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Abstract
A central tenet of neuroscience is that the precise patterns of connectivity among neurons in a given
brain area underlie its function. However, assigning any aspect of perception or behavior to the wiring
of local circuits has been challenging. Here, we review recent work in sensory neocortex that
demonstrates the power of identifying specific cell types when investigating the functional
organization of brain circuits. These studies indicate that knowing the identity of both the pre- and
postsynaptic cell type is key when analyzing neocortical circuits. Furthermore, identifying the circuit
organization of particular cell types in the neocortex allows the recording and manipulation of each
cell type’s activity and the direct testing of its functional role in perception and behavior.

The connectivity of local inhibitory neocortical circuits
Since the pioneering anatomical work of Ramon y Cajal, it has been clear that the neocortex
contains a diverse population of neurons. These neurons can be divided into two broad
categories, excitatory pyramidal neurons, representing the majority of neocortical neurons, and
inhibitory interneurons, representing the remaining ~20%. Each category can be further
subdivided into a number of different functional classes. Because the classification of
inhibitory neurons is more advanced than that of pyramidal cells [1], the cell-type specific
organization of inhibitory circuits within the neocortex has been most extensively studied.
These studies show that both the patterns of connectivity of inhibitory neurons and the
properties of their synaptic connections can depend on the cell type of the two synaptic partners.

Inhibitory neurons can be differentiated by a combination of anatomical, physiological and
molecular criteria. For example, the most common inhibitory neurons in the neocortex, fast-
spiking (FS) cells, are known to share a distinct overall morphology, target the somas and
proximal dendrites of their synaptic partners, exhibit a signature electrophysiological profile,
and express the protein parvalbumin [2]. Each class of inhibitory neuron shares a different
complement of these characteristics including: 1) distinctive morphologies (e.g., the
neurogliaform (NGF) cell), 2) defined target regions on their postsynaptic partners (e.g., the
axonal initial segment of pyramidal neurons by chandelier cells or the apical dendritic tuft of
pyramidal neurons by Martinotti cells), 3) different protein complements (e.g., cholecystokinin
and cannabinoid receptor type 1).

Using a combination of these properties, specific classes of inhibitory interneuron can be
identified and targeted for physiologic recording. By recording simultaneously from two
identified cells using whole-cell patch-clamp techniques, it was demonstrated that two classes
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of inhibitory neuron form cell-type specific connections with neighboring cells via both
GABAergic and electrical synapses [3,4]. These experiments showed that neighboring FS cells
are highly interconnected by GABAergic chemical synapses [3,4] while low-threshold spiking
(LTS) cells are connected with pyramids and FS cells but rarely make GABAergic synapses
onto other LTS cells [4]. Furthermore, these studies showed that neighboring FS cells connect
via electrical synapses with very high probability (>60% of tested pairs) while avoiding
neighboring non-FS cells [3,4]. Likewise, LTS cells are similarly interconnected via gap
junctions while avoiding non-LTS cells [4] (see Fig. 1). Moreover, pairs of FS cells in adult
animals are highly connected via electrical synapses [5], demonstrating that electrical coupling
is not restricted to the immature neocortex.

These specific patterns of connectivity among different classes of inhibitory neuron
demonstrate the importance of identifying cell types when trying to understand the organization
of local neocortical circuits. Electrical coupling among FS cells and LTS cells is very common.
However, because electrical coupling is mainly found among cells of the same type, and each
population represents only a small fraction of all neocortical cells, recordings from randomly
selected pairs of neocortical cells would only rarely reveal electrical connections, and the
principles governing the pattern of these connections would remain obscure. Only by targeting
these specific cell types for recording was their pattern of connectivity revealed.

Genetic labeling of specific cell types
Initially, FS and LTS cells were identified based on the appearance of the cell body and
proximal dendrites in living neocortical slices, the cells’ electrophysiological responses, and
their post-hoc morphological and immunohistochemical characterization [3,4]. The advent of
several transgenic lines of mice in which fluorescent markers label specific classes of inhibitory
neurons greatly accelerated the study of inhibitory circuits in the neocortex [6–11]. These
studies revealed a variety of patterns of GABAergic chemical connections among inhibitory
neurons. For example, although FS cells have a high probability of forming GABAergic
connections with neighboring FS cells, they avoid neighboring multipolar bursting (MB) cells
that express both parvalbumin and calbindin [8]. Neighboring FS cells also have a three-fold
higher probability of connection than neighboring cannabinoid receptor-expressing, irregular
spiking (CB1-IS) interneurons [11]. Like FS and CB1-IS cells, two types of calretinin-
containing inhibitory neurons also exhibit cell-type specific patterns of GABAergic
connections [7].

Studies of eight distinct types of GABAergic neuron revealed that all form electrical synapses
with neighboring GABAergic neurons [3,4,6–8,11–13]. The majority of these inhibitory cell
types form electrical synapses exclusively with cells of the same type, although there are some
exceptions. Neurogliaform (NGF) cells in layer 2/3 (L2/3) are extensively electrically coupled
to other NGF cells. However, they also form electrical synapses with neighboring FS cells,
although with lower probability [13]. In a similar vein, the multipolar calretinin-expressing
(MCR) GABAergic cells are electrically coupled to MB cells rather than to neighboring MCR
cells [7].

Taken together, these data demonstrate that several networks of inhibitory neurons are formed
within the neocortex by selective chemical and electrical synapses. The patterns of activity
generated in the cortex resulting from the selective connections made by different types of
inhibitory neuron are not understood. It has been suggested, for example, that neighboring FS
cells form networks via both electrical and GABAergic synapses and facilitate γ-band
oscillations (30–70 Hz) while neighboring LTS cells are interconnected via gap junctions and
can generate lower frequency oscillations (3–10 Hz) [10,14,15]. However, it is important to
note that these networks do not operate as isolated units but rather interact with pyramidal cells
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and other types of interneurons. Determining their role in shaping neocortical activity remains
an active area of research.

The local connectivity of different classes of pyramidal neuron
Pyramidal neurons are the principal neurons of the neocortex, and their excitatory synaptic
connections represent the main type of synaptic connection in the neocortex. The overall
average connection probability among pyramidal cells is relatively low [16], and several
hypotheses have been put forth on how interactions among pyramids are mediated. The
connectivity among pyramidal neurons and certain types of inhibitory neurons, including FS
cells, is high, suggesting that GABAergic neurons could mediate interactions among pyramids
[17]. Recent work has shown that high-frequency trains of action potentials initiated in a single
pyramidal cell can generate IPSPs in neighboring pyramids by recruiting local inhibitory
Martinotti neurons [18,19]. These Martinotti cells modulate the sensory responses of the apical
dendrites of layer 5 pyramids in vivo [20]. Furthermore, several lines of evidence suggest that
single action potentials in a pyramidal neuron can also elicit network activity in the neocortex
mediated by neighboring chandelier cells which paradoxically produce spikes in pyramids via
depolarizing GABAergic synapses on the initial segment [21].

Another hypothesis is that, although the average connectivity among pyramids is quite low,
the connection probability among selected classes of pyramidal neurons may actually be high.
Several lines of evidence suggest that connections among pyramidal cells form subnetworks
within the neocortex. It was shown that action potentials in layer 5 (L5) corticotectal pyramids
elicited spikes in a limited repertoire of postsynaptic neurons [22]. Simultaneous whole-cell
recordings from up to four neurons showed that once a synaptic connection has been identified
in a small group of L5 pyramids, the likelihood of finding additional connections within this
group is greater than expected from the average rate of connectivity [23,24]. Moreover, the
probability of connection between a L2/3 pyramid and a pair of L5 pyramids is higher when
the L5 cells are synaptically connected and when the L5 cells share similar firing patterns
[25,26]. Similarly, pairs of connected L2/3 pyramidal cells are more likely to share excitatory
input from L2/3 and L4 as compared with unconnected cells [27]. Furthermore, recent work
has shown that radial clones of pyramidal neurons that are developmentally descended from
the same mother cell are preferentially connected as compared to randomly selected
neighboring pyramids [28].

The local connection patterns of pyramids correlate with their long-range
targets

Unlike interneurons, the axons of pyramidal cells project both to local neighbors and to
numerous distant brain areas with distinct functional roles. A morphological analysis of local
intracortical axons showed that the local axonal trajectories of pyramidal neurons are less
tortuous than those of neocortical interneurons suggesting that local axons of pyramids may
be less selective than axons of interneurons [29]. However, the long-range projections of
pyramids are thought to be quite selective and divide pyramids into different functional classes.
Anatomical studies have demonstrated that neighboring pyramids intermingled within a single
cortical layer can have distinct long-range projections. Do the patterns of local connections
among these neighbors correlate with their patterns of long-range projections?

The projection patterns of the long-range axons of these different pyramidal cell classes can
be used to label the different functional classes by injecting a retrograde neuronal tracer into
the cells’ axonal targets. These retrogradely labeled cells can then be targeted for
electrophysiological recording in cortical slices. Using this approach, several authors have
shown that one class of pyramidal neuron can have a different probability of interconnecting
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relative to another class [30,31]. However, these findings do not necessarily imply that
excitatory connections are selective; they are also consistent with the hypothesis that the
probability of connection is a global property specific to each pyramidal cell type.

Using fluorescent beads to retrogradely label pyramids whose long-range axons targeted
different brain regions, we recently compared the probability of connection among different
classes of pyramidal neuron and demonstrated that the connectivity among neighboring
pyramids reflects the identity of both the presynaptic and postsynaptic cell type [32]. The
probability of connection of a L5 corticocortical (CC) pyramid with a neighboring L5
corticotectal (CT) pyramid was almost four-fold higher than its probability of connection with
another L5 CC pyramid (see Fig. 2). These results suggest that the local connections among
pyramids correlate with their long-range connections. Furthermore, given that each cortical
region contains many cell types with distinct long-range projections, these results suggest that
a number of different pyramidal cell networks exist within the cortex.

Cell-type specificity and Peters’ rule
One model of the organization of pyramidal cell circuits is often described as a generalization
of Peters’ rule [33,34]. Peters first suggested that geniculocortical axons synapse onto
neocortical neurons in proportion to the availability of all of the neuronal elements in the
thalamorecipient area of the neocortex [35]. Under this scheme, synaptic connections among
pyramids reflect the geometric overlap between the presynaptic axon and the postsynaptic
dendrite, or the axodendritic overlap. Recent laser scanning photostimulation of pyramids in
different layers of barrel cortex showed that, although the strength of interactions among layers
of barrel cortex correlated with the axodendritic overlap of pyramidal cells in those layers,
some notable exceptions were also identified [36]. In addition, a recent paper showed that the
dendritic structure of the postsynaptic neurons could not account for the relative strength of
different input pathways to the neocortex [37]. Using quadruple recordings among
heterogeneous populations of identified pyramids, we showed that the probability of
connection among different classes of pyramidal neuron does not solely reflect the axodendritic
overlap between pyramidal cell types [32]. Taken together, these results suggest that
axodendritic overlap alone is insufficient to describe both the strength and the patterns of
synaptic connection in the neocortex.

The synaptic properties of local neocortical circuits
Just as the connection patterns among neocortical neurons can reflect the identity of the
presynaptic and postsynaptic cell type, so can the strength and dynamics of neocortical synaptic
connections. The properties of GABAergic synapses among different types of inhibitory
neuron can vary greatly. For example, FS cell interconnections are very reliable whereas
synapses among interneurons expressing cannabinoid receptors (CB1-IS cells) are highly
unreliable [11]. Moreover, postsynaptic GABAergic responses can be mediated by GABAA
or GABAB receptors. For example, while action potentials in FS cells generate fast GABAA
responses in their postsynaptic partners, action potentials in neurogliaform (NGF) cells produce
a mixed GABAA-mediated and GABAB-mediated response in neighboring pyramids and other
inhibitory cells [38].

The properties of pyramidal cell synapses may also show cell-type specificity. For example,
the strength and dynamic properties of excitatory synaptic connections can depend on the type
of postsynaptic cell [39–41]. Furthermore, a recent paper showed that synaptic properties
correlate with the dendritic morphology of pyramidal neurons in prefrontal cortex (PFC)
[42]. The main type of pyramidal cell in the PFC is the ‘complex’ pyramid. These cells have
a much higher rate of reciprocal connections than ‘simple’ pyramids in the same region, and
these connections are strongly facilitating rather than undergoing the more typical depression
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described for pyramid-pyramid synapses [42]. Taken together, these findings indicate that both
the patterns of connectivity and the synaptic dynamics of neocortical connections show cell-
type specificity.

Future directions
Cell identification

Central to the success of the work we describe here is the concept of cell identity. Focusing on
particular cell types creates a common language among different laboratories who study
neocortical circuits. It also allows for the comparison of data across individual animals. For
example, the precise connections of an individual neuron within the brain of a single subject
could be idiosyncratic, but the patterns of connectivity among different cell types are likely to
recur across both individuals and across species. Importantly, cell type identification allows
data from in vivo and in vitro experiments to be pooled thus taking advantage of the
complementary information provided by these approaches.

Improved methods for identifying specific classes of neuron promise to greatly enhance our
ability to dissect brain circuits. To date, the few studies of pyramidal cell types have largely
relied on anatomically based methods to identify the cells. However, this approach is limited
by the large number of pyramids for which the projection patterns remain unknown [43].
Increasing our knowledge of the morphology and projection patterns of pyramidal neurons will
facilitate the analysis of the network organization of the neocortex.

This knowledge can be harnessed by viral and other approaches to express proteins in particular
subsets of neurons to probe the functional organization of the neocortex. For example, Petreanu
and colleagues recently used a variety of techniques to selectively express the light-gated cation
channel, channelrhodopsin-2 (ChR2), throughout the axonal arbor of different cortical
afferents [37]. Light was used to selectively stimulate these afferents to determine the strength
of different inputs onto L3, L5A and L5B pyramidal neurons. Rabies and herpes virus-based
vectors can be stereotaxically injected in the efferent long-range targets of pyramids to
retrogradely transport fluorescent and light-gated proteins to the desired cell bodies [44]. This
approach will allow particular subsets of pyramids to be targeted genetically (like the
corticotectal pyramid). Further refinements to these approaches, including using specific
promoters or combining these approaches with systems such as the Cre/loxP system, will allow
additional specificity of expression.

Mapping neuroanatomical descriptions of cell types onto molecular definitions and developing
appropriate transgenic mouse lines that express selected proteins (e.g. a fluorescent protein or
Cre recombinase) in subsets of pyramidal neurons will further accelerate progress in this area,
although much work will need to be done to determine or confirm the class or classes of
pyramidal neuron identified in these lines [45]. These lines can then be shared among
laboratories, forming a common platform upon which to study neocortical circuits, much like
the studies of inhibitory networks using transgenic lines of mice that express fluorescent
proteins in known subsets of inhibitory neurons.

Functional organization of the brain
A number of laboratories are working to provide a synapse-level wiring diagram of whole
brains termed the connectome [46]. To take advantage of connectome-derived information, it
will be necessary to identify the cell types whose connections are determined anatomically.
Cell type identification of a subset of interneurons may be determined based on their local
morphology (e.g., chandelier and Martinotti cells). However, the determination of pyramidal
cell types will require, in addition, reconstruction of their long-range connections. By
identifying the cell types, recurring patterns of connections can be compared across individual
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reconstructed brains. Tools for cell-type specific labeling will then allow targeted recording
from these cells to determine the physiological properties of their synaptic interactions.

Making the leap from circuits to function
Ultimately, the effort to fully describe brain circuitry will need to be mapped to the extensive
body of work on the response properties of neurons recorded in vivo. Currently, a large gap
exists between the circuit level description derived from anatomical and in vitro experiments
and the functional description developed from in vivo experiments. For example, how the
response properties of cortical sensory neurons map onto the morphological classes is still an
open question. Uncovering the circuit organization of particular cell types, as described here,
will help to provide the groundwork for detecting and manipulating each cell type’s activity
and testing the circuit’s operation in the intact brain. A number of approaches have recently
been used to identify and manipulate specific cell types in in vivo experiments, including two-
photon imaging of fluorescently tagged cells in transgenic animals [47,48], juxtacellular
recording of individual neurons followed by morphological and histological characterization
[49,50], and cell-type specific optogenetic manipulations of neural activity [14,15].

Taken together, this recent work in sensory neocortex underscores how productive marrying
anatomical and physiological approaches to brain circuitry can be. By studying the functional
connectivity of specific cell types within the neocortex, these studies have revealed recurring
patterns of connection among both inhibitory interneurons and pyramids. These studies are
laying the groundwork for manipulating each cell type’s activity and testing the circuit’s effect
on perception and behavior. Recent efforts to develop synapse-level large-scale anatomical
approaches for defining brain circuitry, as well as parallel efforts to develop similarly scaled
functional approaches, will allow us to fully exploit the potential of this approach. Combined
with a number of new genetic techniques expressing selected proteins in defined cell types,
these developments promise to accelerate our understanding of the functional organization of
the brain.
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Figure 1.
Inhibitory interneurons of the neocortex show cell-type specific patterns of GABAergic and
electrical connections. Low threshold spiking (LTS; orange) cells form GABAergic
connections with neighboring fast spiking (FS; blue) and pyramidal neurons (gray), but only
rarely synapse onto other LTS cells. FS cells, in contrast, form GABAergic connections with
neighboring FS cells as well as with LTS cells and pyramids. LTS are highly interconnected
via electrical connections as are FS (blue) cells, but each cell type rarely forms gap junctions
with other classes of inhibitory neuron.
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Figure 2.
The patterns of local connections among layer 5 pyramidal neurons reflect their long-range
axonal targets. The probability of identifying a synaptic connection from pyramids projecting
to the contralateral cortex (red) onto pyramids projecting to the ipsilateral superior colliculus
(green) is almost fourfold the probability of identifying a connection between neighboring
corticocortical pyramids.
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