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Abstract
The degree of confidence in a decision provides a graded and probabilistic assessment of expected
outcome. Although neural mechanisms of perceptual decisions have been studied extensively in
primates, little is known about the mechanisms underlying choice certainty. Here, we show that the
same neurons that represent formation of a decision encode certainty about the decision. Rhesus
monkeys made decisions about the direction of moving random dots, spanning a range of difficulties.
They were rewarded for correct decisions. On some trials, after viewing the stimulus, the monkeys
could opt out of the direction decision for a small but certain reward. Monkeys exercised this option
in a manner that revealed their degree of certainty. Neurons in parietal cortex represented formation
of the direction decision and the degree of certainty underlying the decision to opt out.

Choice certainty — the degree to which a decision maker believes a choice is likely to be
correct — affects a variety of cognitive functions: how we plan subsequent actions, how we
react and learn from mistakes and how we justify our choices to others. Choice certainty is
pivotal for planning actions in a complex environment in which subsequent decisions depend
on pending outcomes of previous decisions (1–3). For example, a decision to undergo a risky
operation depends, among other factors, on the degree of certainty that the diagnosis is correct.
Psychologists have long proposed that choice certainty serves as a link between the physical
world and belief: it provides a graded scale which allows us to translate our convictions into
suitable actions (4,5).

Despite the importance of choice certainty, its neural mechanisms are poorly understood. It is
well established that choice certainty is closely correlated with both decision accuracy and
reaction time (6–11). This close relationship suggests that the same mechanism that underlies
the decision making process might underlie certainty judgments (1,10,12,13). It has been
suggested that neurons in orbitofrontal cortex and cingulate cortex, which are known to
represent reward expectation or conflict, represent reward expectations associated with
decision uncertainty (14–16). However, these neurons do not give rise to a representation of
decision uncertainty but presumably receive this information from neurons that compute this
quantity in the decision making process.

The neural mechanism of decision-making has been investigated using simple perceptual tasks
in which a monkey makes a categorical choice between two or more discrete options based on
a sensory stimulus (17). When the monkey is required to report the perceived direction of
motion by a saccadic eye movement, neurons in lateral intraparietal cortex (LIP) represent the
accumulation of evidence, termed a decision variable, that supports the target in their response
fields (17–19). Furthermore, these neurons signal the termination of the decision process when
their firing rates reach a critical level or bound (19–21). Theoretical and experimental studies
raise the possibility that the neural computations approximate a form of probabilistic reasoning
about the alternatives (22–24). We hypothesize that the graded, time-dependent firing rates of
LIP neurons also represent choice certainty. Our hypothesis, therefore, unifies the
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representation of the three components of decisions—choice, RT and certainty—in a single
neural population.

Two monkeys made perceptual decisions about the net direction of motion in a dynamic
random dot display (Fig. 1A)(25). Task difficulty was controlled by varying both the
percentage of coherently moving dots and the viewing duration. After a delay period, the
fixation point was extinguished, which instructed the monkey to indicate its direction choice
by making an eye movement to one of the direction-choice targets. On a random half of trials,
the monkey was given the option to abort the direction discrimination and to choose instead a
small but certain reward associated with a third saccade target. Importantly, this “sure-target”
was shown during the delay period, at least 500 ms after the random dot motion was
extinguished. During motion viewing, the monkey did not know whether the sure-bet option
would arise. The task design, a form of post-decision wagering (26–28), ensured that the
monkey made a decision about motion direction on each trial. We hoped that the monkey would
choose the sure target when less certain of the high-stakes direction choice, allowing us to
study neural responses associated with choice-certainty.

We first describe behavioral observations, which demonstrate that the post-decision wager
reflects choice certainty. We then demonstrate a neural correlate of this certainty in the LIP
firing rate. Together, these observations support a mechanism in which the same decision
variable, represented by LIP neurons, underlies both the choice and the degree of certainty in
that choice.

The monkeys opted for the sure target when the chance of making a correct decision about
motion direction was small. They exercised this option more frequently for the weaker motion
strengths and for the shorter stimulus durations (p<10−8, Eq. 1, see (25); Fig. 1B), that is when
the probability of making an error was higher (p<10−8, Eq. 2; Fig. 1C). More interestingly,
when the monkeys waived this option, the choice accuracy was better than on the trials when
they were not offered the post-decision wager (p<10−3, Eq. 3; Fig. 1C). This improvement was
apparent at almost all motion strengths and stimulus durations. It implies that the monkeys did
not choose the sure target on the basis of stimulus difficulty but instead based on a sense of
uncertainty on each trial. This same pattern was observed on a subset of trials in which identical
random dot patterns were repeated (p<0.025; Fig. S1), suggesting that the source of information
about difficulty is not governed solely by properties of the stimulus but also by internal
variability that renders the evidence more or less reliable to the decision-maker.

We recorded extracellularly from 70 LIP neurons while the monkeys performed this task. These
neurons exhibited spatially selective persistent activity that predicted whether an eye
movement was planned into the response field (RF) of the neuron on a memory guided saccade
task(29–31). For the main motion task, we placed one of the direction targets (Tin) in the RF
of the recorded neuron, the other direction target (Topp) on the opposite side of the screen, and
the sure target (Ts) orthogonal to the axis that connected the two direction targets.

Figure 2A shows responses of an example neuron for trials without the sure target. The neural
activity following motion onset underwent a brief dip and then diverged to indicate the
monkey’s decision for Tin or Topp. The activity persisted through the delay period until the eye
movement (18). For simplicity, the graph combines all motion strengths and stimulus durations
(see Methods), but as shown previously (18–21), the buildup of firing rate reflected the stimulus
strength (p=0.01, Eq. 10; Fig. S2), compatible with the representation of accumulated evidence
in favor of Tin. We observed a similar divergence and persistence of activity for Tin and Topp
choices on the trials in which Ts was presented but was waived by the monkey (Fig. 2B, solid
traces).
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In contrast, when the monkey chose Ts, the activity following the motion changed more
gradually and achieved intermediate values compared to the Tin and Topp choices. This pattern
persisted into the delay period until Ts appeared (p<10−8, t-test). Note that before Ts appeared,
the monkey did not know whether the sure bet would be offered. Following onset of Ts, there
was a dip in activity, followed by a return to the level of activity preceding onset of Ts. When
the monkey chose Ts the response gradually converged to the Topp level. Importantly, the
profile of activity suggests that even before the onset of Ts, the neuron was informative about
whether the monkey would choose or waive this option should it be offered.

We observed a similar pattern of activity across the population of 70 LIP neurons (32).
Intermediate firing rates during motion viewing and the early delay were associated with
choosing the sure target later in the trial, as shown by the population average firing rates (Fig.
2D). To quantify this effect in single neurons, we compared activity in the 200 ms period
before Ts onset (Fig. 2D, hatched box) for trials in which the monkey selected or waived the
sure bet option. For motion toward Tin, the neural activity across the population was
significantly smaller for Ts choices than for Tin choices (p=0.007, ANOVA; Fig. 2E). For
motion toward Topp, the activity was significantly larger for Ts choices than for Topp choices
(p=0.001; Fig. 2F).

These observations demonstrate that the monkey is more likely to opt for Ts when the LIP
activity achieves an intermediate level of firing rate. However, a possible concern is that the
intermediate level of activity represented by the mean firing rates from many trials is an unfair
representation of the activity on single trials. According to this argument, the intermediate
means might represent a mixture of the high and low firing rates that would have corresponded
to Tin and Topp choices, had the monkey indicated a direction choice on these trials. This
‘mixture of states’ alternative makes a clear prediction, which is not supported by the data. If
the intermediate means were mixtures of the responses associated with Tin and Topp choices,
then the variance should reflect the dispersion of values associated with these extremes. This
idea is rejected: The variance associated with Ts choices was significantly smaller than the
variance associated with the mixtures of Tin and Topp choices (p=4.7×10−5; F-test). We
conclude that these intermediate levels of activity are not artifactual but represent a low state
of certainty.

This conclusion is supported further by comparing the activity from neurons on single trials
with the monkey’s decision to choose or waive the Ts option (Fig. 3A). For each trial, from
each neuron, we calculated the deviation of firing rate, in the epoch just preceding Ts onset,
from an intermediate level. The magnitude of this deviation was inversely related to the
probability that the monkey chose the sure bet option (p=2.3×10−5, Eq. 11; Fig. 3A). The
influence of a single neuron on the probability of a post-decision wager is expected to be small
because it is but one member of a large population of neurons that govern the behavior,
presumably (33–35). Nonetheless, the significance of the effect is a strong indication that LIP
responses represent the choice certainty.

This single-trial analysis addresses another possible concern. Since stimulus difficulty (i.e.,
motion coherence and duration) affects both LIP responses and confidence judgments, it seems
possible that the correlation between LIP activity and the post-decision wager is merely
accidental, that is, totally explained by the stimulus difficulty. Alternatively, if Ts choices are
based on LIP activity, they should be influenced by both the stimulus and the noisy fluctuations
of LIP firing rates. To address this, we performed a variant of the single-trial analysis described
in the previous paragraph. We calculated the trial-to-trial fluctuation of LIP responses relative
to the mean response dictated by each motion strength and direction. These residual fluctuations
before the sure target onset had significant leverage on the probability of choosing the sure
target (p=4.0×10−5, Eq. 12). This finding also held for the subset of trials in which we used
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identical random-dot motion stimuli (p=0.015). Therefore, the linkage of neural responses with
sure target choices is not explained merely by their shared covariation with the stimulus. We
conclude from these analyses that the variable discharge of LIP activity was related to the
monkey’s choice certainty, whether these variations were caused by experimental
manipulations (i.e., motion strength and duration) or random effects (i.e., neural noise).

The single-trial analyses have focused thus far on neural activity in the delay period,
immediately preceding the onset of Ts. Is the LIP activity during decision formation also related
to choice certainty? The evolution of neural activity accompanying motion viewing suggests
an affirmative answer. The rate of change of LIP activity after motion onset, termed the buildup
rate (36), was related to the probability of choosing Ts later in the trial. For stronger stimuli,
the buildup was steeper (p<10−8, Eq. 10), consistent with the accumulation of stronger
evidence, shorter decision times, and ultimately more accurate decisions (13,17). According
to our hypothesis, the buildup rates should tend toward intermediate values when the monkey
chose Ts. To test this, we performed a logistic regression analysis using buildup rates estimated
from single trials. Deviation of the buildup rate from intermediate values was associated with
a lower probability of choosing the sure target (p=0.017, Eq. 11; Fig. 3B). Moreover, this link
was not simply due to covariation of buildup rates and choice certainty with motion strength
(p=0.0018, Eq. 12).

It is also interesting to note that although the fluctuations in buildup rate and delay period
activity were weakly correlated (r=0.10, p<10−8), each exerted independent leverage on the
likelihood that the monkey would opt for the Ts wager (p<0.03; Eq. 13). In other words, both
the evolution of decision-related activity and the sustained activity in the delay period carry
information about choice certainty. While both quantities reflect the state of evidence, variation
in the buildup rate also affects the amount of time it takes to reach a decision (19–21,37,38),
consistent with the long held view that decision time contributes to choice certainty (8,9,12).

Indeed, a Bayesian framework that incorporates both evidence and decision time explains
several aspects of the data. As previously shown, the left-right choices on this task are governed
by the accumulation of evidence favoring one or the other option (17). This accumulation,
which we call a decision variable, v(t), is represented by the firing rates of LIP neurons. It
begins at a neutral value, and undergoes a random walk with drift (also termed drift diffusion)
as evidence accumulates for and against the two direction alternatives. The decision terminates
naturally when there is no more evidence (e.g., when the stimulus duration is short) or when
v reaches a critical level or bound. In both cases, the choice is determined by the sign of v. As
previously shown, this simple model explains the monkey’s accuracy as a function of stimulus
strength and viewing time. It explains both the diminishing returns associated with prolonged
viewing in our experiment (Fig. S3) (20) and the tradeoff between speed and accuracy in
reaction time experiments (13,39,40). It also explains the saturating firing rate curves in Figure
2.

A simple extension of this bounded evidence accumulation model also explains the post-
decision wagering. The key insight is that both v and t convey information about certainty.
Figure 4A shows the distribution of v(t), combined across all stimulus strengths when the
rewarded direction is, for example, rightward. Application of the decision rule described in the
previous paragraph to v(t) would lead to different proportions of correct and incorrect choices,
depending on the motion strength. This transformation is shown in Figure 4B, which replaces
the probability distribution of v(t) with the log odds of a correct decision. This is the log-
posterior odds based solely on v(t). For example, if a rightward stimulus is shown, the log odds
of a correct choice is simply the log posterior odds that the stimulus is to the right
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where C is motion coherence, and S1 and S2 represent the rightward and leftward motion
direction, respectively. The last term vanishes, because the prior probability that motion is left
or right is equal. The summation terms implement marginalization over motion strength. The
left side of the equation formalizes belief in the proposition S=S1.

From the depiction in Figure 4B, it is easy to imagine that opting out of the direction decision
might happen when the expected chance of success based on v(t) at decision time is less than
a criterion level (Fig. 4C). This simple model explains the observed behavior and successfully
predicts the amount of improvement in probability correct for trials in which the monkey
waives Ts. The model has only three free parameters (Table S1), which were set by fitting the
proportion of Ts choices and the probability correct for trials without Ts (dashed curves; Fig.
4D, R2=0.97; Fig. 4E, R2=0.98). This establishes a prediction (not a fit) for the probability
correct on the trials in which Ts was shown but waived (Fig. 4E, solid curves, R2=0.97). The
agreement between this simple model and the data affirms the plausibility of the “Bayesian
sequential sampling” framework (41).

Moreover, the evolution of v(t), predicted by the model resembles qualitatively the responses
of LIP neurons (Fig. 4F and S4). For stronger motion, the decision variable associated with
Ts choices follows less intermediate trajectories (note separation of dashed curves), and the
decision variable associated with direction choices rises (or falls) faster toward its plateau level.
Both of these features are evident in the neural responses. The agreement is only approximate,
presumably because neurons besides the ones we recorded contribute to the estimation of
certainty (1,22). These neurons might represent evidence for other directions of motion, but
they are unlikely to represent the Ts choice option directly, as shown next.

To gain a better understanding of the representation of choice certainty across the population
of LIP neurons, we recorded from 19 cells using the task configuration shown in Figure 5.
Ts was in the RF whereas the direction-choice targets were not. Although Ts was not displayed
until late in the delay period and only on half of trials, its position was fixed through the course
of the experiment. Nevertheless, these neurons did not show a significant modulation of activity
during the motion stimulus or in the ensuing delay period (42). Moreover, the weak activity
that was present was uninformative about the choice to forego or choose the Ts option (Fig.
5B; p>0.1 for both directions of motion). Unlike the neurons with a direction choice target in
the RF, the neurons that encode the location of Ts do not appear to represent choice certainty.

This observation argues against an alternative explanation of our finding based on allocation
of attention to the Ts location. More generally, it provides additional evidence that the monkey
made a decision about the motion direction in the period preceding onset of Ts, even on trials
when he opted out of the direction task. There is no indication that the monkey approached the
task as a choice between three alternatives, Tin, Topp and Ts. However, after the appearance of
Ts, these neurons with sure target in their RF became predictive of the post-decision wager.
Although it is not obvious from the traces, the visual response in the first 200 ms was slightly
larger when the monkey would choose Ts (p<0.01, ANOVA), suggesting that Ts was more
salient when there was greater choice uncertainty (43). The effect was weak (median difference
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= 7.7%), but as time elapsed during the remainder of the delay period the firing rates gave a
clear indication of whether the monkey would choose the Ts.

Discussion
A connection between signal reliability, choice accuracy and confidence has been proposed
previously (1,13,14,44,45), but until now this connection has not been observed directly in the
same neurons. Neurons in a variety of brain structures represent the size, preference and
probability of obtaining a reward (15,46–54), but it is not known how these representations
arise. The present results show that the same neurons that participate in decision formation
(20,55) carry the relevant signals for assigning the probability of obtaining a reward. It therefore
seems likely that the computation of choice certainty is passed, from LIP, to brain structures
that anticipate reward, and it is likely that feedback from these structures affects LIP in the
epoch after the appearance of Ts to mediate the decision to choose or forgo the Ts option.

The mechanism underlying the representation of certainty in LIP is linked to the same evidence
accumulation that underlies choice and decision time (17,20). This accumulation is encoded
in the firing rates of LIP neurons with response fields aligned to the choice targets representing
the direction alternatives (18,55–57). This is the decision variable, v(t), that governs the choice
of direction, having either attained a critical level — a decision termination bound —or by
comparison to a criterion if the evidence stream ceases. This mechanism can be viewed as a
merging of decision models based on sequential analysis (58–60) and signal detection theory
(61). The magnitude of this decision variable, combined with knowledge of elapsed time, maps
directly to the probability of obtaining a reward. An associative learning process based on LIP
responses can therefore underlie the monkey’s choice of Ts. The ability to explain the rich
pattern of behavioral results and the qualitative agreement between model and physiology
favors the simple conceptual model. It is probably also consistent with other models that exploit
a broader population of LIP neurons to encode posterior probability (22,41).

This simple mechanism brings certainty, which is commonly conceived as a subjective aspect
of decision making, under the same rubric as choice and RT (1,62) and removes the need to
resort to meta-cognitive explanations for certainty monitoring (45). Our findings support a low-
level explanation of post-decision wagering in our task, but they do not preclude the possibility
that an animal that experiences subjective awareness of degree of certainty might base such
impressions on neural signals like the ones exposed here.

LIP neurons are hypothesized to encode the attentional salience or expected value of a visual
saccade target (52,53,63), but these concepts cannot explain the pattern of LIP activity in our
experiment. For example, a diversion of attention away from Tin to the potential location of
Ts should have led to a reduction in firing rate for both Tin and Topp directions during motion
viewing and in the delay period before Ts appeared. Attention (or motor planning) might
explain the activity just preceding saccades, but it does not explain the intermediate firing rates
in the key epochs of interest. A second alternative, expected reward, seems more plausible at
least to the extent that it mimics the belief that a choice will be correct. However the expected
value of Tin, in the objective sense (from economics), changes as a function of motion strength
(psychometric function; Fig. 1C), whereas the firing rate is minimally affected by motion
strength when the monkey waives Ts (Fig. 4F and S4). Even subjective expected value, which
is synonymous with certainty, fails to fully capture the deeper insight our experiment reveals
about mechanism: the evolution of decision-related activity that gives rise to a choice also
underlies certainty and a wager based upon it.

A famous controversy in the history of probability theory concerned whether it is meaningful
to embrace the truth of a hypothesis as a graded quantity expressed as a probability, or whether
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instead hypotheses are simply true or false. The latter approach led frequentists to reject the
Bayesian concept of degree of belief, relegating probability to the analysis of error rates in
truth-assertions (64,65). Our finding suggests that when the brain embraces a truth, it does so
in a graded way so that even a binary choice leaves in its wake a quantity that represents degree
of belief. From this perspective, our neural recordings support the idea of a “Bayesian
brain” (66) and a neural mechanism of decision making that does not flip into a fixed point or
attractor state but instead approximates the formation of a probability distribution (41,67).
Accordingly, the intermediate levels of activity associated with less certain choices might be
a sign of a more homogeneous level of activity across the population of neurons.
Fundamentally, our results advance understanding of the neural mechanisms that underlie
decision-making by coupling for the first time the mechanisms leading to decision formation
and the establishment of a degree of confidence.
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Figure 1.
Post-decision wagering behavior in monkeys is indicative of choice certainty. (A) The
sequence of events in the task. After acquiring a central fixation point (small red point), two
“direction targets” (large red spots) appeared on the screen, one inside the neural response field
(RF; gray shading), the other on the opposite side of the screen. The motion stimulus appeared
after a short delay, remained visible for 100–900 ms, and was followed by another delay (1200–
1800 ms). On half of the trials (lower branch) the delay persisted until the fixation point was
turned off, which served as a Go signal that instructed the monkey to indicate the perceived
direction of motion by a saccadic eye movement to one of the “direction targets.” A correct
response led to a liquid reward; a wrong response led to no reward and a brief timeout. On the
other half of the trials (upper branch) a third target was presented 500–750 ms after extinction
of the motion. Choosing this “sure target” (Ts; blue spot) led to a smaller reward (~80% of
correct reward). On these trials the monkey could choose Ts or a direction choice. The two trial
types were randomly interleaved. (B) The frequency of choosing Ts was greater when the
motion strength (%coherence) was weak or the duration brief. The points are data grouped in
duration quantiles (deciles). Error bars (SE) are smaller than the symbols. (C) Decision
accuracy when Ts option was waived. The graph compares performance on trials in which
Ts was not shown (open symbols, dashed curves) with trials in which Ts was offered but waived
(filled symbols, solid curves).
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Figure 2.
LIP activity predicts direction choices and the post-decision wager. (A) Responses from one
neuron on trials in which Ts was not presented. Average firing rates for Tin (black) and Topp
(gray) choices are shown for all correct choices (and the 0% coherent motion strength), during
motion viewing and the delay period. Averages are aligned to motion onset (left part of graph)
and saccade initiation (right). (B) Responses from the same neuron on trials in which Ts was
presented. The dashed lines show neural activity on trials in which Ts was chosen (black and
gray, motion toward Tin and Topp, respectively). The middle portion of the graph shows activity
in the delay period, aligned to onset of Ts. (C–D) Population average responses of 70 LIP
neurons from two monkeys. Same conventions as in A and B. Firing rates from each neuron
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were normalized to the mean level prior to onset of the motion stimulus. (E) The activity before
Ts presentation was smaller for Ts choices than for Tin choices. Each data point represents the
mean activity of an LIP neuron in the 200 ms before Ts presentation (hatched rectangle in D).
Error bars represent SEM. Shading in the histogram shows significant cases (p<0.05). The
arrow shows the mean difference of normalized activity across the population (mean±SEM,
−0.20±0.03). (F) The activity before Ts presentation was larger for Ts choices than for Topp
choices. Same conventions as E (mean difference=0.18±0.02).
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Figure 3.
Ts choices were correlated with trial-to-trial variation of neural activity. Responses from single
trials were represented as the absolute deviation, in units of standard deviation, from the mean
value using all the trials from a neuron (z-score). (A) The frequency of choosing Ts as a function
of deviation from mean in the activity before Ts presentation. Curves are fits of Eq. 11 (25) to
individual trials. The points illustrated on the graph were formed by grouping trials into 5 bins.
(B) The frequency of choosing Ts as a function of deviations from the mean buildup rate of
activity after motion onset. Same conventions as in A.
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Figure 4.
A simple bounded evidence accumulation model predicted both the behavioral results and the
modulation of LIP responses. (A–C) The model. On each trial, the accumulation, v(t), diffuses
to one of the decision bounds (gray lines). The process terminates when v(t) reaches a bound
or the stream of motion evidence ceases. (A) Representation of v(t) as a propagating probability
density, for all motion strengths, when the rewarded direction is rightward. Positive values for
v(t) represent accumulated evidence in favor of rightward. At time zero, the distribution is a
delta function at v=0. As time elapses, the range of v(t) expands to fill the space between the
two bounds, and there is a drift toward positive values, as shown by the probability density of
v at t=800ms (inset to the right of color map). The distribution associated with leftward motion
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(not shown) is the mirror symmetric graph reflected about v=0. (B) The log odds of a correct
response based on the value of v(t) at decision time. Correct responses are associated with
larger v, but the relationship between v and probability correct changes with decision time. (C)
Ts is chosen when the probability of a correct response is less than a criterion level. (D–E)
Model fits and predictions. The three model parameters (Table S1) were fit to the observed
frequency of correct responses on trials in which Ts was not shown and the observed frequency
of Ts choices on trials in which Ts was shown. These parameters predict the probability of a
correct response on trials in which Ts was waived (solid curves in E). (F) Comparison of model
predictions and neural data. The average trajectory of v(t) in the model was calculated for
different coherence levels using the fit parameters. The calculation is based on the stimulus
durations used in the experiment, and assumes that v is fixed from termination of accumulation
process. The calculated trajectories (top) resemble the LIP responses (bottom). Neural
responses were detrended by subtracting the mean response at each moment and shifted by the
neural latency (200 ms).
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Figure 5.
Activity of LIP neurons when the location of Ts was in the RF. (A) Task design. For 19 neurons
from two monkeys we placed Ts in the RF. The high-stakes direction targets were outside the
RF. Task sequence was otherwise unchanged. (B) Responses on trials in which Ts was not
offered. (C) Responses on trials in which Ts was presented. Firing rates were normalized to
the visual activity in the 300 ms epoch following onset of Ts.
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