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Abstract
Although talents and disabilities appear to run in families, direct links between genes and
cognitive ability are difficult to establish. Investigators are currently searching for intermediate
phenotypes with plausible links to both genome and cognome (the cognitive phenotype). Cortical
anatomy could provide one such intermediate phenotype. Variation in cortical size, asymmetry
and sulcal pattern is influenced by genetic variation in neurotrophic factors and can predict
variation in verbal and mathematical talent. Anecdotal evidence suggests that individuals with a
rare morphological variant of Sylvian fissure sometimes have superior visualization ability
combined with verbal deficits. Documentation of such ‘cognitive cortical syndromes’ might prove
as genetically informative as the identification of dysmorphic syndromes associated with mental
retardation. A necessary prerequisite for the establishment of such syndromes is a reliable
technique for the identification of cortical patterns. Recent technical advances in software for
automatically labeling and measuring cortical sulci now provide the possibility of establishing
standard measures for their shape, size and location. Such measures are a prerequisite for genetic
studies of cortical patterns that could illuminate the neurodevelopmental pathways by which genes
affect cognitive ability.
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Although talents and disabilities frequently run in families (Francks et al. 2003; West 1997),
direct links between genes and cognitive ability are difficult to establish (Chorney et al.
1998; Fisher et al. 2002). The link between genome and cognome (the cognitive phenotype)
can be obscured by epigenesis. Cognitive abilities develop over a protracted period in
childhood and adolescence. In talented families, early aptitude is reinforced through
continual exposure to expert tutoring and high expectations. In families with disabilities, by
contrast, early vulnerabilities may be ignored and/or amplified due to inexpert guidance and
low expectations.

Epigenesis is a complex concept with different meanings in different disciplines. In child
development, epigenesis refers to the processes by which genetic predispositions are
reinforced or thwarted by parental, peer and other societal influences (Bateson 1975).
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Geneticists reserve the term for molecular alterations of gene expression, such as X
chromosome inactivation, that occur very early in embryogenesis (Jaenisch & Bird 2003).
Whether narrowly or broadly defined, epigenetic processes modify the cognitive phenotype,
necessitating a search for intermediate phenotypes that are more directly linked to genetic
mechanisms. In this paper, we explore the idea that cortical anatomy might provide such an
intermediate phenotype. Cortical patterns are shaped by genetic influences on neural
development (Free et al. 2003; Fukuchi-Shimogori & Grove 2001), and regional differences
in these patterns are associated with variation in information-processing efficiency that
affect cognitive ability (Krubitzer & Kahn 2003).

We will present evidence from a variety of sources to support the validity of anatomy as an
intermediate phenotype. In section I, we summarize the work from our laboratory showing
that variation in two anatomical measures –cerebral size and Sylvian fissure asymmetry – is
related to individual differences in cognitive ability across a wide variety of diagnoses.
Section II presents a reanalysis of data from a published twin study that suggests that low
concordance rates for anatomical measurements in monozygotic (MZ) twins may
underestimate their genetic associations. Section III, the longest section, is a more general
discussion of cortical patterns, their measurement, their origin and some associations with
cognitive function. Study of the genetic precursors of cortical patterns may hold special
promise, because these patterns become set during prenatal development (Cachia et al. 2003;
Kostovic et al. 2002) and may be more resistant to postnatal epigenetic modification than
cognitive performance.

I. Cortical variation and verbal ability
Cerebral size

Genetic influences on the size of the cerebral hemispheres are substantial (Pennington et al.
2000; Schoenemann et al. 2000), single genes with marked effects on brain size have been
identified (Bond et al. 2002; Chenn & Walsh 2002), and variation in brain size is associated
with modest but reliable variation in cognitive function (Andreasen et al. 1993; MacLullich
et al. 2002; Pennington et al. 2000; Reiss et al. 1996; Schoenemann et al. 2000; Willerman
et al. 1991). In our own studies of schizophrenia (Leonard et al. 1999) and language-learning
disorders (Eckert et al. 2003; Leonard et al. 2001; 2002), we have been impressed at the
stability of the relationship between cerebral volume and verbal ability in children and adults
across a variety of diagnoses. The differences in cerebral volume that sometimes occur
between experimental and control groups are usually associated with group differences in
verbal ability.

Over a series of individual studies, we observed that performance on the Woodcock–
Johnson Test of Passage Comprehension (Woodcock & Johnson 1989) (a procedure in
which participants are asked to fill in the blank in a sentence with a suitable word) showed a
robust relationships with measures of cortical anatomy. Measures of reading comprehension
correlate highly with other measures of verbal intelligence such as vocabulary and the ability
to solve analogies (Carroll 1993).

Our magnetic resonance-imaging (MRI) archive was searched for all individuals that had
received Woodcock–Johnson Test of Passage Comprehension. Table 1 provides descriptive
statistics for the 330 individuals identified in this search. They have been divided into the
following four diagnostic groups; Adults: 72 healthy adults recruited as controls for studies
of schizophrenia and learning disability; Schizophrenia (S): 46 patients with schizophrenia
who were diagnosed using standard research criteria (First et al. 1996); Children: 102
healthy children recruited for a study of normal development; Language-learning disability
(LLD): 110 individuals with diagnoses of either dyslexia (poor single-word reading ability)
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or specific language impairment (poor performance on tests of oral language). Written
consent was obtained from all participants and parents, and assent was obtained from each
child. Each project had received approval from the Institutional Review Boards of the
participating institutions.

Figure 1 shows the relation between cerebral volume and reading comprehension in these
330 individuals. Although there is substantial variation around each point, there is a highly
significant relation between reading comprehension and cerebral volume (Pearson r = 0.31,
P < 0.0001). The results of multiple regression analyses provided in Table 2 demonstrate
that individual differences in socioeconomic status (SES) (Hollingshead 1975), dextrality
and anatomy are attributable to differences in reading comprehension rather than diagnosis.

Sylvian fissure asymmetry
Figure 2 shows the relationship between reading comprehension and Sylvian fissure
asymmetry in these 330 individuals. The Sylvian fissure measurement was derived by
adding together surface area measurements of all structures found in the posterior Sylvian
fissure: the planum temporale, planum parietale and Heschl’s gyri. The coefficient of
asymmetry was calculated according to the standard formula (left − right)/[(left + right)/2].
The graph shows that individuals with very poor reading comprehension are more likely to
have a right Sylvian fissure that is longer than the left than individuals with average reading
comprehension (Pearson r = 0.21, P < 0.005). Interestingly, as there is no correlation
between Sylvian fissure asymmetry and cerebral volume (Pearson r = 0.03, P = 0.58), these
two aspects of cerebral morphology contribute independently to cognitive ability.

These data on cerebral size and Sylvian fissure asymmetry have been included to make a
cautionary point. When phenotypic differences are found between diagnosed and control
groups, it is important to make sure that these differences are specific markers for the
diagnosis rather than a non-specific marker of generalized cognitive deficit. Regardless of
diagnosis, otherwise normal children with poor reading comprehension, dyslexics with poor
reading comprehension and schizophrenics with poor reading comprehension have greater
anatomical similarities than individuals with the same diagnosis who have better reading
comprehension. If the continuum of cognitive ability is not taken into account in the design
of genetic studies, non-specific genes for cognitive disability that contribute to behavioral
variation within diagnoses may be misidentified as genes that contribute to behavioral
variation between diagnoses. The evidence presented above suggests that Sylvian fissure
asymmetry and cerebral volume might be good candidates for genetic study of intermediate
phenotypes linked to cognitive ability.

Previous work on asymmetry and cognitive ability
There have been previous reports that the most well-known subdivision of the Sylvian
fissure – the planum temporale – is associated with a variety of measures of verbal and
reading ability (Eckert et al. 2001; Leonard et al. 1996; Rumsey et al. 1997). The planum
temporale is the brain structure that Geschwind and Levitsky (1968) found was five times
more likely to be longer on the left than the right. Remarkably, that ratio has held true over
the succeeding three decades, in spite of marked variations in sample composition,
technology and measurement technique (Foundas et al. 2002; Kulynych et al. 1995;
Shapleske et al. 1999; Watkins et al. 2001). For example, 70% of the 330 individuals
described here had significant leftward asymmetry (significance is conventionally defined as
an asymmetry greater than 10%), 15% had symmetrical plana temporale and 15% had
significant rightward asymmetry with no difference in proportion in the four diagnostic
subgroups.
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A left hemisphere advantage in the size of the planum temporale may contribute to a left
hemisphere advantage in the speed of processing verbal information. We recently reported
that the degree of visual field asymmetry in the speed of lexical decision and word naming
was associated with the degree of leftward planar asymmetry in 20 normal college students
(Chiarello et al. 2004a). Given the importance of left hemisphere mechanisms for language
processing in the evolution of our species, it is reasonable to search for a genetic basis for
planar asymmetry. The next section presents a reanalysis of data from a published study on
MZ twins that addressed this question.

II. Heritability of planar asymmetry
To date, the major genetic strategy for the analysis of cortical variation has been the twin
study. In twin designs, the difference between the association in MZ and dizygotic twin
pairs is taken as evidence for the degree of heritability (Wright et al. 2002). These studies
have not provided strong evidence for genetic influences on sulcal anatomy (Bartley et al.
1993; Lohmann et al. 1999; White et al. 2002). It is possible, however, that twin studies may
underestimate genetic influences. Differences in birth weight suggest an unequal distribution
of placental resources, and later differences in a variety of biometric indices are correlated
with these birth weight differences (Charlemaine et al. 2000). Cortical development would
be expected to be particularly susceptible to unequal resource distribution, because it is most
rapid in the last trimester when crowding of the uterus is at its peak and deviance from the
optimal trajectory most likely (Dooling et al. 1983; Garel et al. 2003).

We reported evidence consistent with the idea that events during fetal development affect
the concordance of planar asymmetry in monozygous male twins (Eckert et al. 2002). The
twins (mean age 11.9, 83% right handed) were recruited from the American Academy of
Child and Adolescent Psychiatry, the Virginia Commonwealth University Twin Registry
and the National Organization of Mothers of Twins Clubs by J. Giedd. Zygosity was
verified using 9–14 unlinked short tandem repeat loci, by BRT Laboratories Inc (Baltimore,
MD). Purported MZ cases which did not yield a probability of twinship >99% were tested
further for a total of 21 loci. Written assent from the child and consent from the parents was
obtained for each participant, and the project received approval from the National Institute
of Mental Health and the University of Florida Institutional Review Boards. The
investigation was confined to male twins to exclude the possibly confounding effects of
random X chromosome inactivation.

In the initial analysis, the values of planar asymmetry in the co twins did not show a
significant association. The correlation (Pearson r) between planar asymmetries in each twin
pair only became significant when six twin pairs with greater than 20% difference in birth
weight were excluded. In the published paper, the post hoc exclusion of these twins was
justified on the basis of probable twin transfusion syndrome, a condition in which the blood
supply passes through one twin before the other, jeopardizing the health of both (Haverkamp
et al. 2001; Tan et al. 1979). Because of differences in growth rate, twins with twin
transfusion syndrome are frequently discordant on many measures. But even when these six
twin pairs were excluded from the analysis, the concordance between measures of planar
asymmetry was relatively low (r = 0.44, P < 0.05).

For the present article, we asked whether we could find evidence for disturbed development
in a larger proportion of the sample. We reanalyzed the data to see whether the size of the
discrepancy in cerebral volume predicted the size of the discrepancy in planum temporale
size. The graphs presented in Figs 3 and 4 show a wide variation in concordance of cerebral
volume, even though the overall correlation was very high (Pearson r = 0.94, P < 0.01).
Figure 3 suggests that individuals can be divided between those whose values for cerebral
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volume lie on and off the diagonal. The right side of Fig. 3 shows that the volume
discrepancies in the 11 pairs of twins whose data lie along the diagonal were below 1%,
while those in the other 16 pairs ranged from 2 to 7%.

The formation of these two subgroups was further justified by the fact that there was a clear
difference in the absolute size as well as the variability of the volume discrepancy in the two
groups. The mean volume discrepancy in the concordant subgroup was 3.2 ± 2 cc, while the
mean discrepancy in the discordant group was more than 10 times as high: 42.7 ± 17.7 cc.
These two groups also differed in the degree of concordance for the planum temporale.
There was no correlation between planar lengths or asymmetries in the discordant pairs (all r
< 0.05). By contrast, both left and right planar lengths were significantly correlated in the
pairs with concordant cerebral volume (r of 0.74 and 0.73, P < 0.05). Planar asymmetry
showed a non-significant but positive correlation (r = 0.40) in this subgroup. Figure 4 shows
the relationship of left planar length in concordant and discordant twin pairs.

The graph on the right side of Fig. 3 suggests the possibility that the twins with the largest
cerebral volumes had the smallest discrepancies. These twins may have had longer gestation
periods. Perhaps healthy fetal development that permits the development of large cerebral
volumes also reduces environmentally induced inequality in development, consistent with
the work of Charlemaine and colleagues cited above. The twins recruited for this study came
from upper-middle class households and had intelligence quotients considerably above
average. The fact that twins from such protected environments demonstrate evidence of fetal
disturbance suggests estimates of heritability in twins might need modification for the
general population. The next section reviews some recent studies that use other strategies to
connect genetic, cortical and cognitive variation.

III. The investigation of cortical patterns
Until the advent of high-resolution structural MRI in the early 1990s, it was impractical to
study the relationship between genes, cortical morphology and cognitive function, because
the large samples necessary were difficult to obtain in post-mortem studies. Furthermore, in
such studies, quantitative measurements require irreversible damage to the object of study.
Even now, there are relatively few studies of the genes that influence cortical patterns. There
are probably many reasons: (a) MRI is expensive and inconvenient; (b) the advent of
functional MRI diminished interest in structure; (c) genetic influences were assumed to be
limited, because the sulcal patterns of identical twins are not identical (Bartley et al. 1993;
Lohmann et al. 1999; White et al. 2002); (d) the boundaries of cytoarchitectonic areas don’t
coincide exactly with gyral boundaries (Rademacher et al. 2001; Zilles et al. 2002) and (e)
sulcal analysis is labor intensive and without standard quantitative or qualitative assessment
methods.

Approaches to measurement
The earliest attempt to develop standard methods for assessment of cortical morphology in
imaging studies was the cortical parcellation method developed at Massachusetts General
Hospital (Caviness et al. 1996; Kennedy et al. 1998; Rademacher et al. 1993). This method
was developed on a sample of 20 individuals. Because of the wide variation in sulcal
branching patterns, an elaborate set of guidelines was developed for identifying boundaries
of areas designed to be roughly equivalent to Brodmann areas. Application of these
guidelines greatly improved inter-rater reliability because of the elimination of subjective
decisions. It is possible, however, that treating inter-subject variation in sulcal patterns as
noise to be eliminated might reduce the usefulness of this method for genetic investigations.
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The cortical parcellation method is by far the most detailed, theoretically and anatomically
well-grounded method currently available. Recent improvements in the software have
enabled the automated parcellation of images, given that scans are of sufficiently high
quality (Fischl et al. 2002). Never the less, it has not proved as popular as voxel-based
morphometry (VBM). The VBM method eliminates local information about sulcal form by
representing brains as maps of gray matter intensities registered to a representative template.
This method is fully automated and thus perfectly reliable (Ashburner & Friston 2000; Good
et al. 2001; Wilke et al. 2004). It is becoming the standard technique used in imaging studies
of genetic variation (Belton et al. 2003; Free et al. 2003; Reiss et al. 2004). As in the case of
cortical parcellation, there is the chance that eliminating information about sulcal variation
may eliminate important genetic or functionally important variance (Eckert et al. 2005).

One way of attempting to deal with the problem of sulcal variation is to develop metrics
such as gyrification and complexity as global indicators of curvature. An early method,
developed by the Zilles group (Zilles et al. 1988), created a ratio between surface and hidden
cortex. An automated measure of complexity has been developed at University of California
at Los Angeles (UCLA) (Narr et al. 2004), where the analysis is performed on hemispheres
warped to manually identified sulci. Both methods hold promise as indicators of genetically
based variance in cortical morphology.

The methods described above treat variation in each sulcal region as a continuous variable,
even though many brains have missing and duplicated sulci that do not easily fit into such a
scheme. An alternate but considerably more tedious approach is to categorize the presence
of branches, sulci and interruptions. The modern bible for this technique reports results on
20 brains examined at post-mortem (Ono et al. 1990). Quantitative data on frequency and
location of sulcal branches in the left and right hemisphere are reported for all lobes, but the
post-mortem examination made it impractical to obtain measurements of length or volume.
More sizable databases have been used in imaging studies of variation in sulcal patterns
focused on one sulcus or region (Ide et al. 1999; Leonard et al. 1998; Naidich et al. 1995;
Paus et al. 1996; Witelson & Kigar 1992; Yousry et al. 1997). There is a pressing need to
develop methods for assessing sulcal patterns that utilize information about normal variation
in the general population.

Sylvian fissure classification
One reason that a study of normal variation is needed is that quantitative differences in
volumetric measurements of a particular region may reflect underlying differences in the
frequency of qualitatively different structures rather than normal variation around a single
mean. In the case of planar asymmetry, qualitative variants in parietotemporal morphology
are associated with Sylvian fissures of different length (Steinmetz et al. 1990) as shown in
Fig. 5. Briefly, the most frequent Sylvian fissure type (type 1) in both the left and the right
hemisphere has both a horizontal branch (planum temporale) forming the superior surface of
the superior temporal sulcus and a vertical branch (planum parietale) ascending into the
supramarginal gyrus. In the left hemisphere, the most frequent variants are horizontal
branches that extend posterior to the supramarginal gyrus into the angular gyrus (type 3) or
fissures that lack a vertical branch altogether (type 2). In the right hemisphere, types 2 and 3
are rare. The most frequent variant (type 4) lacks a horizontal branch, because the vertical
branch rises directly posterior to the central sulcus, anterior to the supramarginal gyrus.
Witelson and Kigar have observed the same left/right differences in fissure type (Witelson &
Kigar 1992). In the Witelson and Kigar scheme, type 1 is called HV because of the presence
of both horizontal and vertical branches, type 2 is called type H because of the absence of a
vertical branch (more common in the left hemisphere) and type 4 is called V, because of the
absence of a horizontal branch (more common in the right hemisphere).
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Possible cognitive associations of missing planum temporale
These qualitative differences in branching pattern may underlie the population bias toward
leftward planar asymmetry. It is possible that associations between cognitive, genetic and
anatomical measures might be stronger if qualitative differences in Sylvian fissure
morphology were taken into account. For example, there is anecdotal evidence that the
absence of a planum temporale can be associated with the unusual combination of verbal
deficits and higher mathematical talent that characterize some gifted individuals who
struggle in primary school (West 1997). During our studies, we have encountered type 4
fissures in the right hemisphere of two successful dyslexic individuals who reported being
told they might be mentally retarded during childhood (Chiarello et al. 2004b; Leonard et al.
1993) as well as in a child with severe word-finding difficulties (Linda Lombardino,
unpublished data). A type V formation was seen, bilaterally, in two individuals with
dyslexia diagnosed in adulthood, who were highly successful academic physicians in fields
emphasizing visuospatial skills (Leonard et al. 1993). Witelson subsequently reported the
same bilateral absence of plana temporale in Einstein (Witelson et al. 1999), a gifted
mathematical thinker with a self-reported poor memory for words and inability to learn
foreign languages (two frequent characteristics of dyslexia) (Hoffman & Dukas 1972).

Because both type V and type 4 fissures are associated with an enlarged posterior parietal
lobe (due to the foreshortened Sylvian fissure and parietal operculum), these anecdotal data
are consistent with the view that the posterior parietal lobe plays a special role in
mathematical processing (Garcia-Orza et al. 2003). In addition, a recent report found that
girls with a chromosomal abnormality that causes arithmetic deficits (Turner’s syndrome)
have specific abnormalities in the major sulcus of the posterior parietal lobe, the intraparietal
sulcus (Molko et al. 2003). The idea that an enlarged posterior parietal lobe may contain
genetically coded sulcal variants that are associated with a heightened ability to visualize
complex mathematical relationships is intriguing.

Cortical cognitive syndromes?
The evidence presented above suggests the possibility that there may be cortical cognitive
syndromes – clusters of cognitive and developmental symptoms that are associated with
particular constellations of cortical morphology. In the field of dysmorphology, a number of
craniofacial syndromes associated with mental retardation turned out to have a simple
genetic basis (McKusick & Amberger 1994). The success of the syndrome approach in that
field suggests it might be a promising strategy for identifying genetic cognitive links more
broadly.

At present, the evidence that sulcal variants are linked to cognitive variation is still limited.
Because individuals with a particular genetic syndrome or complex behavioral disorder vary
on many different cognitive dimensions, it is not surprising that there are few replicated
studies and many conflicting findings (Billingsley et al. 2003; Clark & Plante 1998;
Hiemenz & Hynd 2000; Kikinis et al. 1994; Leonard et al. 1993; 2001; Levitt et al. 2003).
Recently, however, two separate groups have reported a diminished frequency of the
paracingulate sulcus in the left hemisphere in schizophrenia (Le Provost et al. 2003; Yucel et
al. 2002). This replicated finding is especially interesting, because paracingulate activation
is associated with the generation of verbal output (Crosson et al. 1999), and its size is
associated with variation in cognitive ability (Fornito et al. 2004). A missing paracingulate
sulcus may be associated with a particular cognitive syndrome that is sometimes co-morbid
with schizophrenia, rather than with schizophrenia, itself.
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The origin of sulcal patterns
How does variation in sulcal patterning arise? Although many early investigators attributed
the folds to simple mechanical folding of overgrown cortex into the constrained space
provided by the skull, skull bone position is responsive to brain growth and need not provide
a constraining environment (Welker 1990). The strong consistency between the sulcal
morphology of species within orders where individual size varies dramatically (such as lions
and house cats) seems unlikely to be a result of simple mechanical folding. Welker
maintains that ‘intertaxon differences in gyral sulcal pattern of organization reflect
fundamental taxonomic differences in the number, diversity, relative size, spatial
organization and connectivity patterns of cortical areas’ (p. 105). He also proposed that
individual differences in gyral patterns were, like fingerprints, genetically determined and
suggested a variety of experimental approaches to determining the mechanisms and
significance of sulcal folding.

A number of different lines of evidence suggest that the size and location of gyri and sulci
may be determined by their axonal connections. A study of human fetal development
demonstrated that sulcal invaginations occurred in cortical regions that overlay thinning in
the subplate (Kostovic & Rakic 1990). Because the subplate serves as the staging ground for
fiber entry into cortex, Kostovic and Rakic proposed that ‘the pattern of cerebral
convolutions depends on the relative amount and orientation of axonal bundles that lie
below the cortical plate’ (p. 467). We have preliminary evidence in support of this
hypothesis. Figure 6 shows the fiber trajectories from the posterior superior temporal gyrus
in two individuals with different Sylvian fissure morphology in the right hemisphere. The
fibers shown in blue come from an individual with symmetrical plana temporale and type
HV fissures in each hemisphere. As can be seen, there are fibers projecting to the frontal
lobe in both hemispheres. The individual whose fibers are plotted in yellow has a type V
fissure in the right hemisphere. In this individual, there are no fibers projecting from the
superior temporal gyrus to the frontal lobe in the right hemisphere. In such a case, the
parietal lobe projections to the frontal lobe would have less competition from temporal lobe
input. Such differences in fiber connections may underlie the superior visual spatial or
mathematical abilities seen in individuals with type V and type 4 fissures.

A relationship between connectivity and sulcal patterning is also suggested by the fact that
peak activation loci are eight times more likely to be found in the fundi of sulci than would
be expected on the basis of chance (Markowitsch & Tulving 1994). The location and shape
of sulcal folds may provide important information about the constituents of functional
networks. The dependence of sulcal location on fiber connections is also suggested by the
finding that extra sulci appear in visual cortex after neonatal frontal or retinal damage
(Dehay et al. 1996; Goldman & Galkin 1978; Rakic 1991). It may be relevant that computer
simulations suggest that the arrangement of cortical areas is the one that minimizes the total
volume of connecting axons (Klyachko & Stevens 2003).

Van Essen has suggested that sulcal folds may be produced during development by the
tension arising from competition between distant and local fiber connections (Van Essen
1997). The idea that the pattern of axonal connectivity determines the size and shape of
cortical sulci could be tested by diffusion tensor-imaging studies that assessed the
covariation of fiber directionality and sulcal morphology between individuals (such as the
example shown in Fig. 6). It would be interesting to know if variation in expression of
molecules that guide fiber in growth (Bolz et al. 2004; Sestan et al. 2001) is related to the
temporal course of sulcal ontogenesis. This question could be investigated in ferrets, a
species with consistent sulcal patterning (Smart & McSherry 1986a, 1986b).
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Genetic studies of cortical morphology
There are a few imaging studies of the effect of mutations in genes for transcription and
neurotrophic factors and guidance molecules on human cortical morphology. One early
study found that resistance to thyroid hormone caused by a mutation in the thyroid receptor
gene was associated with an elevated incidence of a duplication of primary auditory cortex
(duplicated Heschl’s gyrus) (Leonard et al. 1995) that is also seen in dyslexia (Leonard et al.
1993; 2001). The effect of thyroid resistance on brain morphology was limited to boys, and
there have been no further studies investigating the relationship between thyroid hormone
and sulcal morphology. An interaction between early developmental insults and sex is
frequently found and needs to be further explored (Barr et al. 2004; Collinson et al. 2003;
Johns et al. 2002).

Two studies of Williams syndrome, a genetic deletion syndrome associated with severe
deficits in visual spatial perception relative to language, have found that the central sulcus
extends less dorsally (Galaburda et al. 2001; Jackowski & Schultz 2005). Even more
intriguing, the frequency of a type 2 Sylvian fissure is increased in the right hemisphere in
this syndrome (Thompson et al. 2005). In this fissure type, which is rarely seen in the right
hemisphere of normal individuals, the temporal lobe is enlarged at the expense of the
parietal lobe. Poor visual spatial ability in Williams syndrome may be associated with the
diminished size of the parietal lobe.

Another promising research line has been opened up by the study of mutations in genes
involved in neural development. For example, different types of mutations in PAX6, a
highly conserved, developmentally regulated gene, are associated with different types of
abnormal morphology in the occipital and temporal cortex (Free et al. 2003; Mitchell et al.
2003). Parallel studies are investigating the possible cognitive consequences of these
neurodevelopmental alterations (Bamiou et al. 2004). A search should be made for
functional polymorphisms in the genes that regulate cortical arealization (Funatsu et al.
2004; Nakagawa et al. 1999; O’Leary & Nakagawa 2002) and cerebral and behavioral
asymmetry (Liang et al. 2000; Raya & Izpisua Belmonte 2004; Rogers 2000) during early
development. The study of genes that are differentially expressed in humans and
chimpanzees might also prove illuminating (Caceres et al. 2003; Khaitovich et al. 2004;
Watanabe et al. 2004).

New methods for analyzing cortical variation
The preceding sections have briefly reviewed the evidence linking genes, cortical variation
and cognitive function. This review suggested that interpretation of these studies depends on
the availability of quantitative information about normal cortical variation. It seems clear
that both traditional manual methods of analysis and the newer automated methods are
inappropriate for this task. Traditional methods are too time consuming and unreliable,
while VBM does not preserve information about sulcal variation. Fortunately, some new
automated or semi automated methods have recently become available.

BrainVisa, a suite of programs and visualization tools available at http://www.brainvisa.info/
may be particularly suited for this study (Mangin et al. 2004; Riviere et al. 2002). The key to
this system is the authors’ novel solution to the problem of sulcal branching and
interruptions. The standard approach to sulcal variability has been to make arbitrary
decisions about boundaries, in an attempt to establish canonical formations (Caviness et al.
1996) or comparable subdivisions for subsequent warping (Sowell et al. 1999; Van Essen et
al. 2001). The French group’s approach is quite different. They hypothesize that the major
sulci are composed of a variable number of primitives or ‘sulcal roots’ that start to appear in
the fifth month of fetal development (Chi et al. 1977; Garel et al. 2003; Levine & Barnes
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1999). These sulcal roots persist in the adult brain as the deepest parts of the cortical folds.
Reasoning that these sulcal roots might be more consistent in location and appearance than
more superficial regions, these investigators used neural network techniques to assign
experts to each root and each pair of adjacent roots (Riviere et al. 2002). These experts
compete with each other to assign labels to each sulcus. By the time the hemisphere is
finished processing, a set of numerical parameters, including volume, surface area, depth,
position and number of nodes has been generated for each sulcus. This is the only software
currently available that attempts to maintain information about variation in sulcal branches,
interruptions and position.

The first study to be published using this approach analyzed left–right asymmetries in the
superior temporal sulcus and found that interruptions persist more superficially in the left
hemisphere (Ochiai et al. 2004). Another study, in Turner’s syndrome, identified alterations
in the interparietal sulcus that were associated with inferior arithmetic ability (Molko et al.
2003). It should be noted that both these studies come from the group that developed the
software. It will be interesting to see if other groups can be as successful, because some
aspects of the application still need improvement. For example, at present, each labeled
sulcus must be individually inspected, because misidentification is fairly common, due, no
doubt, to the relatively small database used to train the network. Still, this software appears
to offer a promising approach to a here to fore intractable task of cortical analysis

Alternative freely available software has been developed by groups at Washington
University, St Louis, (Van Essen et al. 2001) http://www.brainmap.wustl.edu/resources/ and
Harvard (Fischl et al. 2002) http://www.surfer.nmr.mgh.harvard.edu/. These approaches
differ from that of BrainVisa in that the goal is to register all brains to a common space to
produce flat maps of the cortex resembling a Mercator projection. It is to be hoped that
comparative studies will be performed using several different software approaches to
determine the problems for which each is most appropriate.

Summary
The genome and cognome are separated by complex developmental pathways. This article
has argued for the use of anatomical morphology as an intermediate phenotype, because it is
plausibly linked to both cognitive function and genetic mechanisms. This argument is
strengthened by a growing number of studies that have demonstrated altered cortical
morphology in genetic syndromes affecting cognitive function (Belton et al. 2003; Free et al.
2003; Galaburda et al. 2001; Reiss et al. 2004) as well as associated with allelic variants in
the normal population (Pezawas et al. 2004). A serious impediment to the search for genetic
associations with anatomy is the present lack of quantitative information about the range of
normal variation in cortical patterns. Recent improvements in automated software should
facilitate the collection of such information.

Future directions
The decoding of the human genome has provided a powerful new tool – the examination of
genetic polymorphisms that contribute to variation in brain development. The effects of
these genes on many different dimensions of brain development are known in animals
(mainly rodents). For example, a complex network of transcription factors and secreted
molecules regulates the development of regional identity in the cortex (Bishop et al. 2000;
Fukuchi-Shimogori & Grove 2001). Growing evidence suggests that mutations in the genes
for some of these molecules affect the shape and size of cortical sulci in the human. It is now
possible to generate reasonable hypotheses about links between neurotrophic factors,
guidance molecules, sulcal development and adaptive function. Large, longitudinal, family-
based studies will be needed to investigate the relationship between allelic variants in these
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genes, neural differences in cortical morphology and cognitive development. It may be
valuable to attempt to document the occurrence of cortical cognitive syndromes in which
clusters of cognitive and morphological characteristics are associated, shifting attention from
a one-time snapshot of behavioral performance to the case history approach that has proven
so powerful in the identification of the genetic syndromes associated with mental retardation
(McKusick & Amberger 1994). These new paradigms may allow a biologically based
approach to the understanding of cognitive and behavioral variation.
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Figure 1. The statistical relationship between reading comprehension and brain volume (means
and standard errors)
Individuals from a magnetic resonance-imaging archive of normal individuals and patients
with schizophrenia and a range of learning disabilities were classified on the basis of their
reading comprehension scores as measured by the Woodcock–Johnson Test of Passage
Comprehension (Woodcock & Johnson 1989). Individuals with below average reading
comprehension are more likely to have below average brain volume than individuals with
above average reading comprehension, although there is extensive individual variability
(Pearson r = 0.31, P < 0.0001). Asterisks indicate that mean value is significantly different
from zero (P < 0.05).
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Figure 2. The statistical relationship between reading comprehension and Sylvian fissure
asymmetry (means and standard errors) in the same individuals as shown in Fig. 1
Measurements of Heschl’s gyrus, the planum temporale and the planum parietale were
added together to create an index of Sylvian fissure length. Individuals with poor reading
comprehension are more likely to have rightward asymmetry (r > l), while individuals with
superior reading comprehension are more likely to have extreme leftward asymmetry (L »
R) (Pearson r = 0.21, P < 0.005). The three means on the right are statistically different from
zero (P < 0.0001).
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Figure 3. The concordance between brain volumes in 27 pairs of male monozygotic twins studied
by Eckert et al. (2001)
Although there is a very high correlation between brain volumes in twin 1 and twin 2
(Pearson r = 0.94, P < 0.001), the graph on the left shows two clusters. The values for one
group fall directly on the diagonal (perfect correlation), while those in the other group are
more discrepant and fall below the diagonal. On the right, it can be seen that there are 11
pairs with volume discrepancies of less than 1%, while the 16 other pairs have discrepancies
ranging up to 7%. Because twins with smaller brain volumes have larger discrepancies
(Pearson r = 0.46, P < 0.05), it appears that adverse events in the uterus may both lower
brain volume and decrease concordance.
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Figure 4. Left: in the 11 twin pairs with concordant brain volumes (discrepancies < 1%), there is
a significant relationship between left planum length in twin 1 and twin 2
Right: in the 16 twin pairs with discrepant brain volumes, there is no relationship between
left planum length in twin 1 and twin 2. The fact that both brain volume and planar length
are discrepant in the same twin pairs suggests that intrauterine events have interfered with
the genetic program of brain development.
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Figure 5. Four hemispheres from right-handed adult males demonstrating the four Sylvian
fissure types of Steinmetz and colleagues (Steinmetz et al. 1990)
The horizontal black arrow shows how the size of the parietal operculum varies with fissure
type. The length of the planum temporale varies with operculum size, because it lies
inferiorly to the operculum on the lower bank of the Sylvian fissure (blue). Type 1, where a
single postcentral sulcus (yellow) descends between the central sulcus (in red at anterior tip
of arrow) and the posterior ascending ramus of the Sylvian fissure (blue), is the most
common in both the left and right hemisphere. Types 2 and 3 are more common in the left
hemisphere (LH: 33%, RH: 3%), while type 4, in which the planum temporale is very short
because the Sylvian fissure merges with the postcentral sulcus, is more common in the right
hemisphere (LH: 3%, RH: 14%) (Steinmetz et al. 1990). Type 4 fissures are associated with
a relatively enlarged posterior parietal lobe due to the absence of temporal lobe posterior to
the postcentral sulcus. Brain scans were automatically processed and labeled with
BrainVisa© (Riviere et al. 2002).
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Figure 6. The fiber trajectories obtained from bilateral seeds in the posterior superior temporal
gyrus (T) of diffusion weighted scans from two individuals with different Sylvian fissure
morphology in the right hemisphere (R)
Fiber trajectories have been superimposed on an axial high-resolution magnetic resonance
image. Blue fibers come from an individual with symmetrical plana temporale, i.e. type HV
fissures in each hemisphere (blue arrows on the right top image show the boundaries of the
planum temporale in this individual). Fibers project to the frontal lobe (F) in both
hemispheres. Yellow fibers come from an individual with a type V fissure on the right. The
yellow arrowheads in the right lower image mark the posterior boundary of Heschl’s gyrus
(H) which coincides with the posterior boundary of the Sylvian fissure, because there is no
planum temporale. There are no fibers projecting to the frontal lobe from this region in the
right hemisphere of this individual.
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Table 1

Means and standard deviations for demographic and anatomical variables in the four diagnostic groups
comprising the magnetic resonance-imaging archive

Adult S Children LLD

n (M/F) 66/6 37/9 59/43 72/38

Age 33 13 41 (10) 9.4 (1.7) 12.3 (4.9)

Parental SES 40 (11) 40 (14) 46 (12) 39 (13)

Dextrality 0.73 (0.36) 0.51 (0.59) 0.67 (0.46) 0.70 (0.44)

Reading comprehension 116 (14) 92 (15) 112 (15) 95 (18)

Cerebral volume 0.34 (1.0) −0.12 (1.2) 0.06 (0.95) −0.13 (1.1)

Sylvian fissure asymmetry 0.13 (0.21) 0.13 (0.16) 0.10 (0.20) 0.09 (0.20)

M, male; F, female; S, Schizophrenia; LLD, language-learning disorders; SES, socioeconomic status.

Parental socioeconomic status measured with the Hollingshead four factor scale (available for 213 participants) (Hollingshead 1975); Dextrality
was measured with a modified Edinburgh questionnaire (1 is completely right handed, −1, completely left handed) (Briggs & Nebes 1974);
Reading comprehension was measured with the Passage Comprehension subtest from the Woodcock–Johnson Achievement Test Battery
(Woodcock & Johnson 1989). Cerebral volume was normalized for sex differences using data from a normal sample of brains from our archive.
The Sylvian fissure measurement was derived by adding together surface area measurements of all structures found in the posterior Sylvian fissure:
the planum temporale, planum parietale and Heschl’s gyri. The coefficient of asymmetry was calculated according to the standard formula (left −
right)/[(left + right/2]. This asymmetry was significantly greater than 0 in each of the diagnostic groups (paired test, t > 4.5, P < 0.0001).
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Table 2

The results of multiple regression analyses to identify the relative contributions of diagnosis and reading
comprehension (a marker of verbal ability) on individual differences in demographic and anatomical variables.
The results demonstrate that ability differences within, rather than across, diagnoses explain anatomical,
handedness and SES differences among individuals

Overall Diagnostic group Reading comprehension

F (4,325) (p) F (p) F (p)

Age 217.7 (0.0001) 290.2 (.0001) 0.94 (NS)

Parental SES 8.05 (0.0001) 2.53 (NS) 17.0 (0.0001)

Dextrality 2.89 (0.05) 1.77 (NS) 4.22 (0.05)

Cerebral volume 9.56 (0.0001) 0.75 (NS) 27.1 (0.0001)

Sylvian fissure asymmetry 4.32 (0.001) 1.6 (NS) 16.7 (0.0001)

Multiple regression analysis performed to determine the relative contribution of diagnostic and ability differences to SES, dextrality and anatomy
was performed with PC-SAS (SAS 2002).
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