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INTRODUCTION

Functions of NAD

NAD and its reduced and phosphorylated derivatives,
NADH, NADP, and NADPH, function as hydride acceptors
and donors in a variety of cellular redox reactions (2). In
addition, NAD is a consumed substrate of ADP-ribose trans-
ferases (25), Sir2- and CobB-related protein lysine deacety-
lases termed sirtuins (29), and bacterial DNA ligases (64).
Metazoans have evolved further NAD-consuming activities,
including cADP-ribose synthetases and poly(ADP-ribose)
transferases (7). A sampling of major biochemical reactions
requiring NAD and its derivatives is shown in Fig. 1.

Canonical De Novo and Salvage Biosynthetic Pathways

Though NAD metabolism is presented in textbooks as a
universal process, there is remarkable diversity in cellular ap-
proaches to NAD synthesis. The two basic types of NAD syn-
thesis consist of de novo biosynthetic pathways and salvage
biosynthetic pathways. As shown in Fig. 2, in de novo biosyn-
thesis, nicotinic acid mononucleotide (NaMN) is synthesized in
three enzymatic steps from Asp or in five steps from Trp,
followed by two enzymatic steps to complete synthesis of NAD.
In salvage biosynthesis, nicotinic acid, nicotinamide, nicotinic

acid riboside, or nicotinamide riboside—NAD breakdown
products that contain a pyridine ring—are either imported
from outside of cells or recycled from inside cells and con-
verted in a few steps to intact NAD (11).

In the absence of evidence for an abiotic source of nicotin-
amide or nicotinic acid, it is reasoned that ancestral cells synthe-
sized NAD de novo (13). Canonically, the three-step pathway
from Asp is found in monera, whereas the five-step pathway from
Trp is found in eukaryotes, and both de novo pathways are
commonly termed aerobic. However, no aspect of the canon is
without exception. There are bacteria such as Haemophilus
influenzae, which do not carry genes for a de novo pathway
(21), and bacteria such as Cytophaga hutchinsonii, which carry
the genes for a de novo pathway from Trp (32). Similarly, there
are fungi such as Candida glabrata, which do not carry the
genes for a de novo pathway (18), and plants such as Arabi-
dopsis thaliana, which carry the genes for a de novo pathway
from Asp (30). Finally, there are anaerobes such as the hyper-
thermophilic archaeon Pyrococcus horikoshii OT-3, which carry
genes for a de novo pathway (53).

Most of the literature on NAD salvage pathways concerns
the two salvageable pyridine bases, nicotinic acid and nicotin-
amide, which are collectively termed niacin. These compounds
were discovered as vitamins by Elvehjem et al. as anti-black
tongue factors for malnourished dogs (19). Nicotinic acid sal-
vage was solved by Preiss and Handler with their description of
the three-step pathway through NaMN and nicotinic acid dinu-
cleotide (NaAD) (Fig. 3A) (46, 47). Because de novo NAD
biosynthesis produces NaMN, the second and third steps of the
Preiss-Handler pathway are described as common to nicotinic
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FIG. 1. Biochemical reactions of NAD. (A) NAD is utilized as a coenzyme in the conversion of glyceraldehyde 3-phosphate to 1,3-bisphosphate
by glyceraldehyde phosphate dehydrogenase. The enzyme-bound NAD promotes formation of a covalent thiohemiacetal intermediate and
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acid salvage and de novo biosynthesis. As will be discussed
below, the conversion of NaMN to NAD, once thought to be
either absent from particular microbes, such as H. influenzae,
or present and conducted by Preiss-Handler enzymes, is ac-
complished differently in Francisella tularensis (Fig. 3B) (59a).

The widespread phylogenetic occurrence of NAD-consum-
ing enzymes such as sirtuins (22), which break down NAD to
nicotinamide, creates a demand for nicotinamide salvage.
Thus, nicotinamide salvage would seem to be a universally
conserved enzyme function but it is not. Though Escherichia
coli and Saccharomyces cerevisiae both encode homologous
nicotinamidases (24), which convert nicotinamide to nicotinic
acid for Preiss-Handler salvage (Fig. 4A), vertebrates lack a
homologous gene. Instead, nicotinamide salvage in a divergent
set of bacteria and eukaryotes is accomplished by nicotinamide
phosphoribosyltransferase (Fig. 4B). Opining on nature,
Jacques Monod famously claimed that what was true for E. coli
would be true for the elephant. In fact, the tools of molecular
biology and comparative genomics allow one to delimit which
organisms and viruses perform a homologous function and
which organisms and viruses do not. Attempting to account for

the phylogenetic distribution of the two different nicotinamide
salvage systems, this review will make the case for multiple hor-
izontal gene transfer events in the dissemination of nicotinami-
dases and nicotinamide phosphoribosyltransferases within bacte-
ria and between bacteria and other domains.

Nicotinamide riboside was identified as a salvageable NAD
precursor in Haemophilus influenzae (26, 35, 57) and more
recently was discovered as an NAD precursor in yeast (8). The
enzymatic basis for utilization of nicotinamide riboside by Hae-
mophilus influenzae depends on a specific nicotinamide ribo-
side kinase fused to a specific nicotinamide mononucleotide
(NMN) adenylyltransferase encoded by the nadR gene (58).
The eukaryotic nicotinamide riboside kinases (8) are also spe-
cific enzymes, possessing sequences different from those of
bacterial nicotinamide riboside kinases, which phosphorylate
nicotinamide riboside and nicotinic acid riboside (62). How-
ever, in addition to salvage of nicotinamide riboside by pro-
duction of NMN, nicotinamide riboside salvage to nicotinamide,
mediated by enzymes previously characterized as uridine hydro-
lase (Urh1) and purine nucleoside phosphorylase (Pnp1), has

conversion to a dehydrogenated thioester with conversion of the coenzyme to NADH. The bound thioester is then phosphorylated to the
1,3-bisphosphate product. (B) NAD is the ADP-ribose donor for ADP-ribose transfer reactions by ADP-ribose transferases. The depicted reaction
involves protein arginine ADP-ribosylation with production of nicotinamide. (C) Sirtuins are NAD-dependent protein lysine deacetylases. In
sirtuin reactions, NAD is the acetyl acceptor, forming 2�- and 3�-acetylated ADP-ribose plus nicotinamide and the nonmodified protein lysine, from
an acetylated protein Lys. (D) Bacterial DNA ligases utilize NAD to adenylylate the ligase active-site lysine residue, which activates the 5�
phosphate of a nicked DNA substrate, forming an adenylylated nicked substrate. The enzyme then promotes the attack of the 3� hydroxyl on the
5� phosphate, releasing AMP and forming a DNA phosphodiester bond.

FIG. 2. De novo biosynthesis of NAD. (A) Schematic diagram of NAD biosynthesis from aspartate to NaMN (E. coli gene names). In some
archaea and thermotoga, the first step is catalyzed by aspartate dehydrogenase rather than aspartate oxidase (67). (B) Schematic diagram of NAD
biosynthesis from tryptophan to NaMN (S. cerevisiae gene names).
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been demonstrated in yeast (3, 4, 36). Finally, recent work indi-
cates that nicotinic acid riboside can be converted to NaMN by
nicotinamide riboside kinase and can also be utilized by the nu-
cleosidase activity of Urh1, followed by nicotinic acid salvage (3,

62). Nicotinamide riboside and nicotinic acid riboside salvage
pathways are depicted in Fig. 5.

Thus, to summarize current knowledge on canonical NAD
biosynthetic pathways, organisms can be considered to carry or

FIG. 3. Synthesis of NAD through the NaMN intermediate. (A) In the Preiss-Handler pathway, nicotinic acid is salvaged to NAD via NaMN
and NaAD intermediates. The pathway is depicted with S. cerevisiae gene names over the arrows and E. coli gene names under the arrows. (B) In
F. tularensis, the de novo pathway depicted in Fig. 2A was found, but the nadD gene was found to be missing. Utilization of NaMN depends on
NaMN amidation to NMN by a unique nadE gene, followed by NMN adenylylation by nadM.

FIG. 4. Nicotinamide salvage. (A) Nicotinamidases homologous to E. coli pncA convert nicotinamide to nicotinic acid for Preiss-Handler
salvage. (B) Nicotinamide phosphoribosyltransferases homologous to the H. ducreyi and F. tularensis nadV products convert nicotinamide to NMN
for adenylylation to NAD. Vertebrate nadV homologs are also termed NAMPT, PBEF, and Visfatin. Bacterial NMN adenylyltransferase, encoded
by nadM, converts NMN to NAD. Eukaryotic enzymes do not discriminate well between NaMN and NMN adenylylation, such that most eukaryotic
NaMN adenylyltransferases, such as S. cerevisiae Nma1 and Nma2 (depicted in Fig. 3A), are also NMN adenylyltransferases.
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not to carry the genetic modules depicted in Fig. 2 to 5, which
carry out two possible de novo biosynthetic pathways and sal-
vage pathways from as many as four different salvageable pre-
cursors. In contrast to a restaurant offering a prix fixe dinner,
organisms can be considered to prepare NAD using a “Chinese
menu” approach in which there can be a pathway from Asp
(Fig. 2A) or Trp (Fig. 2B) or none, enzymes for nicotinic acid
utilization (Fig. 3A) or none, a possible alternative route from
NaMN to NAD (Fig. 3B), and/or enzymes for nicotinamide
(Fig. 4) and/or nicotinamide riboside/nicotinic acid riboside
utilization (Fig. 5).

Whereas the rules for following a Chinese menu might dic-
tate a choice between one dish or another, the diversity in
NAD biosynthetic processes is highly combinatorial and em-
braces examples in which organisms encode multiple salvage
pathways from the same precursor. As shown in Fig. 6, the
betaproteobacteria Ralstonia solanacearum and Chromobacte-
rium violaceum are remarkable for encoding nicotinamidase
and nicotinamide phosphoribosyltransferase activities. As dis-
cussed above, two redundant types of nicotinamide riboside/
nicotinic acid riboside salvage have been demonstrated func-
tionally in S. cerevisiae (3, 4).

MICROBES LACKING DE NOVO NAD BIOSYNTHESIS

Whereas salvage pathways are nonessential in model organ-
isms such as E. coli and S. cerevisiae, there are organisms that
have evolved to depend entirely on salvage of NAD precursors
from other cells.

Haemophilus influenzae, a Nicotinamide Riboside Auxotroph

Formerly called Pfeiffer’s bacillus, Haemophilus influenzae is
an opportunistic gram-negative pathogen causing otitis media
and respiratory tract infection in humans, and it was the first
free-living organism to have its genome sequenced and assem-
bled (21). As is apparent from the genus name, culture of H.
influenzae initially required blood, such that fractionation pro-
grams were used to identify the molecules for which the bac-
terium is auxotrophic. Two essential factors, termed X factor
and V factor, were identified as essential for growth of most
strains of H. influenzae on synthetic media. The X factor is
heme, and the V factor, which cannot be replaced by amino
acids, nicotinic acid, or nicotinamide, was discovered to be
NAD, NMN, or nicotinamide riboside (26, 35, 57). The nadR
gene, which is required for growth of H. influenzae on nicotin-

FIG. 5. Nicotinamide riboside and nicotinic acid riboside salvage. (A) Nicotinamide riboside salvage in H. influenzae is mediated by the
nicotinamide riboside kinase domain and the NMN adenylyltransferase domain of nadR. (B) Nicotinamide riboside and nicotinic acid riboside
salvage in S. cerevisiae is mediated by nicotinamide riboside kinase (NRK1)-dependent and nucleoside-splitting pathways.
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amide riboside, is a bifunctional nicotinamide riboside kinase/
NMN adenylyltransferase (58). The nicotinamide riboside ki-
nase domain of nadR is found in additional bacteria and is
diagnostic for bacterial nicotinamide riboside utilization (33).

Candida glabrata, a Vitamin Auxotroph

Candida glabrata is an opportunistic yeast fungal pathogen
and the second-leading cause of candidiasis in humans. In a
remarkable study, C. glabrata was reported to be a nicotinic
acid auxotroph because it lacks de novo biosynthetic genes and
because nicotinic acid limitation derepresses expression of ad-
hesin genes, thereby linking Sir2-dependent gene silencing to
repression of a pathway important for urinary tract infection
(18). Genes encoding pathways from nicotinamide riboside
and nicotinamide were observed in the C. glabrata genome (2)
and demonstrated to function in fungal growth in culture as

well as in murine infection (36). Thus, like H. influenzae, the
eukaryotic pathogen C. glabrata has a lifestyle requiring supply
of specific NAD precursor vitamins from its environment.

HORIZONTAL GENE TRANSFERS OF BOTH TYPES
OF NICOTINAMIDE SALVAGE

NAD consumption creates a requirement for de novo and/or
salvage biosynthesis. Additionally, because NAD-consuming
enzymes such as sirtuins are inhibited by nicotinamide (10),
there may be a selection for evolution or acquisition of en-
zymes performing nicotinamide salvage. Nicotinamide salvage
differs between vertebrates, fungi, and protostomes in that
vertebrates carry a nadV-like nicotinamide phosphoribosyl-
transferase gene and no nicotinamidase gene, whereas fungi
and protostomes typically carry a pncA-like nicotinamidase
gene but no nicotinamide phosphoribosyltransferase gene.

FIG. 6. Nicotinamide metabolism throughout the tree of life. The tree of life calculated with universally conserved proteins (17) was annotated
on the basis of possession of apparent pncA and nadV orthologs. For each fully sequenced genome, we scored the organism as carrying nadV (1),
pncA (2), both genes (3), or neither gene (0). (Adapted from reference 17 with permission from AAAS.)
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Bacteria usually carry one gene or the other and occasionally
carry both.

To determine how these genes came to be present in extant
species, we collected apparent nadV and pncA genes from
public databases and estimated phylogenetic trees based upon
the predicted protein sequences. The phylogenetic trees for
these two nicotinamide-metabolizing enzymes are strikingly
discordant with simple descent and are distinct from each
other. Phylogenetic analyses suggest that nadV genes origi-
nated either in an isolated eubacterium or near the base of the
vertebrate tree and that viruses and plasmids were vectors for
multiple, relatively recent horizontal transfers of nicotinamide
phosphoribosyltransferase genes among eubacteria. A Fran-
cisella tularensis-like nadV gene is branched with metazoan
nicotinamide phosphoribosyltransferase genes, which are ab-
sent from the sequenced genomes of protists, protostomes,
fungi, and plants. In contrast, the data suggest that nicotinami-
dase genes emerged relatively early in bacterial history and
that that distinct bacterial pncA genes were transferred to
archaea, plants, fungi, and protostomes.

To provide a global view of the distribution of nicotinamide
salvage enzymes, we annotated an automatically constructed
tree of life that was calculated with universally conserved pro-
teins (17). Figure 6 depicts many examples in which nearest
neighbors in cellular evolution utilize different genes for nico-
tinamide salvage.

Evidence for Virus- and Plasmid-Mediated
Gene Transfers of nadV

From searches of GenBank (5) and the Sargasso Sea meta-
genomic translations (63), we identified apparently full-length
nadV-homologous nicotinamide phosphoribosyltransferase se-
quences from 12 animals, 23 bacteria, and 5 viruses. We ex-
cluded sequences with more than 94% identity to another
isolate and those with more similarity to nicotinic acid phos-
phoribosyltransferase sequences. Six nadV sequences from the
Sargasso Sea database, which are represented in GenBank
with known phylogenetic origins, were discarded. Two putative
bacterial nadV sequences from the Sargasso Sea that were only
47% and 87% identical to a previously reported sequence were
included in further phylogenetic analysis.

Beyond the two unknown Sargasso Sea samples, bacteria
carrying an apparent nadV gene include 15 proteobacteria, 4
firmicutes, 1 deinococcus, 2 cyanobacteria, and 1 bacteriodete.
Metazoa with a full-length nadV homolog include human,
chimp, dog, rat, mouse, chicken, two frogs, three fish, and a
sponge. Though protostome genomes, including those of Dro-
sophila melanogaster and Caenorhabditis elegans, are complete,
we found no apparent nadV ortholog in any invertebrate other
than one attributed to the sponge, Suberites domuncula. The
only fungal nadV-related sequences were genes encoding nic-
otinic acid phosphoribosyltransferase (15). Similarly, despite
extensive genomic data from plants and protists, we found no
evidence for nadV-orthologous sequences in the eukaryotic
domain outside of metazoa. In the case of nicotinic acid phos-
phoribosyltransferase from Saccharomyces cerevisiae, physio-
logical experiments have proven that this enzyme cannot
utilize nicotinamide to support the growth of a glutamine-
dependent NAD synthetase mutant, thereby establishing the in

vivo substrate specificity of the enzyme (8). Thus, nadV ho-
mologs have an unusual phylogeny consisting of eubacteria,
bacteriophage, sponge, and vertebrates.

Inspection of Fig. 6 indicates that NadV is infrequently en-
coded by the first 150 sequenced bacterial genomes. The gene
is infrequently carried in beta- or gammaproteobacteria and
was not observed in any of the first alpha-, delta-, or epsilon-
proteobacteria with sequenced genomes. nadV sequences were
identified in one cyanobacterium, one deinococcus, and three
mycobacteria. At the time of our analysis, nadV was absent
from all archaeal genomes and absent from all sequenced
eukaryotic genomes except those of vertebrates, in which it has
been always found. These data provide an impression of late
appearance and/or frequent elimination of nadV sequences, as
the gene is rarely present in multiple members of any partic-
ular clade other than vertebrates, the xanthomonads Xan-
thomonas axonopodis and X. campestris, and the mycoplasmas
Mycoplasma gallisepticum, M. genitalium, and M. pneumoniae.

A nadV phylogenetic tree (Fig. 7) calculated by Bayesian
estimation of protein phylogeny (28) has three primary protein
clades. Three nadV sequences from Mycoplasma populate the
first clade. Animal sequences are in a second clade with nadV
sequences from cyanobacteria, deinococci, two Sargasso Sea
isolates, and the majority of nadV-positive proteobacteria, in-
cluding Francisella tularensis, Haemophilus somnus, and Ral-
stonia solanacearum, which carries nadV on a megaplasmid
(54). The virally carried nadV genes from bacteriophage
KVP40, which infects Vibrio (38), and bacteriophages Aeh1
and 44RR2.8t, which infect Aeromonas (16), are each other’s
nearest neighbors in the second clade. In the third protein
clade are sequences from the bacteriodete Cytophaga hutchin-
sonii and three proteobacteria with sequences similar to that of
the plasmid-carried nadV gene of Haemophilus ducreyi (37)
and the virally carried nadV genes from bacteriophage Felix 01
and staphylococcus phage K (42). The plasmid, pNAD1, which
carries H. ducreyi nadV and is integrated into some strains of
H. ducreyi, has been shown to carry three additional open
reading frames similar to those in cholera toxin phage and
enterobacterial phage I2-2 (41).

Protein clades 1 and 3 appear to have a common ancestor.
However, our data are inconsistent with the speculation that
the H. ducreyi nadV gene was horizontally transferred to My-
coplasma genitalium (37). Rather, it appears that a nadV gene
with an ancestor common to protein clade 3 was transferred to
Mycoplasma prior to the speciation of M. pneumoniae, M. geni-
talium, and M. gallisepticum. The plasmid-carried nadV gene of
H. ducreyi (37) and the virally carried nadV genes from bacte-
riophage Felix 01 and staphylococcus phage K (42) are rea-
sonable candidates for vectors transmitting nadV sequences
within protein clade 3.

The H. ducreyi nadV sequence is not the only type of nadV
gene found in Pasteurella. Instead, Pasteurella multocida and
Haemophilus somnus have a protein clade 2 gene more similar
to nadV sequences found in F. tularensis, Ralstonia solanacea-
rum, and metazoans. Bacteriophages similar to KVP40, Aeh1,
and 44RR2.8t may have had a role in transmitting nadV to F.
tularensis. The available data are consistent with an F. tularen-
sis-type nadV sequence having entered the metazoan lineage
horizontally after the separation from protists, plants, and
fungi. If such a sequence entered the ancient animal lineage
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only once, prior to the emergence of the sponge Suberites
domuncula, then the gene was lost in the lineage leading to
protostomes. Alternatively, two F. tularensis-type nadV se-
quences may have been transferred to animal lineages, with
one event giving rise to the nadV-homologous gene of Suberites
domuncula and one event giving rise to the nadV-homologous
gene of vertebrates. A third possibility consistent with available
data is that a metazoan, potentially near the base of the ver-
tebrate tree, produced the first nicotinamide-specific phospho-
ribosyltransferase, which was transferred to eubacteria such as
F. tularensis.

Horizontal Transfers of pncA in Three Kingdoms

Apparent moneran PncA peptide sequences were identified
from genome annotations at http://www.theseed.org, where
gene assignments make use of conservation of gene order and
metabolic inferences (44). Apparent eukaryotic homologs of S.
cerevisiae Pnc1 were obtained from public databases. Whereas
it is relatively simple to determine by relative similarity and
alignment that nadV genes are not pncB, i.e., encoding nico-
tinic acid phosphoribosyltransferase, it is relatively difficult to

rely on sequence alone to discern authentic pncA genes from
the related isochorismatase-encoding genes. Thus, caution
must be exercised with sequences not yet validated by bio-
chemical and/or genetic data. Inspection of Fig. 6 reveals that
pncA genes are more common than nadV genes and are dis-
tributed more deeply in the tree of life. For example, pncA was
found in the first 13 sequenced enterobacteria, embracing Pho-
torhabdus, Yersinia, Salmonella, Escherichia, and Shigella, and
was found in 13 of the first 14 sequenced actinobacteria. pncA
was found in 8 of the first 12 sequenced alphaproteobacteria
and in 7 of the first 8 sequenced betaproteobacteria, two of
which were distinguished by carrying both pncA and nadV.
Within the archaea, pncA was found in the first 12 of 18
sequenced genomes. There are plants, fungi, worms, and in-
sects that carry pncA homologs, and all known vertebrate ge-
nomes are negative. (It should be noted, however, that despite
the absence of vertebrate-encoded nicotinamidases, bacteria
resident in the vertebrate gut are likely to provide nicotinami-
dase function for provision of nicotinic acid to nicotinic acid-
utilizing tissues.)

A pncA phylogenetic tree (Fig. 8) calculated by Bayesian
estimation of protein phylogeny (28) contains some protein

FIG. 7. nadV phylogeny. The nadV phylogenetic tree was calculated with Bayeseian analysis (28, 52) using the sequence from Mycoplasma
pneumoniae as the outgroup. Protein clades 1 to 3 are indicated. Bayesian posterior probabilities are indicated for nodes. Branch lengths are
proportional to evolutionary distance.
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FIG. 8. pncA phylogeny. The pncA phylogenetic tree was calculated with Bayesian analysis (28, 52) using the sequence from Escherichia coli
as the outgroup. Nearly identical phylogenetic tree topologies were obtained with other sequences as the outgroup. Bayesian posterior probabilities
are indicated for nodes. Branch lengths are proportional to evolutionary distance.
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clades that are deeply rooted in proteobacterial, actinobacte-
rial, fungal, and protostome phylogenies and other protein
clades that strongly suggest horizontal gene transfer events.
For example, the methanogenic archaeon Methanosprillia has a
PncA sequence similar to that of Streptomyces, an actinobac-
terium, and to a set of plant nicotinamidases. However, the
thermophilic archaeon Pyrococcus has a PncA sequence closely
related to that of the proteobacterium Geobacter. Inspection of
Fig. 8 suggests that PncA sequences may have been transferred
to eukaryotic lineages multiple times.

COMPARATIVE GENOMICS UNDERSCORES
THE RULES AND EXCEPTIONS IN

NAD BIOSYNTHESIS

The Limitations of EC Numbers

Initially, NAD biosynthetic enzymes were discovered as en-
zyme activities and named accordingly. For example, in the
Preiss-Handler pathway of nicotinic acid utilization, the nico-
tinic acid phosphoribosyltransferase, the NaMN adenylyltrans-
ferase, and the glutamine-dependent NAD synthetase were
purified and characterized from yeast and from human blood
(47). These enzymes were given EC numbers, EC 2.4.2.11, EC
2.7.7.18, and EC 6.3.5.1. Working independently, Arthur Korn-
berg purified and characterized NMN adenylyltransferase (31),
which was given EC number EC 2.7.7.1. In yeast, the two
“different” enzyme activities, i.e., NaMN adenylyltransferase
and NMN adenylyltransferase, are both catalyzed by the same
gene products, Nma1 and Nma2 (1, 20). In vertebrate systems,
there are differences in the degrees of NaMN versus NMN
specificity of three different gene products. More importantly,
the genes are differentially regulated and differentially ex-
pressed, and their gene products are not expressed in the same
cellular compartments (6, 59). Thus, there are many cases in
which a single EC number corresponds to two or more genes
and cases in which a single gene product corresponds to mul-
tiple EC numbers.

In the case of nicotinamide riboside metabolism, there is
also a poor correspondence between EC number and gene
product. EC 2.7.1.22 refers to nicotinamide riboside kinase, an
enzyme that phosphorylates nicotinamide riboside to NMN.
The sequence and structure responsible for this activity were
identified as the metabolite kinase domain of NadR in H.

influenzae, Salmonella enterica, and E. coli (33, 58). However,
since eukaryotes have no NadR ortholog, a specific nicotin-
amide riboside kinase activity was not anticipated to exist in
yeast or humans. Indeed, the yeast and human NRK enzymes
(8) are structurally distinct from bacterial nicotinamide ribo-
side kinases, though they are all members of the metabolite
kinase superfamily (62).

We argue that more functional, structural, and mechanistic
information can be gleaned from referring to “homologs of the
metabolite kinase domain of Haemophilus influenzae NadR” or
to “homologs of S. cerevisiae Nrk1” than to EC 2.7.1.22, which
is a non-sequence-specific designation. Indeed, remarkable
progress in predictive biochemical reconstruction of microbial
NAD metabolism has been made, principally using the tools of
sequence similarity and conservation of gene organization (23,
44, 50, 51). Recently, four new discoveries in microbial NAD
metabolism have emerged from the examination of genome
sequences and functional characterization.

De Novo Synthesis in Anaerobic Archaea

The de novo pathways of NAD synthesis are frequently
termed aerobic because oxygen is an electron acceptor for
L-aspartate oxidase, which catalyzes the first step in the canon-
ical bacterial de novo pathway, and oxygen is consumed by
indoleamine 2,3-dioxygenase in the first step of the canonical
eukaryotic de novo pathway. However, despite being an anaero-
bic archaeon, Pyrococcus horikoshii encodes a homolog of E.
coli L-aspartate oxidase (53). As shown in Fig. 9, it has been
known for more than a decade that fumarate is an alternative
electron acceptor for E. coli L-aspartate oxidase (61), which
potentially explains how extant and ancient anaerobes make
NAD de novo (53). An interesting implication of this work is
that whereas an ancient cell presumably made NAD in five
enzymatic steps from Asp without oxygen, L-aspartate oxidase
requires flavin adenine dinucleotide (FAD) as a cofactor. This
suggests that riboflavin synthesis, a process regulated by RNA
(39, 66), may have predated NAD synthesis.

Salvage Synthesis in Mycobacterium tuberculosis

Tuberculosis remains the most lethal infectious pathogen
and may latently infect one-third of all living people. NAD

FIG. 9. L-Aspartate oxidase can function without oxygen. The FAD-dependent reaction catalyzed by L-aspartate oxidase can utilize fumarate
as the electron acceptor, thereby producing iminoaspartate, succinate, and reduced FAD under anaerobic conditions. The molecular oxygen-
utilizing reaction produces iminoaspartate, hydrogen peroxide, and reduced FAD.
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metabolic genes have been identified in M. tuberculosis, and
the de novo genes were proposed to be essential for viability
based on transposon studies (55). Though the pncA gene, en-
coding nicotinamidase, is required for sensitivity to pyrazin-
amide, a frontline treatment for tuberculosis (56), no one had
ever demonstrated nicotinamide or nicotinic acid salvage in M.
tuberculosis. The pncB gene, encoding nicotinic acid phospho-
ribosyltransferase, is duplicated, and deletion of the two ho-
mologous genes abolishes conversion of nicotinic acid to NAD
(12). pncB2 expression is induced under hypoxic conditions and
upon chronic infection of a mouse. Moreover, because a strain
with a mutation in de novo biosynthesis is capable of replicat-
ing in mouse and killing its host, it is now clear that tubercu-
losis infection makes use of salvage synthesis (12).

Glutamine-Dependent and Glutamine-Independent
NAD Synthetases

Jack Preiss first described eukaryotic NAD synthetase, the
enzyme which converts NaAD to NAD through the adenyly-
lated intermediate NaAD-AMP, as a glutamine-dependent en-
zyme. His work indicated that the enzyme activates the nico-
tinic acid moiety of NaAD by adenylylation and hydrolyzes Gln
to Glu as a source of ammonia to generate NAD plus AMP
(47). Years later, he found that E. coli NAD synthetase, now
termed NadE, is an ammonia-dependent and Gln-independent
enzyme (60). However, to assume that prokaryotic enzymes
would be exclusively ammonia dependent would be incorrect.
The NAD synthetase from M. tuberculosis is a Gln-dependent
enzyme with an N-terminal extension (14) with respect to the
sequence of E. coli nadE (65). We recognized that the N-
terminal sequence is a nitrilase-related domain found in all
eukaryotic NAD synthetases and in those prokaryotic NAD
synthetases reported to be Gln dependent (45). True to pre-
diction, the N-terminal domain is a thiol Gln amidotransferase
domain that mediates transfer of ammonia from Gln to form
the NAD product (9). According to Interpro database entry
IPR014445, the nitrilase-related Gln amidotransferase domain
of NAD synthetases has been found in over 500 eubacteria and
in 3 archaea in addition to eukaryotes (40).

NMN Synthesis in Francisella tularensis

The causative agent of tularemia, or rabbit fever, F. tularen-
sis is a gram-negative gammaproteobacterium whose genome
sequence, reported in 2005 (34), seemed to have a puzzling
omission of nadD. Eukaryotic NaMN/NMN adenyltransferases
are bifunctional enzymes, which adenylylate NaMN to NaAD
(Fig. 3A) and also adenylylate NMN to NAD (Fig. 4B). In
contrast, eubacterial NaMN adenylyltransferases are nadD ho-
mologs with specific recognition of NaMN (43, 68), whereas
specific NMN adenylyltransferases are nadR (49) or nadM
homologs (27, 48) with specific recognition of NMN. Exami-
nation of the F. tularensis genome revealed the de novo module
from Asp to NaMN depicted in Fig. 2A and the nadV and
nadM genes, which would convert nicotinamide to NAD as
depicted in Fig. 4A. Because F. tularensis can grow on synthetic
media without nicotinamide, Andrei Osterman and coworkers
hypothesized that the Asp to NaMN module is functional and
that there must be a nadD-independent route from NaMN to

NAD in this organism (59a). Peculiarly, however, F. tularensis
has a homolog of nadE, which, in other organisms, amidates
NaAD to NAD. Why would F. tularensis have nadE, encoding
an apparent NaAD-requiring enzyme, if it does not have nadD,
encoding the NaAD-producing enzyme? Reasoning that nadE
would have been lost along with nadD if it did not function in
NAD metabolism, the investigators tested two hypotheses.
First, they examined whether F. tularensis nadM encodes a
bifunctional NaMN/NMN adenylyltransferase more similar in
activity to eukaryotic enzymes than to bacterial nadM ho-
mologs. Second, they tested the radical hypothesis that the F.
tularensis nadE product amidates NaMN to NMN for subse-
quent adenylylation by the nadM product. Remarkably, the
nadM product is simply NMN adenylyltransferase, whereas the
F. tularensis nadE product has the novel activity of NaMN
amidation (59a). Thus, F. tularensis apparently completes de
novo NAD synthesis without the second and third steps of the
Preiss-Handler pathway and instead follows the scheme shown
in Fig. 3B.

CONCLUSIONS

In any rapidly evolving research area, it is dangerous to draw
too many conclusions. However, three appear to be warranted.
First, NAD metabolism is best described as a series of mod-
ules, none of which are universally conserved. Second, using
homology and synteny-based annotation, strong predictions of
the available pathways can be made based on genome se-
quences. A group led by Ross Overbeek has established “The
SEED” (http://www.theseed.org), a web-accessible database of
genome annotations which are expertly curated on a sub-
system-by-subsystem basis (44). SEED predictions can be con-
sidered to be state-of-the-art guides to the NAD gene sets of
organisms with sequenced genomes. Third, though recent
progress has been made (23, 44, 50, 51), we consider that
regulatory processes, which control the expression of particular
gene modules and link NAD metabolism to dynamic cellular
and ecological processes, are poorly understood. We predict
that genomic information gathered in the last 15 years com-
bined with molecular genetic methods developed in the last 30
years will be used to determine how NAD metabolic gene
modules and enzymes are regulated to respond to and to drive
microbiological functions.
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