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Abstract
Many next-generation adaptive optics (AO) systems for vision will have two deformable mirrors
(DMs) instead of one: a high-stroke, low-resolution mirror (the woofer) and a low-stroke, high-
resolution mirror (the tweeter). We developed a zonal wavefront-control algorithm and validated it
using simulations. Rather than separating the woofer and tweeter corrections into two independent
control processes or using a modal decomposition, the algorithm we proposed uses wavefront slope
measurements from a single Shack–Hartmann wavefront sensor to generate control signals for both
deformable mirrors within a single zonal control. A Lagrange multiplier is chosen to integrate two
DMs into a single-DM wavefront control, and a damped least-squares control is employed to suppress
the correlation between the two DMs.

In many wavefront-control applications, there is a need for both high-amplitude wavefront
corrections for low-order aberrations and low amplitude corrections for high-order aberrations.
One approach to meeting this need is to use two deformable mirrors (DMs): a high-stroke
woofer DM and a low-stroke tweeter DM. The woofer-tweeter approach has been studied in
adaptive optics (AO) control in wavefront turbulence scintillation and in astronomy [1–5], as
well as in retinal imaging [6]. In retinal imaging with an AO scanning laser ophthalmoscope
(AOSLO), a dual-DM approach is desirable owing to the large individual differences in defocus
and astigmatism in humans and to large dynamic changes in focus (accommodation). In
previous work the dual-DM correction was treated sequentially [6]; first the woofer was
optimized and then the tweeter.

In this Letter we present a real-time zonal control algorithm for implementation of a woofer–
tweeter dual-DM AOSLO system for in-vivo human retinal imaging with a 140 actuator Boston
micromachine (BMC) DM (maximum stroke 2.5 μm) and a 52 actuator Mirao magnetic DM
(maximum stroke 50 μm). Wavefront errors are measured by a Shack-Hartmann sensor. The
high-stroke Mirao DM is the woofer for correcting the low-order aberrations, and the low-
stroke BMC DM is the tweeter for correcting the high-order aberrations. In retinal imaging the
ability to rapidly focus at different locations and depths in the retina is desired, so one goal of
the algorithm is to provide simultaneous control rather than optimizing the mirrors sequentially
and independently. To do this, the algorithm needs to sort the wavefront aberrations into two
groups, one for the woofer correction and one for the tweeter correction in real time.

For initial modeling we assume that the DM1 mirror is the woofer DM and the DM2 mirror is
the tweeter DM. Given wavefront slope (the first derivative of wavefront) measurements S,
the problem of wavefront control with a woofer–tweeter system can be expressed as the
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requirement to determine actuator stroke vectors X for DM1 and Y for DM2, where DM1 and
DM2 are coupled with a single wavefront sensor (WFS) via influence matrices A and B.

Mathematically we can construct a single “imaginary” deformable mirror from the two mirrors
that are physically independent but optically conjugated. The task is to form a new influence
matrix for the imaginary DM, with which the imaginary DM will naturally correct both the
low-order and high-order wavefront aberrations. To integrate the two DMs as one, a Lagrange
multiplier λ is introduced to match the influence matrix B of DM2 with the influence matrix
A of DM1. The Lagrange multiplier is simply a weighting factor between the two DM controls
[7]. To describe the wavefront-control problem, a cost function (or merit function) can be
defined as

(1)

which is a measure of the residual wavefront error in a least-squares sense. In this equation,
S is a vector of Shack–Hartmann sensor measurements. Our goal is to correct the wavefront
such that the cost function is minimized, which requires ∂ψ/∂X=0 and ∂ψ/∂Y = 0. Therefore,
we have

(2)

In matrix form, Eq. (2) can be written as

(3)

where C = [A λB] is the influence matrix of the imaginary DM, and P = [XT YT]T is the actuator
stroke vector of the imaginary DM. In this way a dual-DM AO control becomes a single-DM
AO control.

Because DM1 and DM2 share the same wavefront sensor and contribute to the same wavefront
correction, the actuators between DM1 and DM2 are not independent, and therefore matrices
A and B are either rank deficient or ill conditioned. For instance, DM1 and DM2 could generate
wavefront corrections with opposite signs to yield a very small total wavefront correction. For
our proposed configuration we calculated that matrix ATA has at least seven eigenvalues close
to zero, and matrix BTB has eight close and four that are zero. In an optimal situation, matrix
CTC has at least 16 eigenvalues that are close to zero and four eigenvalues that are zero.
Therefore the least-squares solutions to Eq. (3) are not deterministic, and the inverse of the
normal matrix does not exist. Singular-value decomposition (SVD) can be employed to obtain
a least-squares solution for this problem, but this solution is not necessarily optimal. To
suppress the correlation between two DMs, we employ a damped least-squares method,
obtaining an iterative solution. The damped least-squares method, also referred to as the
Tikhonov regularization method in solving linear ill-posed problems, has many applications,
such as in optical design for searching the optimum solution to minimize a cost function [8,
9].

Therefore, a damped least-squares solution to this problem can be expressed as
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(4)

where β1 and β2 are damping parameter matrices, which can be determined empirically.

To validate the algorithm, we assume the influence functions of DM1 and DM2 are both
Gaussian: one is wider to represent a typical woofer mirror and the other is narrower to represent
a tweeter mirror, where the influence function means the mirror surface shape change per unit
change of actuator displacement or force. Figures 1(a) and 1(b) show the mapping between the
actuators of DM1, DM2, and the lenslet array (25×25); Figures 1(c) and 1(d) show an influence
function generated by a unit Gaussian function (standard deviation σ=1 and σ=0.2, respectively)
for an actuator on DM1 and DM2, respectively.

An input wavefront from a human eye is shown in Fig. 2(a) [10], and the wavefront slopes
written in vector S were computed. We computed the actuator stroke vectors X and Y for
wavefront-error correction using Eq. (4) with λ=1 and the damping factors equal 2. From the
actuator stroke vectors X and Y, we estimated the wavefront error corrected by DM1 and the
wavefront error corrected by DM2 [Figs. 2(b) and 2(c)] and the residual wavefront error after
one iteration [Fig. 2(d)]. Figure 2(e) shows a comparison of the wavefront errors quantified by
Zernike order [11]. As expected, most of the wavefront errors are decreased; the low-order
aberrations are corrected mainly by DM1, and high-order aberrations are corrected mainly by
DM2.

To further validate the proposed algorithm, we set DM1 to flat and used DM2 alone to
computationally correct the high-order errors of the input wavefront in Fig. 2 without damping
and compared the result to a conventional SVD approach for a single mirror control (Fig. 3).
This confirmed that the proposed algorithm when working with a single DM produces
equivalent results to the conventional SVD method. Alternatively, we can fix DM2 to flat and
correct with DM1, only with similar results (Fig. 4), but now, as expected owing to the wide
influence function of the actuators and the low number of actuators, low-order aberrations
decreased, but high-order aberrations could not be corrected.

A dual-DM woofer–tweeter AO system with the proposed wavefront control algorithm is
shown to have improved performance relative to a single-DM AO system in wavefront-
correction accuracy and dynamic range. The proposed algorithm sorts the wavefront aberration
into low-order and high-order groups based only on the influence function of the mirrors and
assigns them to the woofer–tweeter DMs for correction without performing a modal
decomposition of the wavefront errors. By changing the damping factors, the degree of
wavefront correction per control step can be varied. When one of the DMs is frozen, the dual-
DM wavefront correction is equivalent to a single-DM correction with the conventional SVD
method. To test the range of our algorithm we examined the impact of the relative widths of
the influence functions with our geometry (Fig. 1). For best control, the widths of the two
influence function should differ by approximately a factor of 4 to 5 times. Smaller differences
will produce more correlation between the two DMs; however, it is still geometry dependent.
For instance, if DM1 and DM2 are identical but their actuators are spatially interleaved, the
spatial frequency of the composite wavefront correction will be increased by a factor of 
with the composite grid at 45 deg rotation in orientation compared with the original DM grids.
That is, higher-order wavefront corrections can be achieved by two low-order DMs in optical
conjugation if they are integrated together by the proposed algorithm. This approach was first
studied by Yang and Liu et al. [12,13], and it may find applications in real systems, because
the high-order DMs can be more expensive than several low-order DMs.

Zou et al. Page 3

Opt Lett. Author manuscript; available in PMC 2009 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As a generalization of the proposed algorithm, a wavefront-control equation for multiple
optically conjugate DMs can be written as

(5)

where λi(i=1,2, … t) are the Lagrange multipliers for the DMs in tandem with corresponding
influence matrices Ai(i=1,2, …t), and Fi(i =1,2, …t) are the actuator vectors of the DMs. With
Eq. (5) we can integrate more stroke-limited DMs into an imaginary one to extend the stroke
capability and increase spatial resolution of wavefront correction.
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Fig. 1.
(Color online) (a) Mapping of the DM1 (Mirao) actuators and lenslet array. (b) Mapping of the
DM2 (BMC) actuators and lenslet array. (c) Influence function of a DM1 actuator at (4.25,
4.25) (σ=1, Gaussian). (d) Influence function of a DM2 actuator at point (3.75, 3.25) (σ=0.2,
Gaussian).
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Fig. 2.
(Color online) (a) Input wavefront error map (RMS=2.9491 μm). (b) 3D map of the DM1
wavefront correction (RMS=3.0946 μm). (c) 3D map of the DM2 wavefront correction (RMS=
1.2368 μm). (d) Residual wavefront error map (RMS = 0.4557 μm). (e) Wavefront error
comparisons quantified by Zernike order.
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Fig. 3.
(Color online) (a) 3D map of the DM2 wavefront correction (no damping, RMS=3.1881 μm).
(b) Residual wavefront error map (RMS = 2.5556 μm). (c) Wavefront error comparisons
quantified by Zernike order. (d) Single-DM2 wavefront correction with conventional SVD
method (RMS=3.1893 μm).
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Fig. 4.
(Color online) (a) 3D map of the (Color on line) DM1 wavefront correction (no damping,
RMS=3.0184 μm). (b) Residual wavefront error map (RMS = 0.5707 μm). (c) Wavefront error
comparisons quantified by Zernike order. (d) Single-DM1 wavefront correction with
conventional SVD method (RMS = 2.9956 μm).
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