 3.61 ×/÷ 1.280 0.249×/÷ 1.155

0.01 800/10 3.56 ×/÷ 1.119 3.34 ×/÷ 1.260 0.224×/÷ 1.139

0.18 800/10 1.78 ×/÷ 1.028 1.69 ×/÷ 1.153 0.151×/÷ 1.058

Note: the results are presented as mean×/÷ (1+CV)*100%.
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