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Abstract
The evaluation of the solvation entropies is a major conceptual and practical challenge. On the one
hand, it is interesting to quantify the factors that are responsible for the solvation entropies in
solutions, while on the other, it is essential to be able to assess the contributions of the solvation
entropies to the binding free energies and related properties. In fact, the solvation entropies are
neglected in almost all the studies of the binding entropies. The main problem is that widely used
approaches, such as the quasiharmonic (QH) approximation do not provide reliable results
particularly, in cases of shallow potential and multidimensional surfaces while brute force evaluations
of the entropic effects by simulating temperature dependence of the free energy converges very
slowly. This paper addresses the above issue by starting with an analysis of the factors that are
responsible for the negative solvation entropy of ions, showing that it is not due to the change in the
solvent vibration modes or to the solvent force constant but to the changes in the solvent
configurational space upon change in the solute charges. We begin by clarifying that when one deals
with aqueous solutions, it is easy to evaluate the corresponding entropic effect by the Langevin dipole
(LD) treatment. However, in this work we are interested in developing a general microscopic tool
that can be used to study similar effects in the proteins. To this end, we explore the ability of our
restraint release (RR) approach to evaluate the solvation entropy. We start this analysis by reviewing
the foundation of this approach and in particular, the requirements of minimizing the enthalpy
contribution to the RR free energy. We then establish that our approach is not a specialized harmonic
treatment but a rather powerful approach. Moving to the main topic of this work, we demonstrate
that the RR approach provides quantitative results for the solvation entropies of monovalent and
divalent ions and effectively captures the physics of these entropic effects. The success of the current
approach indicates that it should be applicable to the studies of the solvation entropies in the proteins
and also, in examining hydrophobic effects. Thus, we believe that the RR approach provides a
powerful tool for evaluating the corresponding contributions to the binding entropies and eventually,
to the binding free energies. This holds promise for extending the information theory modeling to
proteins and protein-ligand complexes in aqueous solutions and consequently, facilitating computer-
aided drug design.
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I. Introduction
Entropic effects play a crucial role in biological and chemical processes contributing to folding,
1–6 binding processes 3,7–11 and sometimes, modulating catalytic effects.12–15 Therefore, it is
important to be able to assess the magnitude of the entropic contributions in a quantitative way.
Unfortunately, this task is extremely challenging and popular approaches such as the
quasiharmonic (QH) and related treatments are quite inaccurate.16,17 Several approaches have
been proposed in the recent years for more accurate calculation of configurational entropies1,
6,12,13,17–27 and of these, some have been validated in the actual studies of biological systems.
12,13,17 Furthermore, it has been shown that the entropic effects can be evaluated by brute force
approaches but these require an extremely large computer time.15,17,28 Interestingly however,
most of the attempts to study the entropic contributions to binding and catalysis conveniently
ignored the effect of the solvation entropies.10,17,29–32 In some case s, it was found that the
solvation entropy for the given process in water can be determined quite accurately by the
phenomenological approach of Florian and Warshel33 who calibrated the polarization of their
Langevin dipole(LD) model to reproduce the solvation entropies (see below). While the LD
approach is extremely effective in solution studies, it is not clear how to implement this type
of approach in the studies of the solvation entropies in the proteins. In such a case, one needs
a fully microscopic approach and the development of a proper strategy which is the subject of
the present work. This paper begins by considering the physical basis of the solvation entropies.
It is shown that the main contributions are not associated with the solvent vibrations but with
the solvent configurations. We also explore the ability of the restraint release (RR) approach
to evaluate the solvation entropies. It is found that the RR approach provides an effective tool
for the quantitative evaluation of the solvation energies of the charged molecules.

II. Physical Considerations
In studying the solvation entropies, it is important to have a working hypothesis regarding the
origin of these effects. The simplest idea is that somehow the vibrational frequencies of the
first solvation shell are higher near uncharged solute than near the solute in its charged form.
One way to explore this idea is to look at the solvent vibrations that are associated with the
solute-solvent interactions whilst the solute is charged and uncharged. This type of analysis
can be done conveniently by the dispersed polaron (Spin Boson) method34 which provides the
projection of the solvent modes along the solvation coordinates. The results of such an analysis
for sodium and calcium ion in water gave the results summarized in Fig 1. Evidently, the
vibrational frequencies are similar and thus, unlikely to account for the solvation entropy.

Attempts to use the calculated spectrum in the evaluation of the vibrational entropy S(v),
ΔSvib =∫S (v)dv (see ref 35 for a related treatment of free energy), gave basically the same results
for the charged and the uncharged systems. These results were obtained regardless of the length
of the simulation or resolution of the low frequencies. Now, this finding may appear
counterintuitive considering the expectations of the larger solvent force constant for both the
charged and the uncharged states. Therefore, we estimated the solvent force constants by
evaluating the microscopic Marcus parabolas using our well tested and widely used
formulation. 36 It was found that the curvature of the charged and the uncharged parabolas are
very similar (also see ref 36 for a related study). This indicated that the solvent vibrations cannot
account for the solvation entropy.

The above finding tells us to look in the same direction as explored in the LD treatment. That
is, it is more likely that the solvation entropies reflect the tendency of the dipoles of the first
solvation shell to be oriented toward the charged solute and to assume random conformation
when the solute is uncharged. This has been in fact the idea beyond our LD treatment33 which
will be discussed below.
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According to the LD model, the hydration entropy for charged solutes is dominated by the
solvent immobilization in the presence of the solute electrostatic field, ξ. This entropy
contribution can be estimated using the concept of accessible configurational volumes
introduced by Frank and Evans37,38 and expressed as

(1)

where kB is the Boltzmann constant while Vpl and Vsl are the accessible configurational volumes
of the solvent dipoles in the pure (bulk) liquid and in the presence of the solute, respectively.
The accessible configurational volumes can be expressed as the products of the volumes
corresponding to the translational, rotational, and vibrational degrees of freedom of the solvent
molecules. The use of the LD solvation model, in which the positions of the solvent dipoles
are fixed, corresponds to the assumption that the translational contributions to the hydration
entropy are negligible. Although this contribution is not negligible, it is certainly small
compared to the changes in rotational degrees of freedom of the solvent molecules. Similarly,
the vibrational entropy of water is supposed to be unaffected by the presence of the dissolved
ions. Using the above assumptions and the fact that the direction of a solvent dipole in large
electrostatic field is bound to lie between 0 and 2α (Fig. 2) one obtains the relationship

(2)

The angle α corresponds to the average angle between the direction of the solvent dip ole and
the external field. In the LD solvation model, it is assumed that the average solvent polarization
is determined even in solution by the Langevin function L(x)39:

(3)

(4)

In Eq 4, μ0, ξ, kB, C and T denote, respectively, the magnitude of the solvent dipole, the total
electrostatic field at the position of this dipole, the Boltzmann constant, a scaling constant and
the thermodynamic temperature. The assumption that the LD model is valid in solution40 has
been shown to be physically valid 41 and thus can be used in entropy studies. At any rate, using
Eqs 1–3, the immobilization entropy of the jth Langevin dipole becomes

(5)

Eq 5 does not include explicitly the dipole-dipole interaction term. Thus, this equation loses
its validity for solvent dipoles positioned in the regions where the magnitude of the solute
electrostatic field is comparable to the field from other solvent dipoles. Consequently, we
introduced an empirical correction function
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(6)

that decreases the magnitude of ΔSimmob for small fields. For +1 or −1 charged solutes, this
correction affects the solvent dipoles beyond the first hydration shell, whereas for +2 and −2
charged solutes this term affects dipoles outside the first two hydration shells. Finally, a
multiplicative constant, Ci = 0.878, that incorporates entropy contributions that cannot be
described by the dipolar solvent model, was introduced and adjusted by comparing the
calculated and experimental hydration entropies of atomic ions. The resulting empirically
corrected immobilization entropy is expressed as

(7)

The behavior of the uncorrected (Eq 5) and the corrected (Eq 7) immobilization entropy as a
function of x is presented in Fig. 2 of ref33. Finally, the total hydration entropies are calculated
as the sum of the hydrophobic and immobilization entropies

(8)

This expression can be applied to both neutral and ionic solutes. Note that it has been suggested
that the hydration entropy of large positive ions may be significantly different from that of
large negative ions of the same size.42,43 In our model, this entropy does not depend on the
sign of the solute charge since we believe that the magnitude of this dependence is still an open
question.

It should be mentioned here that ΔSphob could have also been expressed by considering the
decrease in the number of configurations available for the solvent dipoles near the nonpolar
solute surface relative to the configurations available in the bulk solvent.44 A rigorous
implementation of this model would require a complicated treatment of the explicit interactions
between each surface molecule and its environment, which involves both the neighboring
solvent molecules and the solute surface.

In order to explore the above idea, we evaluated the polarization of the water molecules around
Na+, K+ and Ca 2+ions and around the uncharged forms of these ions. The corresponding results
are summarized in Figs 3–6.

Figs 3 and 4 describe the fluctuations of the angle between the solvent field and the bisector
of the two O-H vectors of the representative water molecules. Figs 5 and 6 provide histogram
of the angle, θ. As expected, the figures indicate that the orientation of the molecules in the
first solvation shell is more restricted in the charged solute than in the neutral solute. However,
the trend in the case of molecules in the second and third solvation shell is less clear.

While some qualitative aspects of the origin of the entropic effect are observed in Figs 3–6,
we need a more quantitative way that can also be “imported” to similar studies in the proteins.
Thus, we turn our attention to the RR approach which is described in the next section.
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III. Using the RR Approach
The RR approach is based on the idea that with strong harmonic Cartesian restraints we have
no entropy effects so, in some way, the free energy of releasing the restraints can tell us about
the magnitude of the entropic effect. This general idea has been proposed by Herman and
Wang45 for evaluating entropic effects in limited internal coordinates and is similar in some
respects to that suggested in an early proposal.46 However, the problem is to formulate the RR
idea correctly in a general set of coordinates and also, to take into account the fact recognized
in ref 47, that the RR free energy can include a large enthalpic contribution. The resolution of
this problem and the introduction of a practical general RR approach have been introduced in
refs12,47 with a general cartesian treatment and an optimization approach that eliminates the
enthalpic contribution from the RR free energy. The main points of this approach and the
additional recent improvements will be discussed below.

III. 1. Formulation of the Restraint Release Approach
In order to obtain the solute entropic contribution to a transfer between two potential surfaces
(UI→UII), one has to separate the corresponding partition functions to the solute and the solvent
contributions (where in the present case, the ‘solute’ includes explicit solvent molecules and
the ‘solvent’ is defined as the rest of the system) by writing

(9)

and

where UN is the potential surface for state N and δ (R − R̅) indicates that the corresponding
function would be collected at ±ΔR/2. Here R and r are the solute and the solvent coordinate,
respectively, qN (R̅) is the solute unnormalized probability distribution evaluated at the given
R̅ averaged over all the solvent coordinates and WN (R̅) is the corresponding potential of mean
force (PMF) which includes, of course, the solute and solvent contributions. Expanding this
potential around its minimum gives

(10)

where we could use R but instead, took R̅ as our variable to indicate that this is our restraint
coordinate. Here, Δgsol (R̅) is the solvation free energy at R̅, KW is the force constant of the

quadratic term of our expansion and  is the value of R̅ at the minimum of WN. The harmonic
approximation of the PMF will be removed below.

For the sake of simplicity, we continue by examining a case where the PMF corresponds to a
one-dimensional solute coordinate, although extension to many dimensions is straightforward.
Our one-dimensional case is described by the thermodynamic cycle of Fig 7. In this cycle, we
divide R to segments that can be defined by the delta function of Eq 9 or by introducing a strong
quadratic constraint ((K′1/2)(R̅ − R̅′)2). In this case, we have
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(11)

where the notation W′ designates the addition of the constraint.

Next, we use Eq 11 and our quadratic constraint and evaluate the relevant partition functions.

(12)

where we use Q′ or the partition function evaluated with W′N and where . Using
the above equation we can write

(13)

where E̅ is the average energy and Ssol is the contribution from the surrounding of the specified
system included in our explicit treatment. We also have

(14)

Now, we can write
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(15)

(16)

Thus,

(17)

Finally, from Eq 13 and Eq 15 we have in the special case when  and 

(18)

The usage of this relationship however, requires knowing the values of  and . This can be
done, in principle, by minimizing the corresponding PMF (see section III. 4). Furthermore,
using Eq 13 we can write

(19)

Thus, we estimate ΔG′(R0) by trying different R̅’s and taking the ΔG′(R̅) with the smallest

absolute value. Now, we can use Eqs 17 and 18 to evaluate ΔS′I→II and . The R̅ that
minimizes |ΔG′| is also used in evaluating the  of Eq 17 and the total entropy ΔSI→II.

III. 2. Non-Harmonic Case
The validity of the inequality of Eq. 19 has been established above for harmonic systems but
probably it is also valid for an harmonic potentials. Here, we only demonstrate the validity in
some limiting cases. We first consider a square well potential (Fig. 8)

In this case, we can define a unit length ΔR by

(20)

and then we have,

(21)
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where n = L/ΔR and L is the width of the potential well. This leads to

(22)

Now, we also have

(23)

(24)

Using the above relationship for transition from I to II, with the same K1, we obtain

(25)

as long as we are in the region where R ≥ 0 and W = W0, and under the condition that the
contributions for ΔGI from the region with  are small. Once we move to the region where

, where  (e.g. at R < 0), we have

(26)

Hence,
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thus, satisfying our condition of obtaining ΔSI→II from R′1 that minimizes ΔG′. The same
treatment can be used for periodic systems such as the one in Fig. 9.

In this case

(27)

where θ(R)l = 0 when R is out of the lth range, and θ(R)l = 1 inside this range. This gives

(28)

where . Now, we can write

(29)

We also, obtain

(30)

where R′l is the center of the constraint potential. We also, have

(31)

Following the same consideration as in the previous case, and utilizing the fact that
 when , we will obtain the same inequality.
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III. 3. Practical time saving by using the initial quasiharmonic treatment
The RR treatment is based on starting the simulations with a strong positional restraint where
the entropic contributions are negligible. However, the free energy perturbation (FEP) release
requires an enormous amount of computer time even where K1 is significantly large.
Fortunately, we realized that the RR procedure is not really needed at the stage when K1 is
large since the corresponding entropic contribution can be easily estimated by the QH
approximations.48,49 In general, the QH tends to be valid when restraints are significant and
only starts to become problematic when K1 is small (resulting in a range of very shallow and
an harmonic potential energy surfaces).16,17,47 We exploit this fact by combining the QH and
RR approximations by evaluating the entropic contribution at a moderate value of K1 by the
QH approach followed by the RR procedure from this specific value. This treatment can be
expressed by

(32)

where the −TΔS(K = K1)QH designates the entropy computed by the QH approximation, where
K1 is the initial value of the restraint and ‘min’ indicates the minimum value of the indicated
ΔGRR. This approach has been successfully exploited in the studies of ribosome13 and more
recently, a series of substituted phosphate diesters.50

III. 4. Optimizing the Restraint Coordinates
Our next task is to optimize ΔGRR. This free energy term is obtained by a FEP/umbrella
sampling approach using a mapping potential

(33)

where

(34)

where Usyst is the potential energy of the unconstraint system.

If we use the end point linear response approximation (LRA)instead of the full FEP treatment,
we will have10

(35)

Now we have to find R0 that minimizes ΔGRR. This is done by
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Now,

(36)

Thus,

(37)

We also know that the step from the current R to the optimal R is given by the Newton Rhapson
relationship51

(38)

This gives

(39)

The LRA approximation of Eq 35 works the best when K(1) is small since this is when we get
the largest contribution to ΔGRR. Since Eq 39 is not exact (due to the use of the LRA approach),
we found it useful to scale it and to use

(40)

where α is a scaling factor.

III. 5 Actual Implementation
All calculations were performed using the MOLARIS software package, and the ENZYMIX
force field.10,52

The constraint release free energy terms are evaluated by a free energy perturbation (FEP)53,
54 (also see ref55). The FEP method evaluates the free energy associated with the change of
the potential surface from U(1) to U(2) by gradually changing the potential surface using the
relationship
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where , U(2) = Usyst and λm is a mapping parameter that
changes between (0 ≤ λm ≤ 1). The free energy increment, associated with the change of Um
can be obtained by

where 〈 〉m indicates that the given average is evaluated by propagating trajectories over Um
and β − (kBT)−1. The total free energy difference between the states A and B is obtained by
changing λm in n equal increments and evaluating the sum of the corresponding δG.

The RR calculations require imposing strong positional constraints on the Cartesian
coordinates of the solvent molecules in the presence of a solute (either in its charged or
uncharged state) whose position is fixed by applying a moderate positional constraint K=10
kcal mol−1Å−2 and to subsequently evaluate the free energies associated with releasing these
restraints using the following equation:

(41)

 and  denotes RR free energies of the systems with a fixed, charged and uncharged
solute, respectively. All RR free energies contain a residual contribution from the enthalpy of
the system. However, this contribution approaches zero for restraint coordinates that give the
lowest RR energy.45,47

To calculate the optimized restraint coordinates (R̅) that would give the optimal ΔG for entropy
calculations, the given system with the solute in its charged state, was subjected to MD
simulations using a constraint force of 5.0 kcal mol−1Å−2 and a scaling factor (α) of 0.1 while
averaging 〈R − R̅〉 over 1000 steps (see section III. 4). A total of 10 iterations were carried out
in this procedure. Since Eq 39 is expressed in Cartesian coordinates and the application to water
molecules resulted in some stretching of the bonding coordinates, we found it useful to relax
the constraint coordinates obtained from Eq 40 in a 10 ps simulation run and generate nine
different Rs(we report results for those with the lowest RR energy). Apparently, our exploratory
studies indicated that using a small number of Rs may result in missing the one that minimizes
the enthalpic contribution despite using Eq. 40. The best estimate of −TΔS is obtained by taking
the corresponding values from the run with R that gives the smallest |ΔG|. This variational
minimization reflects the fact that all the RR free energies contain enthalpic contributions and
these contributions approach to zero for restraint coordinates that gives the lowest RR
contribution.

An initial 30 ps molecular dynamics simulation was performed on the solvent molecules around
the fixed charged and uncharged solute, with snapshots taken every 5 ps. MD simulations, 40
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ps in length, were performed on each snapshot (with coordinates collected every 0.01 ps) to
calculate the QH entropy for each snapshot, and this procedure was carried out for K= 3.0
kcalmol−1 in magnitude. This allows the calculation of the absolute entropy for this restraint.
Subsequently, the free energy for the release of these restraints was evaluated using the RR
approach employing Eq 32.

The RR-FEP calculations were performed with an 18Å simulation sphere of explicit water
molecules subject to the surface constraint all-atom solvent (SCAAS) boundary conditions.
56 The RR simulations, consisting of 42 windows each with a simulation time of 40ps, involved
the release of the position restraints in 5 FEP stages, changing K1 from 3.0 to 1.0, from 1 to
0.3, from 0.3 to 0.03, from 0.03 to 0.003 and finally, from 0.003 to 0.0003, where all the values
of K1 are given in kcal mol−1 Å−2. These simulations were done at 300K with 1fs time steps.

Simultaneously, the LD model33 implemented in the program ChemSol 2.057 was also used
to evaluate the solvation entropy. This method evaluates the solvation entropy by estimating
the restriction of the solvent motion due to the field from the solute.

IV. RESULTS
As stated above, we tried to explore in this work the ability of the RR approach to reproduce
solvation entropies. The most obvious benchmark is provided by the solvation entropies of
ions and this challenge has been addressed here by evaluating the solvation entropies of Na+,
K+ and Ca2+ ions. The corresponding RR calculations were performed on the inner 29 water
molecules that are closest to the ion, while the rest of the 18Å SCAAS system to move with a
very small position constraint on the oxygen atoms in addition to the SCAAS polarization and
distance restraints. In short, the entropic effect associated with the effect of the solute on the
inner 29 water molecules was explored while representing rest of the system by the SCAAS
model. In calculating the solvation entropy, one should also consider the hydrophobic energy
of forming the cavity for the uncharged ion. This hydrophobic contribution is small for the ions
considered here and were added to the final calculated results. This was done using the
corresponding values obtained from ChemSol. In future, we hope to obtain such contributions
from our RR calculations. The results of these calculations are summarized in Tables 1–3.
Remarkably, we reproduce the observed trend in an almost quantitative way. The tables also
give the quantitative LD results but as mentioned before, the LD treatment is empirical in nature
and cannot be used within the protein active site. It should also be mentioned that the recent
works of Aqvist and coworkers28 reproduced quantitative results for the same system studied
here. However, this was done by evaluating the van’t Hoff approach that requires a major
investment in terms of computer time.

The fact that the computational methodology employed in this work reproduces the observed
solvation entropy indicates that the physics of this effect is captured by this approach and that
the effect is associated with the change in the effective space available for the solvent molecules
upon change in the solute charges.

The overall trend is clearly discussed in section II, but here we have a well-defined simulation
approach that reproduces the entropic effect quantitatively. Furthermore, in order to clarify the
nature of the challenge overcome by the RR calculations, we also report in Table 4 the QH
results obtained with no restraint (K= 0 kcal mol−1 Å−2) for Na+ and Ca2+ ions. Although QH
entropic estimation for Na+ ion seems fairly accurate, it provides completely erroneous results
for Ca2+ ion. Thus, we may say that the QH is simply unable to capture the solvation entropies.
This is probably one of the best illustrations of the fundamental problems with the widely used
QH and related approaches.
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V. DISCUSSION
The present work focuses on the calculations of the entropic effects, despite the fact that most
questions about biophysics functions are related to the corresponding free energy surfaces.58,
59 Additionally, we are well aware of the fact that free energy calculations converge much
faster than the entropic calculations. However, in many cases complete understanding of the
entropy-enthalpy compensation is useful for the deeper understanding of the underlying
physics of the system and in particular, the origin of the temperature dependence of various
processes. Moreover, the evaluation of the entropic effects is one of the utmost challenges of
computational biophysics and in fact, the failure to reproduce entropic effects is frequently
used by the experimental community in trying to diminish the important free energy
calculations (also see discussion in ref60).

In any case, the accurate evaluation of the entropic contributions to the free energy changes in
condensed phases is an extremely challenging task. Popular approaches such as the QH and
related treatments have been widely used to extract the configurational entropy from molecular
dynamics simulations.48,61,62 Unfortunately, although QH approximation functions quite well
for simple systems with single energy wells, this approach provides a poor approximation of
the configurational entropies of systems with multiple occupied energy wells, as it merges
multiple narrow energy wells into one broad energy well.16,17 In fact, the validity of such
approaches in systems with very shallow potentials is questionable. Therefore, the use of the
QH approach in the studies of binding energies or related problems is problematic. Several
approaches have been proposed for obtaining quantitative entropic contributions, but most of
these approaches have not been able to provide quantitative results in general cases, except by
brute force studies of the free energy change with temperature that requires enormous
simulation time for convergence.28 In our view and experience, one of the most promising
strategies is our RR approach that has been shown to give quantitative results for activation
entropies.10,12,13,47,50 Nevertheless, this approach has not been validated in the studies of
binding entropies.

One of the most serious problems in calculations of binding entropy is the evaluation of the
solvation entropies in water and in the protein active site. This contribution has been generally
neglected in key studies29–32 although it has been evaluated or included in calculations of
activation free energies.13,15,47 The problem of activation entropies is also a problem of general
interest both for studies of molecules in solutions and in proteins.

When one deals with molecules in solution, it is possible to use the LD models to obtain a
relatively reliable estimate of the solvation entropies. Unfortunately, this approach has not been
generalized to protein active sites where one must use a microscopic approach. The studies of
ions in solution should provide the best benchmark for the development and validation of the
corresponding approach since the corresponding values are known experimentally.

CONCLUSIONS AND FUTURE APPLICATIONS
The molecular simulations of the entropy contribution in the areas of protein-ligand binding
and enzyme catalysis, is an extremely challenging task and the subject of intense research. The
analyses of the role of solvent entropies in ligand binding and enzyme catalysis are still rare,
although knowledge of their values would be of great utility considering that the binding
processes can be relatively dominated by solvent entropy effects. Therefore, there is a strong
motivation to obtain the solvation entropic contributions that can lead to a better understanding
of the process under consideration. Although the solvent entropies can be extracted from the
temperature dependence of the explicit solvent FEP simulations, these calculations are difficult
to converge and their convergence tends to be considerably slower than that of the free energy
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itself. The present work focuses on the development of efficient microscopic model for the
studies of the solvation entropies in aqueous solution. Our preliminary studies clarified that
the solvation entropies are not associated with the solvent vibrations but rather with the
availability of larger configurational space upon transition from the charged to the uncharged
form of the solute. This effect is easily observed in the cases of divalent ions but in the case of
monovalent ions it is restricted to the first solvation shell. With this in mind, we demonstrated
that the solvent entropies can be successfully and accurately evaluated by our RR approach.
This has been illustrated for the simple but relevant test case of monovalent and divalent metal
ions. It is clear from the results that solvation entropies depend strongly on the magnitude of
the charge of the solvated ion. This is obviously related to the corresponding restriction in the
solvent fluctuations.

Although convergence problems may exist for larger and more complex simulation systems,
a good agreement is obtained between the calculated and the experimental data for solvation
entropies of monovalent and divalent metal ions. Furthermore, we also developed a systematic
approach for the minimization of ΔGRR through the Newton-Rhapson minimization of the
ΔGRR free energy, formulated within the LRA. Our previous studies have shown that the
random search for the optimal R̅ may otherwise, require extensive simulations. Thus, this
approach reduces computer cost and time while finding the optimal R̅ for our RR calculations.
Overall, the use of the RR approach has been found to provide a powerful way of quantifying
the solvation entropies. On the other hand, it has been demonstrated that the QH approach
provides an entirely inadequate tool for this important purpose.

The success of the present approach in the evaluation of the electrostatic components of the
solvation entropies indicates that the RR method will probably be useful in the studies of
hydrophobic effects where the physics (of restricted orientation) is smaller. Efforts are
underway in our laboratory to extend the utility of this approach in the studies of the
contribution of the solvation entropies to the binding entropies, hoping to help advance the
understanding of this important effect. The corresponding strategy will be similar to the one
used in the present study and will require releasing the restraints on the protein residues and
the water molecules within a given cut-off distance. However, this approach will require careful
refinement since releasing the restraints on all of the protein residues may lead to computational
instability while releasing the restraints on a few residues may not capture the full solvation
entropy contribution. In future, it should be feasible to estimate the magnitude of the solvent
entropic contributions involved in ligand binding to proteins. Generally, the binding affinity
of a compound can be improved by generating a favorable binding enthalpy, favorable
solvation entropy, or by minimizing the unfavorable conformational entropy. In some cases,
it is much easier to optimize the entropy. For example, medicinal chemists have attempted to
conformationally constrain the substrate thus, restricting the entropy loss upon binding. Further
improvement may be obtained by trying to optimize the solvation entropies by choosing
specialized functional groups. However, the main advancement in our approach is in obtaining
more reliable predictions of the entropic contributions to ligand binding. Our RR approach
should therefore, be viewed as a step towards the generation of algorithms capable of
thermodynamic dissection particularly, those that can predict the entropic consequences of
introducing different chemical functionalities in the molecular scaffold generated either de
novo (during lead generation) or while being optimized (during lead optimization)for
improving their binding affinity towards a target protein. Thus, this study may have
implications towards our understanding of protein-ligand interactions, for theoretical modeling
of molecular recognition, and for rational drug design.
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Fig 1.
The Fourier transform of the time dependence of the energy gap (ΔVab) between the charged
(state a) and uncharged (state b) states of (a) Na+ ion (b) Ca2+ ions. The dimensionless
coordinate displacement (Δ) values are obtained from a simple Fourier transform on the time
dependent energy gap obtained from classical trajectories on the potential surface of Va.
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Fig 2.
Schematic representation of the restricted configurational volume of a grid-centered solvent
dipole in the presence of an external electrostatic field, ξ. In the pure liquid, the rotation of the
solvent dipole is assumed to be free and the accessible volume corresponds to the outer shell
of a sphere of a radius μ0. In the presence of the external field, the end point of the solvent
dipole becomes confined, on the average, to the outer shell determined by the solid angle
between the direction of the field and the maximum deviation of the solvent dipole from this
direction.
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Fig 3.
The time-dependent fluctuations of three water molecules at distances of 1.96Å (a), 4.90Å (b)
and 6.21Å, respectively (c) from charged (left) and uncharged (right) Na+ ion during a 2ns
molecular dynamics simulation.
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Fig 4.
The time-dependent fluctuations of three water molecules at distances of 1.96Å (a), 4.90Å (b)
and 6.21Å, respectively (c) from charged (left) and uncharged (right) Ca2+ ion during a 2ns
molecular dynamics simulation.
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Fig 5.
Histogram of the average orientation of three water molecules at distances of 1.96Å (a), 4.90Å
(b) and 6.21Å, respectively (c) from charged (left) and uncharged (right) Na+ ion during a 2ns
molecular dynamics simulation.
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Fig 6.
Histogram of the average orientation of three water molecules at distances of 1.96Å (a), 4.90Å
(b) and 6.21Å, respectively (c) from charged (left) and uncharged (right) Ca2+ ion during a 2ns
molecular dynamics simulation.
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Fig 7.
A schematic illustration of the effect of R̅ and the enthalpic contribution to ΔG′. The figure
considers one-dimensional potentials of mean force (W) for two systems (e.g. charged and
uncharged solute) and the effect of confining the system to small segments of R by a strong
constraint (K1). The figure also represents the effect of restraining the system in different R̅’s
by the PMF of the restraint systems, (W′). The value of ΔG′ depends on R̅ and the ΔG′ obtained
with the minimum of the corresponding W (i.e., R̅0) has the smallest absolute value. This ΔG
′ is our −T ΔS′.
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Fig 8.
Schematic representation of a square well potential.
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Fig 9.
Schematic representation of a periodic system that may be utilized to obtain ΔSI→II from R′1
that minimizes ΔG′.
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