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Abstract
An imbalance in the redox-state of the brain may be part of the underlying pathophysiology in
schizophrenia. Inflammatory mediators, such as IL-6, which can tip the redox balance into a pro-
oxidant state, have been consistently found to be altered in schizophrenia patients. However, the
relationship of altered redox-state to altered brain functions observed in the disease has been
unclear. Recent data from a pharmacological model of schizophrenia suggest that redox and
inflammatory imbalances may be directly linked to the pathophysiology of the disease by
alterations in fast-spiking interneurons. Repetitive adult-exposure to the NMDA-R antagonist
ketamine increases the levels of the proinflammatory cytokine interleukin-6 in brain which,
through activation of the superoxide-producing enzyme NADPH-oxidase (Nox2), leads to the loss
of the GABAergic phenotype of PV-interneurons and to decreased inhibitory activity in prefrontal
cortex. This effect is not observed after a single exposure to ketamine, suggesting that the first
exposure to the NMDA-R antagonist primes the brain such that deleterious effects on PV-
interneurons appear upon repetitive exposures. The effects of activation of the IL-6/Nox2 pathway
on the PV-interneuronal system are reversible in the adult brain, but permanent in the developing
cortex. The slow development of PV-interneurons, while essential for shaping of neuronal circuits
during postnatal brain development, increases their vulnerability to deleterious insults that can
permanently affect their maturational process. Thus, in individuals with genetic predisposition, the
persistent activation of the IL-6/Nox2 pathway may be an environmental factor that tips the redox-
balance leading to schizophrenia symptoms in late adolescence and early adulthood.

Keywords
redox; parvalbumin; fast-spiking; gamma oscillations; GABAergic; Interleukin-6; NADPH
oxidase; schizophrenia

Introduction
The pathophysiology of schizophrenia is complex and involves many different cortical and
subcortical systems. In particular, fast-spiking parvalbumin (PV)-positive inhibitory
neurons, which represent 5% of all cortical neurons, are strongly affected. Reduced
expression of GAD67, the main isoform synthesizing GABA in brain, is one of the most
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replicated findings in schizophrenia post mortem brain studies (Benes and Berretta, 2001;
Lewis et al., 2005), and single nucleotide polymorphisms in the regulatory region of Gad1
(the gene coding for GAD67) are associated with childhood onset of schizophrenia
(Rapoport et al., 2005). The decrease in GAD67 occurs primarily in the subset of inhibitory
interneurons expressing the calcium binding protein parvalbumin (Beasley and Reynolds,
1997; Hashimoto et al., 2003). This apparent “loss of GABAergic phenotype” in PV-
interneurons led to the suggestion that dysfunction of these fast-spiking inhibitory
interneurons may be a core feature of the disease (Lewis et al., 2005). Whether these
deficiencies are a consequence or a cause of the disorder is, however, a matter of debate.

PV-interneurons are involved in the generation of gamma oscillations, which regulate
working memory and information transmission between cortical areas (Salinas and
Sejnowski, 2001; Bartos et al., 2007). In particular, synaptic inhibition from PV-
interneurons controls the firing rates of pyramidal neurons, synchronizes spikes within
populations of neurons, and participates in the development of executive functions
associated with prefrontal brain regions (Kawaguchi and Kubota, 1993; Goldman-Rakic,
1999; Markram et al., 2004). PV-interneurons are a part of the network that generates
oscillatory activity in the gamma range (Sohal et al., 2009; Cardin et al., 2009), suggesting
that their dysfunction may account for the disruption in evoked gamma-frequency
oscillations and as well as the cognitive deficits observed in schizophrenia (Gonzalez-
Burgos and Lewis, 2008; Roopun et al., 2008; Uhlhaas et al., 2008).

Adult levels of executive function emerge relatively late in the postnatal development of
primates (Alexander and Goldman, 1978) and probably of rodents (Bachevalier and
Beauregard, 1993; Ba and Seri, 1995). In primates and rodents, the delay in achieving
mature performance on executive function tasks correlates with the maturation of oscillatory
activity in the gamma range and with the maturation of PV-interneuronal networks (Wilson
et al., 1994; Rao et al., 2000; Doischer et al., 2008; Uhlhaas et al., 2009), consistent with the
delayed maturation of PV-inhibitory circuits. Development of PV-synaptic contacts, which
sculpt this inhibitory network throughout childhood and adolescence, is dependent on
GAD67 synthesis and activity in rodents (Chattopadhyaya et al., 2007). Environmental
insults affecting the development of this inhibitory network, e. g. by affecting GAD67
expression, may lead to the abnormal formation of synaptic contacts by these interneurons.
Thus, the dependence on GAD67 expression could make the developing brain vulnerable to
environmental inputs that through disruption of the normal development of this inhibitory
circuit lead to psychiatric diseases in adulthood.

The NMDA receptor antagonist model of schizophrenia
Several animal models recapitulating aspects (endophenotypes) of schizophrenia have been
developed. Among these, exposure to NMDA receptor (NMDA-R) antagonists such as
phencyclidine (PCP), ketamine, and MK801 are widely used in adult animals as acute
pharmacological models to study behavioral and neurochemical disruptions relevant to the
disease (rev. in (Mouri et al., 2007)). Administration of PCP to rodents produces deficits in
spatial working memory, in reversal learning, and in sustained attention (Jentsch and Roth,
1999; Stefani and Moghaddam, 2005b). Similarly, ketamine can impair performance on
tasks testing executive function in humans (Krystal et al., 2005) and non-human primates
(Stoet and Snyder, 2006), resembling executive functioning deficits that are associated with
treatment-refractory aspects of schizophrenia (Kerns et al., 2008).

At the neurochemical level, acute exposure to NMDA-R antagonists in adulthood increases
excitatory transmission in frontal and anterior cingulate cortex across species (Takahata and
Moghaddam, 2003). This hyper-excitation has been related to an increase in thalamo-
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cortical glutamatergic excitation of downstream cortical regions such as the anterior
cingulate and retrosplenial cortices (Tomitaka et al., 2000; Holcomb et al., 2005). PET scan
studies have shown that schizophrenic subjects respond to ketamine with higher
hypermetabolism than normal subjects. Even under resting conditions schizophrenia patients
show altered activity in the prefrontal cortex (PFC) and parahippocampal regions (Garrity et
al., 2007) and suffer from persistent symptoms and chronic deficiency in their cognitive
ability.

Although acute exposures to NMDA-R antagonists can produce some symptoms of
schizophrenia in healthy subjects, these are transient and disappear after washout of the
drug. Repetitive NMDA-R antagonist treatment in animals produce more persistent effects
on stereotypy and locomotor activity, as well as enduring cognitive deficits and
neurochemical changes that resemble more accurately the alterations observed in
schizophrenia (Jentsch and Roth, 1999; Morris et al., 2005; Mouri et al., 2007). For
example, the initial hypermetabolism, observed after acute NMDA-R antagonist exposure, is
followed by a decrease in metabolic activity in the PFC, as well as within structures of the
auditory system, and the reticular nucleus of the thalamus (Cochran et al., 2003). Repetitive
PCP decreases dopamine in the dorsolateral prefrontal cortex, prelimbic cortex, and
cingulate cortex, but not in supplementary motor area (Jentsch and Roth, 1999). This
regimen also elicits alterations in N-acetylaspartate (NAA) and N-acetylaspartylglutamate
(NAAG) in temporal cortex and hippocampus (Reynolds et al., 2005), and decreases 5HT2A
receptor binding in the PFC (Steward et al., 2004) in close similarity to schizophrenia
pathology (Laruelle et al., 1993; Nudmamud et al., 2003). Furthermore, while the behavioral
and neurochemical effects of acute exposures to NMDA-R antagonists are believed to occur
upon disinhibition of cortical excitatory activity due to increased sensitivity of inhibitory
systems to blockade of NMDA-R function (Olney et al., 1999; Homayoun and Moghaddam,
2007; Lisman et al., 2008; Middleton et al., 2008), they do not lead to the enduring changes
in PV-interneurons observed in schizophrenia. Repetitive exposures to NMDA-R
antagonists, on the other hand, produce a reduction in GAD67 expression in PV-
interneurons of rodents (Behrens et al., 2007, 2008) as well as decreased expression of
parvalbumin in rodents and non-human primates (Cochran et al., 2002; Keilhoff et al., 2004;
Rujescu et al., 2006; Morrow et al., 2007).

The role of superoxide in the persistent effects of NMDA-R antagonists
Although exposure to one injection of the NMDA-R antagonist ketamine does not lead to
the loss of GABAergic phenotype of PV-interneurons, injections of ketamine on two
consecutive days is sufficient to produce this loss (Behrens et al., 2008). Similar exposures
to ketamine in rats lead to an enduring decrease of inhibitory tone in prefrontal cortex
(Zhang et al., 2008), supporting the idea that repetitive exposures to NMDA-R antagonists
produce enduring effects resembling those observed in schizophrenia.

The repetitive, but not acute, exposure to NMDA-R antagonists disinhibited excitatory
circuits and activated the superoxide producing enzyme NADPH oxidase-2 (Nox2) in three
week old primary cortical neurons as well as in adult brain. Furthermore, the inhibition of
Nox2 with apocynin or eliminating superoxide with a brain-penetrant SOD-mimetic
prevented the loss of phenotype of PV-interneurons in vitro and in vivo, and the ketamine
effects were absent in Nox2-deficient animals (Behrens et al., 2007, 2008). Exposure to PCP
and more selective NMDA-R antagonists such as MK801 and CPP were shown to produce a
rapid increase in reactive oxygen- and nitrogen-species (ROS) in vitro (Xia et al., 2002), and
in vivo (Zuo et al., 2007; Fejgin et al., 2008) and repetitive exposures in vivo led to a
substantial elevation of baseline levels of free radicals, suggesting that this treatment results
in a persistent change in the oxidative state of the cortex (Zuo et al., 2007). Interestingly,
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recent results have shown that NMDA receptor activity is required for the expression of
antioxidant enzymes (Papadia et al., 2008), further supporting the idea that prolonged
blockade of NMDA receptors produces an increased oxidative state.

Several studies have reported increased oxidative and nitrosative state, as well as a
diminished antioxidant capacity in schizophrenia patients (reviewed in Do et al., 2009).
Glutathione (GSH), responsible for detoxification of reactive oxygen and other radical
species, is consistently decreased in cerebrospinal fluid of drug-naïve schizophrenia patients
(Do et al., 2000), as well as in postmortem tissue (Yao et al., 2006). Polymorphisms in genes
coding for enzymes that participate in GSH synthesis have been linked to schizophrenia risk
(Tosic et al., 2006; Gysin et al., 2007), and acute frontal-brain GSH depletion in adult
rodents was recently shown to produce disruptions in short-term memory, supporting the
link between depletion of brain GSH levels and cognitive impairments that occur in
schizophrenia (Pileblad et al., 1989; Jacobsen et al., 2005; Dean et al., 2009). Moreover,
acute GSH depletion potentiates the release of dopamine produced by amphetamine in
striatum and potentiates the behavioral effects of NMDA-R antagonists as a well as those of
amphetamine (Jacobsen et al., 2005). Cysteine, the limiting substrate in the synthesis GSH
in neurons, is transported from the extracellular space by the main glutamate transporter
present in neurons, EAAC1 (Aoyama et al., 2006). EAAC1 as well as EAAC2 have been
shown to be highly sensitive to oxidative conditions: reducing agents activate, and oxidation
inactivates glutamate transport (Trotti et al., 1997). Thus, the increased superoxide
production caused by activation of the IL-6/Nox2 pathway after exposure to NMDA-R
antagonists would be expected to produce the redox inactivation of EAAC1 and a decrease
in cysteine transport, leading to diminished GSH content in brain. If such activation of the
IL-6/Nox2 pathway occurs in situations of genetically diminished brain-GSH levels, such as
those described in some schizophrenia cohorts, it will lead to further decrease in GSH levels,
NMDA-R hypofunction and increased oxidative damage to macromolecules and lipids (Do
et al., 2009). Recent results showing that treatment with N-acetyl-cysteine, a precursor of
GSH, improves negative symptoms, and corrects mismatch negativity in schizophrenia
patients further support the idea of a redox imbalance in schizophrenia (Berk et al., 2008;
Lavoie et al., 2008).

Mechanism of activation of Nox2 in neurons
One of the most consistent findings in schizophrenia patients is an imbalance in plasma and
cerebrospinal fluid levels of cytokines (Muller et al., 2000). In particular, elevated plasma
levels of IL-6 have been consistently reported in patients and first-degree relatives with
mood disorders (Ganguli et al., 1994; Naudin et al., 1996; Nunes et al., 2005), and correlate
with exacerbation of psychotic episodes (Ganguli et al., 1994; Naudin et al., 1996; Lin et al.,
1998; Zhang et al., 2002; Kudoh et al., 2003; Nunes et al., 2005). Furthermore, treatment
with atypical antipsychotics can alter circulating cytokines (Pollmacher et al., 2000). The
increased levels of cytokines in schizophrenia patients, together with the important role
played by Nox2-dependent NADPH oxidase in inflammatory processes outside the CNS
suggests the possible involvement of proinflammatory molecules in the effects of NMDA-R
antagonists.

Prolonged exposure to ketamine in vitro or repetitive exposures in vivo increased the levels
of IL-6 mRNA, without affecting the levels of IL-1β or TNFα mRNAs (Behrens et al.,
2008). Furthermore, brain IL-6 production is necessary and sufficient to produce the
induction and activation of Nox2, and the consequent loss of the GABAergic phenotype of
PV interneurons (Behrens et al., 2008). Interestingly, increased activity of Nox2 was shown
in neutrophils isolated from schizophrenia patients, which correlated with negative
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symptoms (Sirota et al., 2003), suggesting that the increased IL-6 levels in schizophrenia
patients may also lead to induction of the peripheral enzyme.

However, although the effects of repetitive exposures to NMDA-R antagonist resemble
more accurately the dysfunction of PV-interneurons observed in schizophrenia patients,
these effects are slowly reversible in both the in vitro and in vivo models, requiring 48 h in
culture (Kinney et al., 2006) or several days in the absence of drug in vivo (Behrens et al.,
2008). Thus, although causing persistent effects, repetitive adult exposures to NMDA-R
antagonists do not produce the irreversible changes in inhibitory circuitry observed in
schizophrenia.

Neurodevelopmental origins of schizophrenia: Activation of the IL-6/Nox2
pathway may alter the development of PV-interneurons

Mild developmental impairments caused either by a genetic predisposition or by immune
activation during development are believed to contribute to the appearance of schizophrenic
symptoms in early adulthood (Rapoport et al., 2005). There is a strong correlation between
infections in mid-gestation and the incidence of schizophrenia in the offspring (reviewed in
(Brown, 2006; Patterson, 2008). Cytokine induction due to abnormal immune activation, or
inflammation, derails normal brain development leading to alterations in cognition in
adulthood (Gilmore and Jarskog, 1997; Nawa et al., 2000; Smith et al., 2007). Recently,
using a rodent maternal infection model Smith and collaborators found that maternal IL-6
induction during infection is responsible for the delayed schizophrenia-like behavior
observed in the adult offspring (Smith et al., 2007). A lasting imbalance in cytokine levels
was observed in the offspring throughout the first month of age. Since activation of the IL-6/
Nox2 pathway and consequent increase in superoxide production in brain is required for the
reversible loss of phenotype of PV-interneurons in adulthood (Behrens et al., 2008),
activation of this pathway may be responsible for the delayed effects observed in the
maternal-infection model of schizophrenia. Furthermore, decreased antioxidant capacity
during early postnatal period induce cognitive derangements relevant to schizophrenia, as
well as a decreased number of PV-interneurons in adulthood (Cabungcal et al., 2007).

Several neurodevelopmental models of schizophrenia converge on a sustained dysfunction
of the PV-interneuronal system occurring during late prenatal/early postnatal development.
Studies in the maternal infection model, the DISC1 model, and prenatal exposure to
methylazoxymethanol acetate (MAM), have shown that alterations of brain development
during specific periods of pre or postnatal development produce discrete disruptions that
lead to behavioral and neurochemical effects that include a decreased number of PV-
interneurons (Hikida et al., 2007; Lodge and Grace, 2007; Meyer et al., 2007; Lodge et al.,
2009). In the MAM model, where the mitotoxin is applied during interneuronal
proliferation/migration stage, the number of PV-interneurons decreased in specific brain
regions that correlated with alterations in oscillatory activity and decreased lateral inhibition
in adulthood (Lodge et al., 2009).

In rodents and primates, maturation of the PV-interneuronal system occurs postnatally
(reviewed in (Lewis et al., 2004; Huang, 2009)). Studies performed in rodents show that
migration from the medial ganglionic eminence to the cortical plate is complete by around
embryonic day 15, but the neurons remain silent until the beginning of the second postnatal
week when their maturation begins. Before the first week of age, parvalbumin expression is
absent in these neurons, but appears when volleys of excitatory activity arrive from thalamo-
cortical projections during the second postnatal week. Further maturation of PV-interneuron
synaptic contacts develops independently of thalamic inputs and reaches adult levels by the
end of the first month of age (Di Cristo et al., 2004). A recent study in mouse cortex showed
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pronounced transcriptional and electrophysiological changes in PV-interneurons occurring
during the first month of postnatal development (Okaty et al., 2009). Profound changes in
the ion- channel repertoire expressed at different time-points during the first postnatal month
shape the electrophysiological maturation required to attain the characteristic fast-spiking
non-accommodating current patterns observed in adulthood. Oscillatory activity in the
gamma range also begins during this second postnatal week, and matures throughout the
following weeks to reach adult levels by the end of the adolescent period (Doischer et al.,
2008). In non-human primates, the appearance of parvalbumin expression and development
of PV-synaptic contacts begins at around 3 months of age, and develops profusely
throughout childhood and adolescence (Reynolds and Beasley 2001; Cruz et al., 2003).
During adolescence, however, the restructuring and pruning of synaptic contacts reduces the
levels to those found in adulthood (Cruz et al., 2003). Cortical neural synchrony and
cognitive performance also show a protracted maturation in humans, reaching mature levels
only in early adulthood after a period of decreased cognitive performance and synchrony
during adolescence (Uhlhaas et al., 2009). The profound reorganization of synaptic activity
that occurs during adolescence could be responsible for the significant reductions in phase
synchronization observed. The emergence of psychotic symptoms in schizophrenia during
late adolescence/early adulthood could be a consequence of this reorganization process in
compromised inhibitory networks (Feinberg 1982).

The pro-psychotic effects of NMDA-R antagonists appear only in early adulthood and
exposure of four week old rats to ketamine on two consecutive days did not reduce GAD67
immunoreactivity (Zhang et al., 2008). However, 24 h continuous exposure of three week
old cultured neurons to ketamine produces a substantial reduction in GAD67
immunoreactivity (Kinney et al, 2006). These results suggest that PV-interneurons are more
resistant to the effects of NMDA-R antagonists during the rodent equivalent to the
adolescence period in humans. The overwhelming proliferation of PV-synaptic contacts
observed before adolescence (Cruz et al., 2003), as well as the slow functional maturation of
PV-inhibitory network (Doischer et al., 2008; Okaty et al., 2009) may explain the lack of
pro-psychotic effects of NMDA-R antagonists before early adulthood. However, hormonal
influences or changes in receptor-expression patterns (Okaty et al,. 2009) and changes in
response to modulatory neurotransmitters (Tseng and O'Donnell, 2007) that occur during
adolescence could also explain the lack of pro-psychotic effects of NMDA-R antagonists.

In contrast to the reversible effects observed in adult animals (Behrens et al., 2008),
embryonic and repetitive exposures during the second postnatal week to NMDA-R
antagonists can produce loss of PV-interneurons and persistent behavioral and
neurochemical deficits that appear only in adulthood (Stefani and Moghaddam, 2005a;
Mouri et al., 2007; Wang et al., 2008). Mice expressing 10% of the normal NMDA-R
activity develop cognitive disruptions resembling those found in schizophrenia (reviewed in
(Gainetdinov et al., 2001)). Ablation of NR1 subunits in GABAergic neurons during early
postnatal development leads to a loss of parvalbumin expression in PV-interneurons in
adulthood and to behavioral disruptions reminiscent to those found in schizophrenia
(Belforte et al., 2008). Taken together, these results support the idea of a critical role for
NMDA-R function in the postnatal maturation of PV-interneurons, and raise a note of
caution in the use of anesthetics with demonstrated NMDA-R antagonist activity in children.

Ketamine, although not approved for use in humans less than 17 years of age, is commonly
used as an anesthetic in children (Mellon et al., 2007). Ketamine and other NMDA-R
antagonists cause neurodegeneration in the developing brain in rodents and primates (Olney,
2002; Wang and Slikker, 2008). Although the doses used in these experiments are higher
relative to those used in humans, repetitive subanesthetic doses, by activating the IL-6/Nox2
pathway in brain, may halt the maturation process of PV-interneurons and lead to a
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permanent dysfunction of cognitive processes. This is supported by the finding that
antioxidants applied during perinatal exposure to NMDA-R antagonists prevent the
development of behavioral disruptions (Wang et al., 2003), and that Nox2-deficient mice are
protected from the decrease in PV-interneurons observed in animals that were exposed to
NMDA-R antagonists during the second postnatal week (Shehktman and Behrens,
unpublished).

Glutamate receptors and the GABAergic phenotype of PV-Interneurons
In common with other glutamatergic synapses, glutamate preferentially activates AMPA-
type glutamate receptors in mature PV-interneurons. However, unlike receptors on
pyramidal neurons, AMPA receptors on PV-interneurons do not express GluR2 subunits,
making them highly Ca2+ permeable (Goldberg et al., 2003). Regarding group 1
metabotropic glutamate receptors, cortical and hippocampal PV-interneurons preferentially
express mGluR5 (Cauli et al., 1997; van Hooft et al., 2000). On the other hand, NMDA-Rs
in PV-interneurons have a subunit composition that differs from neighboring pyramidal
neurons, with NR2A and NR2C subunits being highly expressed (Kinney et al., 2006; Xi et
al., 2009). NMDA-Rs exert a tight control of the basal excitability in PV-interneurons, and
are highly sensitive to NMDA-R antagonists (Grunze et al., 1996; Li et al., 2002; Middleton
et al., 2008). Given this composition of glutamate receptors, it is expected that glutamatergic
transmission in PV-interneurons will be substantially different than transmission in
pyramidal neurons.

Blockade of NMDA-Rs during the third week of development in culture leads to the loss of
the GABAergic phenotype of PV-interneurons, and this loss can be prevented by strategies
that increase intracellular calcium levels (Kinney et al., 2006). As noted above, PV-
interneurons express GluR2-less AMPA receptors and are permeable to Ca2+. Since the
initial disinhibition caused by the NMDA-R antagonists lead to an increase in excitatory
transmission, it would be expected that AMPA receptors in PV-interneurons would
permeate enough Ca2+ to prevent the deleterious effects of blockade of NMDA-Rs.
Furthermore, the increase in excitatory transmission caused by disinhibition should activate
group I metabotropic glutamate receptors present in PV-interneurons and also lead to
increases in intracellular Ca2+, now through release from intracellular stores. However, co-
exposure to a calcium-channel opener or an activator of group I metabotropic receptors was
needed to preserve the GABAergic phenotype of PV-interneurons in the presence of
NMDA-R antagonists (Kinney et al., 2006). This lack of response of AMPA and mGluR5
receptors to the increased excitatory transmission after disinhibition led to the hypothesis
that prolonged blockade of NMDA-Rs in PV-interneurons results in an enduring change in
AMPA and mGluR5-mediated responses to glutamate (Behrens et al., 2007).

What is the difference between PV-interneurons and pyramidal neurons that makes the
former so sensitive to NMDA-R antagonists? Perhaps the specific subunit composition of
the glutamate receptor in PV-interneurons is responsible. NMDA-Rs containing NR2C
subunits have a reduced Mg2+ block, and consequently may be highly sensitive to ambient
glutamate concentrations. Under normal physiological conditions Mg2+ concentrations are
high enough to block NR2A/B-containing receptors, whereas NR2C and NR2D containing
receptors will not show such blockade. Recent evidence shows that at physiological Mg2+

concentrations NMDA-R antagonists such as ketamine or memantine have negligible
inhibitory effects on NR2A or NR2B containing receptors, whereas their inhibitory effects
on NR2C or NR2D containing receptors remain unaltered (Kotermanski and Johnson, 2009).
Thus, since NMDA-Rs in PV-interneurons contain higher levels of NR2A and NR2C
receptors, antagonists such as ketamine would have stronger effects in these interneurons
than on pyramidal neurons. In the presence of NMDA-R antagonists, lack of function of
NR2A/NR2C containing receptors in PV-interneurons may then lead to profound changes in
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the function of this inhibitory system. Indeed, repetitive exposure to MK801 in vivo was
recently shown to decrease the expression of NMDA-R subunits in PV-interneurons in the
prefrontal cortex of rats (Xi et al., 2009). Interestingly, the NR2C subunit decreased most
(~87 fold) after treatment.

Redox dysregulation of NMDA-R mediated transmission in PV-interneurons
Inactivation of synaptic proteins through oxidation is a well described phenomenon, and
considered to be behind many of the derangements of the nervous system observed in
disease states (Rowan et al., 2005; Butterfield, 2006; Satoh and Lipton, 2007). Regulatory
redox sites have been found in many proteins that are key to glutamatergic
neurotransmission including, serine-racemase that is responsible for the synthesis of the
endogenous modulator of the glycine site in NMDA receptors (Mustafa et al., 2007);
glutamine synthase that is responsible for glutamate synthesis (Pinteaux et al., 1996); as well
as the excitatory amino acid transporters that together with glutamine synthase are involved
in the regulation of extraneuronal levels of glutamate (Volterra et al., 1994). Last, but not
least, the NMDA receptor itself is highly sensitive to redox modulation through a redox-
sensitive site (Herin and Aizenman, 2004), and decreases in the main antioxidant in brain,
GSH, or reduced activity of GSH-peroxidase lead to oxidized hypofunctional NMDA-Rs
(Jiang et al., 2000; Steullet et al., 2006). In particular, receptors composed of NR1:NR2A
subunits were shown to have a highly reversible and rapid current potentiation by sulfhydryl
redox agents, including GSH, acting on a specific redox site in NR2A (Kohr et al., 1994).
The oxidation status of this redox site can affect the regulation of these receptors by
spermine and protons, as well as the inhibition mediated by the high-affinity Zn2+ site
(Lipton et al., 2002). On the other hand, oxidation of receptors containing NR2C is slowly
reversible (Kohr et al., 1994). Given this heightened response to oxidative conditions,
NMDA-R function in PV-interneurons may remain blocked when the IL-6/Nox2 pathway is
activated, and this could lead to the enduring changes we observed in the phenotype of PV-
interneurons in adult animals (Behrens et al., 2007, 2008). The less oxidizing conditions
produced by inactivation of the IL-6/Nox2 pathway upon drug washout would then slowly
reverse these effects.

Under normal physiological conditions the brain maintains a physiological range of
superoxide production that is required for normal nervous system function. Perturbations of
superoxide levels in either direction are associated with impaired LTP, altered glutamatergic
neurotransmission, and poorer cognitive performance (Kishida and Klann, 2007). Thus, it
could be assumed that the effects of transient activation of the IL-6/Nox2 pathway may be a
consequence of normal regulatory mechanisms in brain, where brief activation of the
pathway does not lead to enduring effects on inhibitory circuits. Indeed, this is what is
observed 24 h after one injection of NMDA-R antagonists (Figure 1a and Zuo et al., 2007;
Behrens et al., 2008). Repetitive exposures in adulthood, however, through disinhibition-
induced activation of the IL-6/Nox2 pathway induce an enduring, albeit reversible,
dysfunction of the PV-interneuronal system (Figure 1b).

Although the effects of activation of the IL-6/Nox2 pathway appear to be reversible in the
adult brain, similar exposures during the second postnatal week produce an irreversible loss
of PV-interneurons (Wang et al., 2008 and our unpublished results). GAD67 expression is
required for the correct development of PV-synaptic contacts during postnatal development
(Chattopadhyaya et al., 2007) and NMDA-R antagonists decrease the expression of this
enzyme in PV-interneurons (Kinney at el., 2006, Behrens et al., 2007, 2008). Thus, it is
possible that the decreased expression of GAD67 caused by NMDA-R antagonists during
the second week of postnatal development could halt the maturational of PV-interneurons,
profoundly affecting the development of this critical inhibitory system (Figure 1c). This
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would impair the development of cortical networks involved in gamma frequency generation
and synchrony, and could eventually lead to the cognitive dysfunctions observed in
schizophrenia. These effects should be more pronounced in at risk individuals that show
diminished antioxidant defenses, as suggested for schizophrenia patients carrying specific
single nucleotide polymorphisms in genes coding for the enzymes involved in GSH
synthesis (reviewed in Do et al., 2009).

Summary
The evidence reviewed here points toward a precipitating oxidative period early in the
development of PV-interneurons that, after a cascade of compensatory changes to other
neurons, may leave the cortex in a highly vulnerable state. This may account for the long
delay before the symptoms of schizophrenia appear in early adulthood, when synaptic
reorganization, hormonal changes and environmental stresses could tip the balance toward
the dysregulation of cortical circuits (Figure 1). Only a few of the molecular mechanisms
that might be responsible for this long chain of events have been uncovered so far. In
particular the activation of Nox2 by IL-6 may trigger the oxidation of the NMDA-R on PV
interneurons during the critical period of their maturation, leading to the permanent
downregulation of GABAergic transmission by these interneurons. Critical experiments to
test this hypothesis in vivo are underway.
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Figure 1. Schematic representation of the effects of activation of the IL-6/Nox2 pathway on the
PV-interneuronal system in the adult and perinatal brain
a) PV-interneuronal networks, through feedforward inhibition, control cortical output and
generate oscillatory synchrony in the adult brain. b) In the adult brain, the initial
disinhibition (increased glutamate) caused by repetitive exposures to sub-anesthetic
concentrations of NMDA-R antagonists (i.e. ketamine) leads to the sustained activation of
the IL-6/Nox2 pathway. The superoxide thus produced tips the redox balance in brain,
leading to the reversible loss of GABAergic phenotype of PV-interneurons. c) If the
activation of the IL-6/Nox2 pathway is triggered by repetitive exposure to NMDA-R
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antagonists during the maturation of PV-interneuronal networks, it produces irreversible loss
of PV-interneurons and permanent dysfunction of the PV-interneuronal system in adulthood.
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