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We recognize, understand, and interact with objects through both
vision and touch. Conceivably, these two sensory systems encode
object shape in similar ways, which could facilitate cross-modal
communication. To test this idea, we studied single neurons in
macaque monkey intermediate visual (area V4) and somatosensory
(area SII) cortex, using matched shape stimuli. We found similar
patterns of shape sensitivity characterized by tuning for curvature
direction. These parallel tuning patterns imply analogous shape
coding mechanisms in intermediate visual and somatosensory
cortex.

macaque � neural code � somatosensory cortex � visual cortex

Our remarkable capacity for perceiving and manipulating
objects depends on extensive information processing in

visual and somatosensory cortex. In both systems, the original
input patterns are isomorphic (point-for-point) images distrib-
uted across two-dimensional receptor sheets. These input rep-
resentations contain object information, but that information is
not in a useful form, because it is distributed in a complex fashion
across thousands of channels, in a way that changes continuously
depending on the spatial relationship between receptor sheet
and object. In this complex, variable form, object information
cannot be stored in memory, transmitted efficiently to multiple
brain regions, or decoded quickly and easily enough to support
perception and influence behavior. Thus, input patterns must be
extensively transformed into a neural code that is compact,
explicit (easy to decode), and stable enough to support object
perception and object memory.

Here, we tested the hypothesis that visual and somatosensory
systems have analogous mechanisms for coding object shape.
These two sensory modalities interact closely in object percep-
tion (1–8), and analogous neural codes would clearly facilitate
information sharing. We studied intermediate stages in the
macaque visual (area V4) and somatosensory (area SII) cortical
pathways for processing object information (9–11). We reasoned
that intermediate-level neural codes are sufficiently distinct yet
experimentally tractable. We used matched visual and tactile
stimuli designed to span a range of object contour fragments that
might typically occupy V4 or SII receptive fields (which are on
the order of several degrees of visual angle and several finger
pads, respectively). We recorded the responses of individual V4
neurons to contour stimuli f lashed on a computer screen and
individual SII neurons to embossed contour stimuli indented
into a distal finger pad.

Results
We analyzed 127 V4 neurons and 210 SII neurons with stimulus
responses significantly (P � 0.05) above baseline. For many
neurons in both area V4 and area SII, the dominant response
characteristic was relatively narrow tuning for direction of
curvature (the derivative of orientation with respect to distance
along the contour) (Fig. 1). The first V4 example neuron (Fig.
1A) was tuned for sharp and broad curvature fragments pro-
jecting in a direction range from 0° to 45° (right to upper right).
The SII example neuron (Fig. 1B; see also Fig. S1) was tuned for

curvature fragments projecting in a direction range from 270° to
315° (downward to lower right). We modeled tuning for curva-
ture direction with von Mises functions (Fig. 1 A and B, marginal
plots). (These functions do not capture tuning for other stimulus
characteristics such as curvature acuteness, as in Fig. 1 A; see Fig.
S2). Tuning was significant (randomization test, P � 0.05; see
Materials and Methods) for 86 of 127 V4 neurons (Fig. 1C, filled
circles) and 37 of 210 SII neurons (Fig. 1D, filled circles). The
number of tuned neurons in both areas was highly significant
(randomization test, P � 0.001). Significant tuning for curvature
direction was less common in SII (�2 � 85.7, P � 0.0001), but this
was mainly due to the much greater response variability of SII
neurons. For neurons with similar response consistency (F-
ratio), tuning strength was comparable in SII (Fig. S3). Thus, the
percentage of tuned SII neurons was higher (33%, 26 of 80) when
the analysis pool was limited to neurons with significant response
modulation across stimuli, based on a two-way ANOVA (stim-
ulus shape � stimulus direction, main or interaction effects, P �
0.05). Applying the same response modulation threshold in V4
yielded 83 of 103 or 81% tuned neurons. Even within these
limited analysis pools, responses were much less variable in V4
(see Fig. S3) and thus more likely to produce significant results
in the curvature direction tuning analysis. Below, we discuss how
greater variability of SII responses may reflect differences in
stimulus size relative to receptor spacing. The distribution of
tuning widths was comparable in the two areas (Fig. 1 C and D).
The average value of �, which is inversely related to tuning width,
was 9.7 in V4 and 14.5 in SII. This difference was marginally
significant (two-sample Kolmogorov–Smirnov test, P � 0.02), so
tuning widths in SII were slightly narrower. Both the V4 and SII
neural samples spanned the range of curvature directions evenly
(Rayleigh test, P � 0.41 for V4, P � 0.40 for SII; Fig. 1 E and
F, and Fig. S4).

To supplement this hypothesis-driven analysis, we used a more
agnostic principal components analysis (PCA) to visualize sa-
lient response patterns in the data. We aligned responses across
neurons so that tuning patterns differing only in orientation
could emerge (see Materials and Methods). We used Monte
Carlo simulations of neural populations to verify the perfor-
mance of this analysis. For a simulated population of neurons
with random responses, the first principal component (PC1) has
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no discernible structure (Fig. 2A). For a simulated population of
neurons tuned for orientation, as in primary sensory cortex
(12–15), PC1 captures a distinct pattern of four alternating
response peaks (Fig. 2B) comprising stimuli with a common
component orientation (in this case, slightly clockwise from
horizontal). This tuning pattern was observed for some neurons
in the V4/SII data set (see Fig. S5). For a simulated population
of neurons tuned for curvature direction, PC1 captures a row of
contour fragments projecting in the same direction (Fig. 2C).
This is the pattern that emerged in PC1 from analysis of the
observed V4 and SII data (Fig. 2D). Example neurons from V4

(Fig. 2E) and SII (Fig. 2F) with large projections onto PC1 (i.e.,
high variance explained) exhibited the expected tuning for
curvature direction. PC1 explained 38% of the response variance
in the V4 population and 27% of the response variance in the SII
population (Fig. 3). No other component explained more than
7% in either population.

Discussion
We found that neurons at intermediate levels in both visual and
somatosensory cortex (areas V4 and SII) are clearly tuned for
the direction in which curved contour fragments point. This
unique tuning characteristic is computationally difficult to
achieve based on lower-level signals for edge orientation (16). It
is not predicted by standard models of shape representation (17,
18), and it does not appear to emerge spontaneously from
machine learning algorithms for object identification (19). The
presence of this highly specific response pattern in two very
different sensory systems must reflect some degree of similarity
between their shape coding mechanisms. Parallel coding mech-
anisms could explain previous observations of similar confusion
patterns in visual and tactile shape recognition (20–22).

Analogous shape coding mechanisms in vision and touch
might reflect the multisensory nature of perception. We recog-
nize objects sometimes by sight alone (e.g., when they are

Fig. 1. Tuning for curvature direction in visual and somatosensory cortex. (A)
Example neuron from macaque visual area V4. Contour fragment stimuli
(shown here as white icons) were flashed in the cell’s receptive field while the
monkey performed a fixation task (see Materials and Methods). Background
gray-level indicates average response to each stimulus (see scale bar). Mar-
ginal plot at right averages responses across rows of stimuli projecting in the
same direction (open circles). The fitted von Mises function (blue curve)
explained a substantial fraction of total response variance (r2 � 0.64). (B)
Example neuron from macaque somatosensory area SII. Embossed tactile
stimuli were indented into the distal finger pad of a monkey performing a
distraction task (see Materials and Methods). The fitted von Mises function
(green curve) explained a substantial fraction of total response variance (r2 �
0.60). (C) Distribution of curvature direction tuning in area V4. Neurons with
(filled circles) and without (open circles) significant tuning (randomization
test, P � 0.05; see Materials and Methods) are plotted with respect to variance
explained (vertical axis) and selectivity (�) for von Mises function fits. Larger
values of � signify sharper tuning. The example V4 neurons from Fig. 1 (blue)
and Fig. 2 (red) were significantly tuned. Marginal histograms show numbers
of tuned (filled) and untuned (open) neurons. (D) Distribution of curvature
direction tuning in area SII. Conventions as in panel C. The example SII neurons
from Fig. 1 (green) and Fig. 2 (yellow) were significantly tuned. (E and F) Example
curvature direction tuning functions from 20 V4 (E) and 20 SII (F) neurons.
Baseline-subtracted fitted von Mises functions are shown for each neuron.

Fig. 2. PCA of contour fragment response patterns. (A) PC1 for a simulated
neural population (see Materials and Methods) with random response pat-
terns. (B) PC1 for a simulated neural population with tuning for orientation.
(C) PC1 for a simulated neural population with tuning for curvature direction.
(D) PC1 for the observed response patterns in the V4 and SII data sets. (E)
Example V4 neuron with a large projection onto PC1. (F) Example SII neuron
with a large projection onto PC1.
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distant) and sometimes by touch alone (e.g., in the dark). Parallel
coding schemes would facilitate consistent recognition across
these different conditions by enabling efficient cross-modal
transfer of object information. Frequently, objects are seen and
touched simultaneously, and the brain forms a supramodal
representation based on interactions between the two sensory
systems (23–25). Under some conditions, tactile stimuli can
evoke orientation-tuned responses in area V4 (7, 8). An analo-
gous coding format would optimize integration of visual and
tactile information into a single, coherent object percept.

Alternatively, analogous shape coding mechanisms might
reflect convergent evolution in response to similar information
processing challenges. In both vision and touch, curvature tuning
could serve as an important intermediate step in the transfor-
mation toward compact, explicit representation of object shape
(10). At earlier processing stages, in primary sensory cortex,
neural receptive fields encompass small contour fragments that
are typically smooth (due to the structure of natural objects).
Smooth contour fragments can be compactly represented in
terms of orientation, and extraction of local orientation is the
major transformation of shape information in both primary
visual (12, 13) and primary somatosensory cortex (14, 15, 26). At
intermediate processing stages like V4 and SII, neural receptive
fields encompass larger contour fragments that exhibit gradual
and abrupt changes in orientation. Compact representation of
these larger fragments therefore requires explicit representation
of orientation change, i.e., curvature tuning. Contour curvature
is a highly informative aspect of natural object structure (27, 28)
to which we are exquisitely sensitive (29–33). Numerous studies
have demonstrated clear tuning for two- and three-dimensional
contour/surface curvature in higher-level visual cortex (34–43).
Explicit coding of contour fragment curvature is not specifically
predicted by components-based shape processing theories (17,
18) but could serve as a basis function set for components-based
coding, in that complete object boundaries can be represented in
terms of their component curvature elements (38). Components-
based representation is compact and also high-capacity, since
large numbers of objects can be encoded as different combina-
tions of a limited set of shape elements (10).

Significant tuning for curvature direction was less frequent in
SII. That might partly reflect other neural functionalities in SII
(44–46), which would tend to depress the percentage of shape-
tuned neurons. However, our analyses suggested that the dif-
ference is largely due to much higher response variability in SII
compared to V4. The most obvious explanation for the response
variability difference is stimulus size relative to receptor spacing.
Given an approximate finger pad size of 1 cm2, our tactile stimuli
would have subtended about 10 Merkel receptor spacings in one
dimension (47). In contrast, in the middle range of V4 eccen-
tricities we studied (about 4° of visual angle), the portion of our
stimuli in the receptive field would have subtended approxi-
mately 150 receptor spacings (based on an approximate cone
density of 40,000/mm2 at this eccentricity) (48). Thus, the tactile
stimuli were effectively more than an order of magnitude smaller
than the visual stimuli. Moreover, while the visual stimuli
extended across and beyond the entire V4 receptive field, the
tactile stimuli occupied just one distal finger pad within SII
receptive fields that typically spanned multiple fingers. For most
SII neurons, the stimulated finger pad was optimized for stron-
gest responses, but this was not always true during multielectrode
recording. These pronounced stimulus differences could be
expected to produce noisier responses and weaker tuning in SII.
The rationale behind our tactile stimulus design was that the
distal finger pad presents a continuous surface with the highest
receptor density in the hand. The weaker response modulation
we observed in SII, however, argues that future experiments
should employ larger, more discriminable stimuli covering mul-
tiple digits. We predict that such experiments would reveal
stronger and more prevalent tuning for contour shape in SII.
Further experiments are also needed to compare visual and
tactile sensitivity to other shape parameters such as convexity/
concavity (34, 39) and to compare more advanced shape pro-
cessing at higher levels (35–37).

Materials and Methods
V4 Experiments. Behavioral and neurophysiological methods. We recorded extra-
cellular action potentials from well-isolated V4 cells in the lower parafoveal
representation on the surface of the prelunate gyrus and adjoining banks of

Fig. 3. Response variance explained by principal components. (A) Normal-
ized eigenvalues (fraction of response variance explained) for the first 10 PCs
in the combined V4/SII PCA (see Materials and Methods). Individual eigenval-
ues (histogram) and cumulative variance explained (curve) are shown. PC1
accounted for 31% of the total response variance in the combined V4/SII data
set. The first 10 PCs accounted for 61% of total variance. (B) Fraction of V4
response variance explained by the first 10 PCs from the combined V4/SII PCA.
(C) Fraction of SII response variance explained by the first 10 PCs from the
combined V4/SII PCA.
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the lunate and superior temporal sulci in three awake rhesus monkeys (Ma-
caca mulatta) trained to maintain fixation within a 0.5°-radius window. All
animal procedures were approved by the Johns Hopkins animal care and use
committee and conformed to National Institutes of Health and U.S. Depart-
ment of Agriculture guidelines. Further details can be found in Pasupathy and
Connor (1999), where these V4 data were initially reported (34).
Visual stimuli. The visual stimulus set comprised six contour fragment shapes: 45°,
90°,and135°angles,whichrepresent the limitofcurvatureacuteness,andcurved
B-splineapproximations totheseangles.Thesesix shapeswerepresentedateight
orientations (45° intervals). Stimulus size was scaled according to average V4
receptive field (RF) size at the cell’s eccentricity. Stimuli were rendered in the cell’s
optimal color against a gray background. Stimulus luminance was constant
within the RF and faded gradually into the background outside the RF. During
eachbehavioral trial, a sequenceoffiverandomlychosenstimuliwereflashedfor
500 ms each, separated by 250-ms intervals with only the background present.
The entire stimulus set was presented five times. Further details can be found in
Pasupathy and Connor (1999) (34).

SII Experiments. Behavioral and neurophysiological methods. We recorded extra-
cellular action potentials from well-isolated SII cells in the cutaneous hand
representation of the superior bank of the lateral sulcus in two awake rhesus
monkeys (different from those used in the V4 experiments). The animals were
trained to sit in a primate chair with their hands restrained while tactile stimuli
were indented normal to the skin surface of the distal pad of digit 2, 3, or 4.
One animal (94 cells) sat passively and was given liquid rewards at random
intervals; the other animal (116 cells) was rewarded for maintaining visual
fixation within a 5°-radius window. All animal procedures were approved by
the Johns Hopkins animal care and use committee and conformed to National
Institutes of Health and U.S. Department of Agriculture guidelines. Recording
chambers (19-mm diameter) were positioned over the animals’ lateral sulci
according to Horsley-Clarke coordinates (anterior 6; lateral 28). We located
the lateral sulcus based on the neural responses encountered as the electrodes
passed through the gray and white matter. Neurons recorded medial to the
sulcus showed tactile and visual responses, while neurons recorded lateral to
the sulcus responded to auditory stimulation. We located the cutaneous hand
region of SII by following the lateral sulcus to more anterior regions of the
recording chamber. These neural recording techniques have been detailed pre-
viously (49).
Tactile stimuli. The tactile stimulus set comprised six contour fragments
matched to stimuli used in the visual studies: three angles (45°, 90°, and 135°)
and three circular arcs (with 7.5-, 5-, and 1-mm curvature radii). Each stimulus
was presented at eight orientations (45° intervals). The tactile curve stimuli
differed slightly in shape from the corresponding visual stimuli, but not in any
way that would affect the conclusions in this report. We machined each
stimulus onto the surface of a 20-mm square plastic block (Ultem; General
Electric), removing background material to leave a 0.5-mm-wide contour at a
relief height of 5 mm. The stimuli were positioned such that angle vertices and
arc midpoints fell at the center of the square block. The contours extended to
the block boundaries to ensure that they extended past the finger pad contact
area. The stimulator was a servo-controlled linear motor (Baldor Electric
Company) mounted onto a magnetic forcer, translating across a downward-
facing horizontal plane on a frictionless air cushion (Aerotech). A small rotary
stepper motor (Arsape) attached to the bottom of the linear motor provided
stimulus rotation. A pneumatic ‘‘gripper’’ motor (Pisco USA) attached to the
bottom of the rotary motor was used to retrieve stimuli under computer
control from a cassette containing all of the stimulus blocks. Complete de-
scriptions of stimulus fabrication and of the tactile stimulator are available in
the SI Text.

Before the experiment, we mapped the multidigit RF of the SII neuron with
oriented bars indented into the distal finger pads. Stimuli were indented 1.3 mm
beyond the point of initial skin contact. Each stimulus was presented for 500 ms,
separated by an interstimulus interval ranging from 0.5 to 2.5 s, depending on
stimulus repositioning time. To minimize adaptation differences due to variable
intervals, two additional stimulus indentations followed each of the longer
retrieval intervals, and these additional stimuli were not included in the analysis.
To minimize experiment duration, each stimulus block was presented at all eight
directions, randomly ordered without replacement, before another stimulus was
retrieved. All stimuli were tested in this way, in random order without replace-
ment, and the entire procedure was repeated five times. The shape of the tactile
stimulus was not visible to the animal.

Data Analysis. For each stimulus, the response rate was calculated by summing
spikes over the 500-ms presentation period and averaging across five repeti-
tions. Our basic criterion for inclusion in analyses was significant stimulus
response above baseline (one-tailed, unpaired t-test, P � 0.05). Baseline

responses were calculated from blank trials, interspersed throughout the
experiment, in which no stimulus was presented.

Curvature Direction Selectivity. The curvature direction for each stimulus was
defined by a normal vector projecting outwards from the center point on the
convex side. This corresponds to the direction in which angles and curves are
typically described as pointing toward. For each cell, we determined the
response rate to each stimulus, Rs, at eight directions �i by summing spikes over
the 500-ms presentation period, and averaging across five repetitions. We
fitted the responses with a model based on a von Mises function (circular
normal function), a gain term, and a baseline term, using a nonlinear least-
squares algorithm (lsqnonlin, Matlab; Mathworks).

We also characterized strength and significance of direction tuning by quan-
tifying the strength of direction tuning for each cell with a mean vector index:

DI �
��¥ Rs��i�sin�� i��

2 � �¥ Rs�� i�cos�� i��
2

¥ Rs�� i�
.

Values of DI range from 0 (uniform response to all directions) to 1 (non-zero
response to only one direction). We determined the statistical significance
of DI for each cell by randomizing its responses across the 48 stimuli 1,000
times and recalculating DI each time to obtain a distribution of values
expected by chance. A separate randomization distribution was calculated
for each cell. We defined tuning to be significant when the original DI value
exceeded 95% of the values in the randomized distribution. We also used
randomization to test whether the numbers of significantly tuned V4 and
SII neurons were greater than expected by chance. To do so, in each
population (V4 or SII) we randomized responses across stimuli within
neurons. For each neuron, we tested whether the DI of the randomized
responses exceeded its previously determined significance threshold, and
we counted the number of neurons that exceeded significance. This pro-
cedure was repeated 50,000 times to generate a distribution of numbers of
tuned neurons expected by chance. For both V4 and SII, the observed
number of significantly tuned neurons was larger than any point in the
randomization distribution. Given the number of iterations (50,000), this
reflects a significance level of 0.001 (50).

Principal Components Analysis. We used PCA to identify underlying patterns of
shapefeatureselectivity thataccountfor largefractionsofresponsevariance.The
responses of each cell were first normalized by its maximum response. We then
applied a row-shifting algorithm to optimally align similar response patterns.
Eachrowof six stimuli (e.g., Fig.1A) is identicalapart fromorientation, so shifting
responses across rows can align response patterns that differ only in orientation.
All stimuli were presented at eight orientations, so the set of row-shifted re-
sponse patterns is defined as Rs(�i ) � Rs(�i � T � �/4) for T � [0:7]. Given that the
observed tuning patterns spanned the orientation domain, this is the only way to
produce clear, explanatory principal components (PCs).

We sought to shift each cell’s tuning pattern so as to achieve maximum
alignment across the population. We first computed correlations between
all possible pairs of shifted response patterns. The pair with the highest
correlation was assigned to the first cluster. Each shifted response pattern
pair was then considered in order of descending correlation. If the next pair
comprised one member in the first cluster and one new member, the new
member was added to the first cluster, with the appropriate shift applied.
If instead the next pair comprised two new members, they were assigned
to a new cluster. Finally, if the next pair comprised members of different
clusters, the two clusters were aligned by shifting all of the cells in one of
the clusters to align the between-cluster pair, while preserving within-
cluster alignments. This process was repeated until all cells were included
in a single cluster that maximized pairwise correlations between response
patterns.

Given that Vj is the shifted response pattern for the jth cell, we constructed
the covariance matrix, C, across the combined populations of V4 and SII cells:

C �
1

N � 1 �
j�1

N

�Vj � V� �T�Vj � V� �

� �E1, E2, . . . , Ed��
�1 0 . . . 0
0 �2 . . . 0
···

···
· · ·

···
0 0 . . . �d

��E1, E2, . . . , Ed�
T
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where V� is the mean response template averaged across the entire population
of N cells, and d is the total number of dimensions of the stimulus space (48
stimuli). The data matrix represents the response templates as a cloud of
points in the 48D stimulus space. The directions and lengths of the major axes
of this point cloud can be obtained by an eigenvalue/eigenvector decompo-
sition of C. The first PC is the eigenvector that explains the largest possible
amount of response variance (i.e., has the largest eigenvalue). The first PC in
the combined V4/SII analysis explained 38% of V4 response variance and 27%
of SII response variance (Fig. 3). Similar results were obtained with PCA on the
individual populations: The first V4 PC explained 37% of total V4 response
variance, and the first SII PC explained 27% of total SII response variance.

We calculated the fraction of response variance explained by the higher
order PCs. If Vj is the response template for the jth cell, the total variance in the
population is:

	 total
2 � �

j�1

N

� Vj � V� �T� Vj � V� � .

The variance captured by P principal components (E1 to Ep) was computed as:

	p
2 � �

d�1

P �
j�1

N

��Vj � V� �TEd�
2.

Thus, the fraction of variance explained by P principal components is the ratio
	p

2/	total
2 .

Simulated Neural Populations. We simulated neural populations with specific
tuning properties to test the performance of the row-shifting algorithm and
to generate expected PCs for comparison to the observed data. We simulated
three populations, each with a range of response patterns from completely
random to: (i) flat, i.e., untuned; (ii) orientation-tuned; or (iii) curvature
direction-tuned. Each simulated population comprised 337 cells, the com-
bined number of cells in the V4 and SII data sets. In each simulation, the

noise-free responses (v̆j) for the jth cell were given by: v̆j � 
�(��r�1 � (1 	 �)�r�2),
where � and 
 are randomly determined constants, r�1 is a column vector of 48
random values, and r�2 is a column vector of 48 values set by the specified
tuning property in the population (flat, orientation, or curvature direction).
The value of �, which was uniformly distributed between 0 and 1, determined
how close the response pattern was to random (� � 1) or perfectly tuned (� �
0). The final simulated response pattern was V̆j � v̆j � ��, where � is a noise
term drawn from a zero-mean Gaussian distribution with variance equal to
mean response rate. This response pattern was rectified at 0 spikes/s.

The selectivity of the simulated populations thus depended on vector r�2. For
the flat or untuned population, r�2 was a column vector of ones, so that the
neuron responded uniformly across all stimuli if � � 0. To simulate tuning for
orientation, we first characterized each stimulus in terms of its component
orientations. Each stimulus was divided into five equally spaced contour
segments and then defined by a vector s�d comprising the normal orientations
at the midpoints of the five contour segments. The cell’s orientation tuning
was defined by a von Mises function with j and �j (mean and concentration)
drawn from uniform distributions spanning [0, 2�] and [0, 30], respectively.
The simulated cell’s tuned response to the dth stimulus was determined by
mapping that stimulus’ component orientation vector s�d to the [0, 2�] range
and finding the component with the largest von Mises function value: r2(d) �
max( fj(s�d;j,kj)).

To simulate tuning for curvature direction, each stimulus was defined by a
scalar, sd, corresponding to the direction of a normal vector pointing away
from the convex side of the stimulus at its midpoint. Curvature direction
tuning for each simulated cell was defined by a von Mises function with j and
�j drawn from uniform distributions spanning [0, 2�] and [0, 30], respectively.
The simulated cell’s tuned response to the dth stimulus was determined by the
von Mises function value at the stimulus’ curvature direction sd : r2(d) �
fj(sd;j,kj).
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