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Abstract

Background: Immunodeficient persons with persistent vaccine-related poliovirus infection may
serve as a potential reservoir for reintroduction of polioviruses after wild poliovirus eradication,
posing a risk of their further circulation in inadequately immunized populations.

Methods: To estimate the potential for vaccine-related poliovirus persistence among HIV-infected
persons, we studied poliovirus excretion following vaccination among children at an orphanage in
Kenya. For 12 months after national immunization days, we collected serial stool specimens from
orphanage residents aged <5 years at enrollment and recorded their HIV status and demographic,
clinical, immunological, and immunization data. To detect and characterize isolated polioviruses and
non-polio enteroviruses (NPEV), we used viral culture, typing and intratypic differentiation of
isolates by PCR, ELISA, and nucleic acid sequencing. Long-term persistence was defined as shedding
for > 6 months.

Results: Twenty-four children (I5 HIV-infected, 9 HIV-uninfected) were enrolled, and 255
specimens (170 from HIV-infected, 85 from HIV-uninfected) were collected. All HIV-infected
children had mildly or moderately symptomatic HIV-disease and moderate-to-severe
immunosuppression. Fifteen participants shed vaccine-related polioviruses, and 22 shed NPEV at
some point during the study period. Of 46 poliovirus-positive specimens, 31 were from HIV-
infected, and |15 from HIV-uninfected children. No participant shed polioviruses for > 6 months.
Genomic sequencing of poliovirus isolates did not reveal any genetic evidence of long-term
shedding. There was no long-term shedding of NPEV.

Conclusion: The results indicate that mildly to moderately symptomatic HIV-infected children
retain the ability to clear enteroviruses, including vaccine-related poliovirus. Larger studies are
needed to confirm and generalize these findings.
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Background

With progress toward eradication of poliovirus circulation
in most countries of the world, discussions are underway
on vaccination policies in the post-eradication era [1,2].
Following polio eradication, paralytic poliomyelitis from
poliovirus will only occur as a result of the continued use
of the live oral poliovirus vaccine (OPV). This includes
vaccine-associated paralytic poliomyelitis (VAPP), which
occurs at a very low rate wherever OPV is used, as well as
poliomyelitis associated with vaccine-derived poliovi-
ruses (VDPV) [1,3-8]. The potential for VDPV persistence
and circulation is one of several critical risks to be consid-
ered when developing strategies for stopping polio vacci-
nation after global eradication of wild polioviruses [2].

Immunodeficient persons with persistent vaccine-related
poliovirus infection may serve as a potential reservoir for
reintroduction of polioviruses into the general population
after wild poliovirus eradication, posing a risk of their fur-
ther circulation in inadequately immunized populations.
Chronic enterovirus persistence and increased risk of
VAPP among immunodeficient persons with B-cell and
combined deficiencies are well documented [9,10].
Chronic VDPV persistence has been documented for per-
sons with certain defects of antibody production [1,2,8],
but little is known about poliovirus persistence among
human immunodeficiency virus (HIV)-infected persons.

Two studies reported that HIV-positive children were
more likely to be infected with enteroviruses than healthy
children [11,12], and in one of them, enterovirus excre-
tion by an HIV-positive child for up to 6 months was
observed [12]. One study described a case of chronic
enterovirus meningoencephalitis in an HIV-infected
adult, successfully treated with pleconaril [13]. However,
other studies found no evidence of prolonged or more
severe enterovirus infections among HIV-infected persons
[14,15]. Also, available data do not support the increased
risk or severity of wild or vaccine-associated poliomyelitis
in HIV-infected individuals. OPV immunization of HIV-
infected children results in protective, although somewhat
lower, antibody titers compared with HIV-uninfected chil-
dren, with a comparable low rate of adverse events in both
groups [16,17]. OPV is accepted by the World Health
Organization (WHO) as safe and immunogenic in HIV-
infected persons [18,19] and is widely used in countries
with large HIV-infected populations. Only two cases of
VAPP in HIV-infected patients have been reported
[20,21]. However, because of the large numbers of HIV-
infected persons in developing countries exposed to OPV,
and the serious public health implications of potential
long-term VPDV persistence, the risk of the vaccine-
related poliovirus persistence among HIV-infected per-
sons needs to be evaluated.

http://www.biomedcentral.com/1471-2334/9/136

To estimate the potential for vaccine-related poliovirus
persistence among immunodeficient persons, we con-
ducted this study of HIV-infected children in Kenya.

Methods

Study population

We conducted a prospective study of persistence of vac-
cine-related poliovirus and non-polio enteroviruses
(NPEV) among children who lived in a small orphanage
for HIV-infected children in Nairobi, Kenya. The orphan-
age (capacity, 40-45 children) admits only children aged
<5 years who test seropositive for HIV. At the orphanage,
children receive adequate nutrition and medical care,
including immunizations. Anti-retroviral treatment was
not routinely available at the time the study was con-
ducted.

By reviewing medical records at the orphanage, we identi-
fied each child's HIV status and obtained demographic,
clinical, and immunization data. Final HIV infection sta-
tus of the participants was assigned at the time of follow-
up in November-December 2000, when all the study par-
ticipants were aged >18 months. Children who had
reverted to seronegative were classified as HIV-uninfected
and served as the control group. Clinical categories and
immunologic status of HIV-infected children were
assigned according to the 1994 Revised Classification Sys-
tem for HIV Infection in Children <13 years of age from
the Centers for Disease Control and Prevention (CDC)
[22]. The age-specific criteria of the degree of immunosup-
pression defined by CDC are the following: 1) no evi-
dence of immunosuppression - age <12 months: CD4+
count > 1500, and/or CD4% > 25%; age 1-5 years: CD4+
count > 1000 and/or CD4+% > 25%; 2) moderate immu-
nosuppression - age <12 months: CD4+ count 750-1499,
and/or CD4% 15-24%; age 1-5 years: CD4+ count 500-
999 and/or CD4+% 15-24%; 3) severe immunosuppres-
sion - age <12 months: CD4+ count <750, and/or CD4%
<15%; age 1-5 years: CD4+ count <500 and/or CD4+%
15% [22]. The dates of the last OPV exposure were defined
as the date of the second round of the national immuni-
sation days (NIDs) for those who did not receive routine
OPV doses after study enrollment, or as the most recent
immunization date prior to each specimen collection for
children who received routine OPV after study enroll-
ment.

Specimen collection

We collected serial stool specimens for 12 months after
the 1998 NIDs (during September 1998-Agust, 1999)
from children residing at the orphanage who were <5
years of age at the time of enrollment. The intervals
between specimen collections ranged from 5 days to 4
weeks.
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Laboratory analysis

Stool specimens were stored at -20°C at the Kenya Medi-
cal Research Institute (KEMRI), Nairobi, and transported
on dry ice to the CDC Polio and Picornavirus Laboratory
(Atlanta, GA) for testing. Viral culture, typing and intra-
typic differentiation of isolates by PCR and ELISA [23,24],
and nucleic acid sequencing of the VP1 gene (~900 nucle-
otides) [7] were used to determine the type of poliovirus
and the degree of its relatedness to the prototype Sabin
strains. Selected poliovirus isolates were screened by PCR
to detect recombination with other polioviruses or NPEV,
and some isolates underwent complete genomic sequenc-
ing [25,26]. Phylogenetic relationships among the isolates
were inferred by using the neighbor-joining algorithm
(PHYLIP: Phylogeny Inference Package, version 3.57, Uni-
versity of Washington, Seattle, WA). NPEV detected by
virus isolation were identified by sequencing a portion of
the VP1 gene [27,28]. Long-term persistence was defined
as shedding of vaccine-related poliovirus or the same sero-
type of NPEV for > 6 months.

Blood specimens for lymphocyte subset analysis were
obtained from each participant at least once during the
study period and were tested for CD3, CD4, and CD8
antigens at the HIV laboratory, KEMRI, by flow cytometric
analysis using monoclonal antibodies.

The study protocol was approved by the Institutional
Review Boards of CDC and KEMRI.

Results

Study enroliment

We enrolled 24 children (Table 1 and Additional file 1:
Table S1), all of whom were HIV-seropositive at the time
of their admission to the orphanage. Fourteen children

Table I: The results of viral culture of stool specimens from children
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were enrolled in September, 1998, immediately after the
NIDs, and 10 children who were admitted to the orphan-
age after the NIDs, were enrolled 3 to 6 months later. In
accordance with CDC criteria, 15 of these were confirmed
to be HIV-infected, while 9 children reverted to seronega-
tive status and were therefore reclassified as HIV-unin-
fected. Median age at enrollment was 30 months (range,
5-52) for HIV-infected children and 12 months (range,
4-30) for those in the HIV-uninfected group. All HIV-
infected children had clinically manifested disease rang-
ing from mildly symptomatic (category A) (3 children) to
moderately symptomatic (category B) (12 children) [22].
All 15 HIV-infected children were immunocompromised:
eight had moderate and seven had severe immunosup-
pression according to CDC age-specific criteria [22]. None
of the HIV-uninfected children in the study had any clini-
cal or immunologic evidence of immunosuppression.
Two HIV-infected children died from conditions related
to their HIV infection in 2000, prior to the follow-up con-
ducted later that year.

Routine OPV immunization history was documented for
13 children. All had received three or four OPV doses. For
two additional children, having received 3 doses of OPV
was noted but vaccination dates were not given. Five (2
HIV-infected, 3 HIV-uninfected) children received routine
doses of OPV vaccine during the enrollment period. As
reported by the orphanage staff, all study participants who
resided at the orphanage as of August, 1998, received two
supplemental doses of OPV during NIDs (on August 8
and September 12, 1998). However, in accordance with
local practice and WHO guidelines, these doses were not
documented in their medical records. The medical record
review showed that no illnesses were recorded for any of
the children during the period immediately preceding the

at an orphanage in Kenya, by HIV-status

Parameters

Total, n (%)

HIV(+), n (%) HIV(-), n (%)

Children in the study 24 (100.0) 15 (100.0) 9 (100.0)
Children with > | specimen positive for:

Polioviruses 15 (62.5) 10 (66.7) 5 (55.6)

NPEVa 22 (91.7) I1(93.3) 8 (88.9)

Other virusesb 5(20.8) 2 (13.3) 3(33.3)

Specimens 255 (100.0) 170 (100.0) 85 (100.0)
Specimens positive for:

Any virus 126 (49.4) 78 (45.9) 48 (56.25)
Polioviruses 46 (18.0) 31 (18.2) 15 (17.26)
NPEV 77 (30.2) 48 (28.2) 29 (34.1)
Other viruses 8 (3.1) 3(1.78) 5(5.79)

Specimens with no viruses isolated 129 (50.6) 92 (54.1) 37 (43.5)

2NPEV, non-polio enteroviruses. NPEV serotypes included coxsackieviruses A4 (n = [8), Al6 (n = I), and A24 (n = 7); echoviruses 2 (n = 1), 4 (n

=15), 12 (n =3), 17 (n = 6), and 25 (n = 10); and enteroviruses 80 (n = 12)
b The viruses other than enteroviruses have not been further characterized.
There were no statistically significant differences between HIV-positive and

and 99 (n = 4).

HIV-negative groups.
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immunization rounds that could potentially have been a
contraindication to the receipt of supplemental doses of
OPV during NIDs.

A total of 255 stool specimens were obtained, 170 from
HIV-infected children (median 13 per child, range 6-15)
and 85 from HIV-uninfected children (median 8 per
child, range 7-12). Specimens were collected for a median
of 11 months (range, 5-12) for HIV-infected children and
8 months (range, 7-12) for the HIV-uninfected children.

Virus isolation

All children in the study had positive viral culture results
at some point during the study period. Of the 126 positive
specimens, 78 were from HIV-infected and 48 were from
HIV-uninfected children. The detailed results of viral cul-
ture of stool specimens by HIV status are presented in
Table 1 and Additional file 1: Table S1.

All poliovirus isolates from study participants were vac-
cine-related. Type 1 poliovirus was detected in 26 speci-
mens (including 18 specimens from HIV-infected
children), type 2 in 12 specimens (7 from HIV-infected
children), and type 3 in 14 specimens (8 from HIV-
infected). More than one poliovirus type was present in
five specimens (2 from HIV-infected). Fourteen children
had more than one specimen positive for poliovirus (9
HIV-infected and 5 HIV-uninfected). There were no signif-
icant differences in the distribution of poliovirus sero-
types between the HIV-infected and HIV-uninfected
groups.

NPEVs representing 10 different serotypes were detected
in 77 specimens (including 48 specimens from HIV-
infected children) (Table 1 and Additional file 1: Table S1;
GenBank accession numbers GQ176161-GQ176237).
The most frequently detected serotypes were coxsackievi-
rus A4 and echovirus 4 (detected in 18 and 15 specimens,
respectively); four other serotypes were detected in five or
more specimens. Twenty NPEV-positive children (12 HIV-
infected and 8 HIV-uninfected) had more than one speci-
men positive for NPEV. The number of NPEV-positive
specimens per child throughout the entire study period
ranged from 1 to 6 per child (median, 4), and each NPEV-
positive child had up to six different serotypes isolated at
different times. There were multiple introductions of
NPEV into the orphanage with subsequent apparent
spread of the same serotype to other children. Of the 77
NPEV detections, 65 were associated with new infections
(42 in HIV-infected and 23 in HIV-uninfected children),
and 12 (5 in HIV-infected and 7 in HIV-uninfected chil-
dren) reflected continuous shedding after the initial infec-
tion. There were no significant differences in prevalence of
NPEV shedding by HIV status (Chi-square, p > 0.05; Table
1) or by age (29.8% for children who were <24 months-
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old at the time of specimen collection versus 29.3% for
children who were >24 months of age; Chi-square, p >
0.05).

Duration of shedding

There was no virologic evidence of prolonged poliovirus
or NPEV shedding in study participants. Polioviruses were
not detected in any of the specimens obtained > 6 months
after the last OPV dose, and none of the children had
more than two consecutive specimens positive for the
same NPEV serotype. The median interval between the
first and last poliovirus-positive specimen was 50 days
(range, 48-142) for the seven HIV-infected and 57 days
(range, 34-115) for the three HIV-uninfected children.
Children known to have received routine doses of OPV
during the study period or who had only one poliovirus-
positive sample were excluded from this analysis.

The HIV-infected child with the 142-day interval between
the first and last poliovirus-positive specimens (partici-
pant F) had 14 specimens collected. Vaccine-related polio-
virus type 1 was detected in three of the four specimens
obtained between days 3 and 58 after the second round of
NIDs. After that time, the child stopped shedding type 1
virus and three of the four specimens collected between
days 82 and 142 were positive for vaccine-related poliovi-
rus type 2. The subsequent six specimens were negative.
This child, aged 45 months at enrollment, was severely
immunocompromised [CD4+ cells ranged between 298
(16%) and 548 (18%)] and had clinical category B AIDS.
She had received three doses of OPV in 1996, two years
prior to the enrolment in the present study (Additional
file 1: Table S1).

The HIV-uninfected child who shed polioviruses over 115
days (participant J) was admitted to the orphanage after
the 1998 NIDs. She was enrolled into the study at the age
of 4 months and had seven stool specimens collected over
6 months. The first specimen was positive for all three
types of polioviruses; the second, obtained 27 days later
was negative; the third, collected 58 days after the first
specimen, contained polio vaccine virus type 1; two sub-
sequent specimens, collected at 87 and 115 days, con-
tained polio vaccine virus type 3. The last two specimens
were positive for two different NPEV (enterovirus 80 and
coxsackievirus A4). The child's medical record noted she
that had received 3 OPV doses, but the dates were not
recorded (Additional file 1: Table S1).

Genetic characterization of poliovirus isolates

All of the poliovirus isolates appeared "Sabin-like" in the
ELISA intratypic differentiation tests, indicating the lack of
any major antigenic changes. The viruses were sequenced
to measure the degree of genetic relatedness of isolated
polioviruses compared to the prototype Sabin strains. We
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sequenced the VP1 gene of isolates (n = 30) from children
with unknown vaccination history, as well as selected iso-
lates from other participants. Of these, 18 isolates were
type 1 (11 from HIV-infected, 7 from HIV-uninfected par-
ticipants), seven were type 2 (4 from HIV-infected, 3 from
HIV-uninfected), and six were type 3 (3 from HIV-
infected, 1 from HIV-uninfected).

For type 1 polioviruses, genomic sequences of the VP1
gene were identical or closely related to the Sabin vaccine
strains for 15 isolates, with 0 to 4 nucleotide substitutions
over the VP1 region. However, an increasing degree of
divergence was observed for three serial type 1 isolates
obtained from one child (participant A) on days 37, 51,
and 87 after the second round of NIDs, with 0.33%,
0.66%, and 0.99% divergence in VP1 sequence from the
prototype Sabin strain, respectively. The degree of diver-
gence in the last isolate approached the 1% cut-off level
defining VDPV. Complete genomic sequences of these
three isolates, however, were only 0.21%, 0.24%, and
0.42% divergent from the type 1 Sabin strain, respectively.
The PCR assays for recombination performed on these
isolates did not reveal any evidence of recombination
with other vaccine-related or wild polioviruses or NPEV.

Sabinl

Participant H

Faricipant 1
Participant J

Participant B
Faricipant
Faricipant 0
Patticipant E

Participant B

Participant K

Participant |
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The source of these isolates (participant A) was an HIV-
infected girl, aged 52 months at enrollment, with
unknown history of previous OPV vaccination (Addi-
tional file 1: Table S1). Clinically, she had category B
(moderately symptomatic) AIDS. Her medical history
prior to and during the study period included multiple
opportunistic infections, pulmonary tuberculosis, convul-
sions and petit mal seizures, and episodes of malaria. Her
CD4+ lymphocyte count was 746 (12%) 4 months after
enrollment, and 606 (13%) 9 months after enrollment.
The child remained at the orphanage at follow-up in late
2000. Of her 13 stool specimens collected over 10
months, four were positive for type 1 polio vaccine virus,
four were positive for four different NPEV (coxsackievirus
A4, echoviruses 4 and 17, and enterovirus 80), and five
were negative.

In the phylogenetic tree of the type 1 polioviruses isolated
from the study participants based on the VP1 gene
sequences (Figure 1), the isolates from participant A clus-
tered together and were distinct from the prototype Sabin
strain and from the polioviruses isolated from other study
children. All sequenced type 2 and type 3 poliovirus iso-
lates from study participants were closely related to the

Day &7 izolate

Mt 58 Cto T [=a change)
Mt 251 Gto A
Nt 524 Tte C

Mt 286 Ato G (@3 change)

Corirton Ancesfor
Mt 199 Gto A2z change) — e DK 51 isoldfe
Mt 355 Cto A M SO0 Cto T

Day 37 isolate
Mt 256 Ato G (== change)
Mt 31E Ato T (== change)
Mt 81ETto C

}

Sabin 1
E volution of the isolates from

Participant &

Poliovirus isolates from Participant A

Farticinant ©

Faricipant A (day 37)

Farticinant A {day 571)

0.001

Faricipant A (day 87)

Figure |

Phylogenetic tree of poliovirus type | isolates from study participants. Isolates from HIV-infected children are shown
in italic font. The inferred evolution of the isolates from participant A is shown in the insert. Nt, nucleotide; aa, amino acid.
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prototype Sabin strains, differing by only one or two
nucleotide substitutions. The degree of divergence in VP1
gene sequences ranged from 0 to 0.22% for type 2 isolates
and from 0 to 0.36% for type 3 isolates. The type 2 polio-
virus isolate from the last positive specimen of participant
F was only 0.22% divergent from the prototype Sabin
strain.

Discussion

In this study, we found no clinical evidence of long-term
(= 6 months based on the date of the last known dose of
OPV) persistence of vaccine-related polioviruses or NPEV
among mildly to moderately symptomatic HIV-infected
children in Kenya. In all cases, the poliovirus infections
were cleared during the observation period. The overall
patterns of excretion did not differ by HIV status.

There are very few reports exploring poliovirus excretion
by HIV-infected persons. These studies did not reveal pro-
longed excretion of vaccine-related poliovirus by HIV-
infected adults [15,29,30] or children [30]. In one study
[31] three HIV-infected children from South Africa were
found to be shedding vaccine-related polioviruses in spec-
imens obtained between 15 and 42 months after the last
known dose of OPV, suggesting possible long-term per-
sistence. However, subsequent molecular studies showed
that for all three cases, the divergence of nucleotide
sequences in the VP1 region was 0.3% to 0.6% [32]. This
close genetic relatedness to prototype Sabin strains is not
consistent with prolonged persistence and suggests rela-
tively recent re-infection from repeated exposure to vac-
cine-related poliovirus in a country with widespread
routine OPV use. In another study, stool specimens from
two of the 11 participants who had received OPV in the
past were positive for polioviruses [12]. However, the
duration of poliovirus persistence in these cases could not
be estimated and no further characterization of the iso-
lates was attempted.

Unlike other studies which examined point prevalence of
vaccine-related poliovirus shedding in HIV-infected indi-
viduals, the prospective design and the availability of
serial specimens in this study allowed us to evaluate the
duration of viral shedding after each episode of infection
and to monitor genetic changes of poliovirus isolates over
time. In our study, the interval between the first and the
last poliovirus-positive specimens exceeded the expected
range of 2-3 months [18,33,34] for two participants.
However, none of these children shed divergent strains or
were true long-term shedders. Repeated infection from
exposure to other vaccinees at the orphanage may have
occurred in participant F, who began excreting poliovirus
type 2 after initially shedding poliovirus type 1. Close
genetic relatedness of these viruses to the prototype Sabin
strains suggests that they could not have originated from

http://www.biomedcentral.com/1471-2334/9/136

routine OPV doses received two years previously. In case
of participant J, the dates when OPV doses were given
were unavailable, but the age (4 months), recent admis-
sion to the orphanage, the mention of having received 3
OPV doses in medical record, and the pattern of shedding
suggest that this child likely had received one or more
doses of OPV immediately before or during the study
enrolment period. The very close genetic relatedness of
the isolates from this child to the prototype vaccine strains
also supports this suggestion.

In all but one instance, genetic characterization of polio-
viruses isolated from the study participants were very
closely related to the prototype Sabin strains, with <0.5%
difference in VP1 sequence, consistent with the typical
short periods of replication. This makes us confident, that
even if in some cases the infection persisted from previous
exposures, it is unlikely that the actual duration of persist-
ence would be substantially longer. Type 1 isolates from
one child (participant A) showed a higher degree of diver-
gence in the VP1 gene. However, this child was not a pro-
longed shedder, and the divergence from the prototype
strain did not result from prolonged circulation. We were
able to observe continuous pattern of relatively fast accu-
mulation of genetic changes (rate, about 0.33% nucle-
otide substitutions per month) in this strain, beginning
from 0.33% divergence (3 substitutions) and approaching
with 9 substitutions (0.99% divergence) at 3 months after
exposure, the 1% cut-off currently defining a strain as a
VDPV (annualized rate of accumulating substitutions,
~4%). In addition the virus shedding stopped in speci-
mens obtained after day 87. The degree of divergence
based on the complete genomic sequences of these iso-
lates was considerably lower (0.42% by day 87, corre-
sponding to an annualized rate of ~1.7%) than that based
on the sequences of VP1 gene only. The average rate of
~1% per year for total nucleotide substitutions for polio-
viruses in the VP1 gene region is well established [35,36].
However, with relatively short observation periods (e.g., a
few months), confidence intervals around point estimates
for the duration of persistence based on the degree of
divergence can be very wide because of the stochastic
nature of mutations. The higher rate of change can also be
attributed to the high proportion of non-synonymous
changes seen in this case (5/9; Figure 1), which may be
related to the immunological status of this child. It is
important to note that despite the frequent spread of
NPEV among study participants, there was no evidence of
poliovirus transmission from participant A to other chil-
dren at the orphanage, as type 1 poliovirus isolates from
other children were genetically distinct from her isolates
(Figure 1). The lack of evidence of recombination with
other polioviruses or NPEV is also compatible with an
observed relatively short period of replication in this case.
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The results of the present study indicate that the ability to
clear OPV and other enteroviruses is preserved in mildly
to moderately symptomatic HIV-infected children. The
lack of evidence for chronic persistence of NPEV in the
study population further strengthens this conclusion. A
number of factors could potentially influence the course
of poliovirus infection in an HIV-infected host, including
the degree of immunosuppression, previous OPV vaccina-
tion history, and patient age. However, the small sample
size, incomplete OPV exposure data for some children,
and limited clinical information prevented more detailed
analysis of these variables. As none of the HIV-infected
children in the study had category C (severely sympto-
matic) AIDS, we were unable to observe the subset of
patients with highly advanced HIV disease, who may be at
a higher risk of developing secondary defects of humoral
immunity resulting from deep T-cell impairment. How-
ever, the short life expectancy of category C patients, espe-
cially in the absence of specific antiretroviral treatment
[37], would reduce their overall potential for further
transmission of VDPVs, even in the context of persistent
infection. Also, because of the relatively high standard of
care and nutrition at the orphanage, the study participants
may not be completely representative of the general pop-
ulation of HIV-infected children in Kenya and in other
developing countries.

Conclusion

In this study, mildly to moderately symptomatic HIV-
infected children retained the ability to clear enterovi-
ruses, including vaccine-related polioviruses. These results
are reassuring as to the limited replication of poliovirus in
HIV-infected children. To fully characterize the patterns of
VDPV excretion among HIV-infected persons and to
quantify the risk of long-term VDPV replication in this
group, larger studies that cover the full range of HIV dis-
ease are needed.
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