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Adaptive radiation therapy �ART� is the incorporation of daily images in the radiotherapy treatment
process so that the treatment plan can be evaluated and modified to maximize the amount of
radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue.
Registration of planning images with daily images is thus an important component of ART. In this
article, the authors report their research on multiscale registration of planning computed tomogra-
phy �CT� images with daily cone beam CT �CBCT� images. The multiscale algorithm is based on
the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese �Multiscale
Model. Simul. 2�4�, pp. 554–579 �2004��. Registration is achieved by decomposing the images to
be registered into a series of scales using the �BV, L2� decomposition and initially registering the
coarsest scales of the image using a landmark-based registration algorithm. The resulting transfor-
mation is then used as a starting point to deformably register the next coarse scales with one
another. This procedure is iterated at each stage using the transformation computed by the previous
scale registration as the starting point for the current registration. The authors present the results of
studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration
method quantitatively using synthetic results in which the exact transformations our known, and
qualitatively using clinical deformations in which the exact results are not known. © 2009 Ameri-
can Association of Physicists in Medicine. �DOI: 10.1118/1.3026602�
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I. INTRODUCTION

Image registration is the process of determining the optimal
spatial transformation that brings two images into alignment
with one another. More precisely, given two images A�x� and
B�x�, image registration is the process of determining the
optimal spatial transformation � such that A�x� and B���x��
are similar. Image registration is necessary, for example, for
images taken at different times, from different perspectives,
or from different imaging devices. Applications of image
registration include image-guided radiation therapy �IGRT�,
intensity-modulated radiation therapy �IMRT�, image-guided
surgery, functional MRI analysis, and tumor detection, as
well as many nonmedical applications, such as computer vi-
sion, pattern recognition, and remotely sensed data process-
ing. See Refs. 1–4 for an overview of image registration. Our
focus in this article is registration of computed tomography
�CT� and cone beam computed tomography �CBCT� images
for image-guided radiation therapy.

IGRT is the use of patient imaging before and during
treatment to increase the accuracy and efficacy of radiation
treatment. The goals of IGRT are to increase the radiation
dose to the tumor, while minimizing the amount of healthy

tissue exposed to radiation. As imaging techniques and ex-

4 Med. Phys. 36 „1…, January 2009 0094-2405/2009/36
ternal beam radiation delivery methods have advanced, IGRT
�used in conjunction with IMRT� has become increasingly
important in treating cancer patients. Numerous clinical stud-
ies and simulations have demonstrated that such treatments
can decrease both the spread of cancer in the patient and
reduce healthy tissue complications.5–7

IGRT is typically implemented in the following way. CT
images are obtained several days or weeks prior to treatment
and are used for planning dose distributions, patient align-
ment, and radiation beam optimization. Immediately prior to
treatment, CBCT images are obtained in the treatment room
and are used to adjust the treatment parameters to maximize
the radiation dose delivered to the tumor. This enables the
practitioner to adjust the treatment plan to account for patient
movement, tumor growth or movement, and deformation of
the surrounding organs. To adjust the patient position and
radiation beam angles and intensities based on the informa-
tion provided by the CBCT images, the CBCT images must
first be registered with the planning CT images. Ideally, an
adaptive radiotherapy treatment �ART� will eventually be
implemented in which the patient alignment and/or radiation
beam angles are continuously updated in the treatment room

to maximize radiation dose to the tumor and minimize radia-
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tion to healthy tissue. Such a treatment program would re-
quire real-time multimodality registration of images obtained
during treatment with planning images obtained prior to
treatment. Thus, accurate registration of images acquired
from different machines at different times is an important
step in the adaptive treatment process.

In a conventional CT imaging system, a motorized table
moves the patient through a circular opening in the imaging
device. As the patient passes through the CT system, a source
of x rays rotates around the inside of the circular opening.
The x-ray source produces a narrow, fan-shaped beam of x
rays used to irradiate a section of the body. As x rays pass
through the body, they are absorbed or attenuated at different
levels, and image slices are reconstructed based on the at-
tenuation process. Three-dimensional images are constructed
using a series of two-dimensional slices taken around a
single axis of rotation.

In a CBCT imaging system, on the other hand, a cone-
shaped beam is rotated around the patient, acquiring images
incrementally at various angles around the patient. The re-
constructed data set is a three-dimensional image without
slice artifacts, which can then be sliced on any plane for
two-dimensional visualization. CBCT images contain low
frequency components that are not present in CT images
�similar to inhomogeneity related components in magnetic
resonance images�. One of the challenges in CT-CBCT im-
age registration is thus to account for artifacts and other com-
ponents that appear in one of the modalities but not in the
other. See Refs. 8 and 9 for a discussion of registration of CT
and CBCT images.

In Refs. 10–12, we presented a series of multiscale regis-
tration algorithms that were shown to be particularly effec-
tive for registration of noisy images. In this article, we ex-
tend our previous work to multiscale registration of CT-
CBCT images. The motivation for applying our multiscale
registration algorithm to CT-CBCT registration is that arti-
facts that appear, for example, in CBCT images but not in
CT images can be treated in a similar way as noise. More-
over, different anatomical structures in the images to be reg-
istered undergo different types of transformations, and thus
mapping of the different regions should be approached dif-
ferently. Our multiscale registration algorithm first registers
the coarse scales �such as main shapes, bones, and essential
features� of each image, and then uses finer details �such as
artifacts and noise� to iteratively refine the resulting transfor-
mation.

The structure of this article is as follows. In Sec. II, we
briefly discuss ordinary deformable and landmark-based reg-
istration algorithms and present the details of our multiscale
registration algorithm. In Sec. III, we present several ex-
amples to illustrate the accuracy of the multiscale registra-
tion technique. Section IV concludes.

II. METHODS

II.A. B-splines deformable registration

Splines-based deformable registration algorithms use a

mesh of control points in the images to be registered and a
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spline function to interpolate transformations away from
these points. The basis spline �B-spline� deformation model
has the property that the interpolation is locally controlled.
Perturbing the position of one control point affects the trans-
formation only in a neighborhood of that point, making the
B-splines model particularly useful for describing local de-
formations. The control points act as parameters of the
B-splines deformation model and the degree of nonrigid de-
formation, which can be modeled depends on the resolution
of the mesh of control points. See Refs. 13 and 14 for a
detailed description of B-splines transformation models. In
this article, we will use a B-splines deformable registration
algorithm, in conjunction with the multiscale decomposition
and landmark-based registration, with a uniform eight by
eight grid of control points chosen automatically.

II.B. Landmark-based registration

Landmark-based registration is an image registration tech-
nique which is based on physically matching a finite set of
image features. See Refs. 4 and 15 for a detailed description
of landmark-based registration models. The problem is to
determine the transformation such that for a finite set of con-
trol points, any control point of the moving image is mapped
onto the corresponding control point of the fixed image.
More precisely, if A and B are two images to be registered,
let F�A , j� and F�B , j�, j=1, . . . ,m be given control points of
the images. The solution � of the registration problem is then
a map � :R2→R2 such that

F�A, j� = ��F�B, j��, j = 1, . . . ,m .

More generally, the solution � :R2→R2 of the registration
problem can be defined to be the transformation � that mini-
mizes the distance

DLM��� ª �
j=1

m

�F�A, j� − ��F�B�, j��2

between the control points.
For the examples presented in this article, we use an

implementation of landmark-based registration in which the
transformation � is restricted to translation, rotation, scaling,
and shear �i.e., � is an affine transformation�. We use four
pairs of control points for each example. The control points
used in the landmark-based registration are chosen manually,
and we are currently working on incorporating automatically
detected control points in the algorithm. In Ref. 12, we dem-
onstrated that the multiscale registration algorithm is robust
with respect to the location of the landmarks. In particular,
the accuracy of the multiscale algorithm is not dependent on
exact matching of the landmarks; due to the iterative nature
of the registration method, we achieve accurate registration
results even if the landmark locations are perturbed approxi-

mately 10 mm from their exact locations.
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II.C. Multiscale deformable registration

II.C.1. Hierarchical multiscale image decomposition

The multiscale registration techniques that we developed
in Refs. 10–12 are based on the hierarchical �BV, L2� multi-
scale image representation of Ref. 16. This multiscale de-
composition will provide a hierarchical expansion of an im-
age that separates the essential features of the image �such as
large shapes and edges� from the fine scales of the image
�such as details and noise�. The decomposition is hierarchical
in the sense that it will produce a series of expansions of the
image that resolve increasingly finer scales, and hence, in-
clude increasing levels of detail. The mathematical spaces
L2, the space of square-integrable functions, and BV, the
space of functions of bounded variation, will be used in the
decomposition

L2 = � f ��f�L2 ª	 f2 � �
 ,

BV = �f ��f�BV ª sup
h�0

�h�−1�f�· + h� − f�·��L1 � �� .

Generally, images can be thought of as being elements of
the space L2�R2�, while the main features of an image �such
as edges� are in the subspace BV �R2�. The multiscale image
decomposition of Ref. 16 interpolates between these spaces,
providing a decomposition in which the coarsest scales are
elements of BV and the finest scales are elements of L2.
More precisely, the decomposition is given by the following.
Define the J-functional J�f ,�� as follows:

J�f ,�� ª inf
u+v=f

���v�L2
2 + �u�BV� , �1�

where ��0 is a scaling parameter that separates the L2 and
BV terms. Let �u� ,v�� denote the minimizer of J�f ,��. The
BV component, u�, captures the coarse features of the image
f , while the L2 component, v� �referred to as the residual�,
captures the finer features of f such as noise. The minimiza-
tion of J�f ,�� is interpreted as a decomposition f =u�+v�,
where u� extracts the edges of f and v� extracts the textures
of f . This interpretation depends on the scale �, since texture
at scale � consists of edges when viewed under a refined
scale �e.g., 2��. Upon decomposing f =u�+v�, we proceed to
decompose v� as follows:

v� = u2� + v2�,

where

�u2�,v2�� = arg inf
v+v=v�

J�v�,2�� .

Thus, we obtain a two-scale representation of f given by f

u�+u2�. Repeating this process results in the following
hierarchical multiscale decomposition of f . Starting with an
initial scale �=�0, we obtain an initial decomposition of the
image f ,
f = u0 + v0,
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�u0,v0� = arg inf
u+v=f

J�f ,�0� .

We then refine this decomposition to obtain

v j = uj+1 + v j+1,

�uj+1,v j+1� = arg inf
u+v=vj

J�v j,�02 j+1� , j = 0,1, . . . .

After k steps of this process, we have

f = �
j=0

k

uj + vk, �2�

which gives the multiscale image decomposition

f � u0 + u1 + . . . + uk, �3�

with a residual vk. As described in Ref. 16, the initial scale �0

should capture the smallest oscillatory scale in f , though in
practice �0 is typically determined experimentally. The start-
ing scale �0 should be chosen in such a way that only large
shapes and main features of the image f are observed in u0.
For the medical images that we have worked with, we have
found that �0=0.01 works well.

II.C.2. Multiscale registration algorithm

For the general setup, suppose that we want to register
two images A and B with one another. The iterated multiscale
registration algorithm is implemented as follows.

�1� Apply the multiscale �BV, L2� decomposition to both
images. Let m denote the number of hierarchical scales
used in the decomposition. For the registration problems
considered here and in our previous work, we use m
=8 hierarchical scales in the image decompositions. Let

Ck�A� ª �
j=0

k

uj

denote the kth scale of the image A. See Fig. 1.
�2� Register the coarse scales C1�A� and C1�B� with one

another using a landmark-based registration algorithm.
This step allows the practitioner to incorporate known
anatomical information about the images to be registered
�such as correspondence of bony structures� into the reg-
istration process. Let �landmark denote the resulting trans-
formation. See Fig. 2.

�3� Use �landmark as the starting point to deformably register
C1�A� and C1�B� with one another. This step allows the
practitioner to refine the coarse-scale landmark-based
transformation obtained in the previous step, while at the
same time guaranteeing that the large-scale features
�such as bony structures� are still matched with one an-
other. Let �1 denote the resulting transformation. Next,
use �1 as a starting point to deformably register the next
scales C2�A� and C2�B� with one another. Let �2 denote
the transformation obtained upon registering C2�A� with
C2�B�. Iterate this method, at each stage using the trans-
formation computed by the previous scale registration

algorithm as the starting point for the current registra-
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tion. Note that the landmark-based registration is only
used for registering the coarsest scales of the images; the
iterative deformable registration component of the algo-
rithm fine tunes the registration result obtained with the
coarse-scale landmark-based registration. See Fig. 3.

See Sec. III C for a discussion of the computational costs
of the multiscale algorithm.

III. RESULTS AND DISCUSSION

In this section, we demonstrate the accuracy of the mul-
tiscale registration algorithm with image registration experi-
ments using both synthetic and clinical deformations. All of
the images used in this section were acquired at the Stanford
University Medical Center.

III.A. Quantitative evaluation of synthetic results

To quantitatively evaluate the multiscale registration algo-
rithm, we consider several registration problems in which the
transformation between the fixed and moving images is
known. We consider both rigid and nonrigid deformations.

.

.

.

Coarsest Scale of

(Fixed Image)

Original Image B

(Moving Image)

Original Image A

C1(A) Image A

Coarsest Scale of

C2(A)

Finest Scale of

Image A

C1(B) Image B

C2(B)

Image B

Cm(A)

Cm(B)
Finest Scale of

FIG. 1. Step 1 of the multiscale registration algorithm: decompose each of
the images to be registered into m hierarchical scales.

3

4

3

4

2

1

2

1

C1(A) C1(B)

Landmark
Registration

φlandmark

FIG. 2. Step 2 of the multiscale registration algorithm: register the coarse

scales using a landmark-based registration algorithm.
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III.A.1. Rigid deformations

We begin with a CT image of the rectum, and deform the
image using a known transformation. To simulate a rigid
transformation, we translate the original CT image 13 mm in
the horizontal �X� direction, 17 mm in the vertical �Y� direc-
tion, and rotate the image 10 deg about its center. Finally, to
simulate the noise components that appear in CBCT images,
we add synthetic multiplicative �speckle� noise to the de-
formed image. The original CT image and the noisy, de-
formed image are illustrated in Fig. 4.

We repeat this procedure for 50 different CT images of
the rectum and use the multiscale registration algorithm �re-
stricted to rigid transformations� to register the noisy de-
formed images with the original CT images. The results �X
translation, Y translation, and rotation angle� of the multi-
scale registration algorithm are presented graphically in Fig.
5; recall that the known deformation parameters are 13 mm
in X, 17 mm in Y, and 10 deg rotation. The results presented
in Fig. 5 demonstrate that the multiscale registration algo-
rithm accurately recovers the actual deformation parameters.

III.A.2. Nonrigid deformations

Next, we present a quantitative evaluation of the multi-
scale algorithm for nonrigid deformations. We begin with a
CT image of the rectum, and deform the image using a
known nonrigid transformation. To simulate a nonrigid trans-

Cm(B)

φlandmark

Deformable
Registration

φ1

C1(A) C1(B)

Deformable

RegistrationC2(A)

φ1

φ2

C2(B)

Deformable

Registration

φm

φm−1

Cm(A)

FIG. 3. Step 3 of the multiscale registration algorithm: iteratively register
the scales with one another, at each stage using the previous scale transfor-
mation as the starting point for the new registration procedure.
FIG. 4. The original and noisy deformed CT images of the rectum.
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formation, we deform �warp� the CT image using a known
splines vector field deformation by assigning random trans-
formation parameters at each B-spline node of the image.
Finally, to simulate the noise components that appear in
CBCT images, we add synthetic multiplicative �speckle�
noise to the deformed image. We add the same level of noise
as that illustrated in Fig. 4. In Fig. 6, we illustrate the vector
deformation field that graphically represents the known de-
formation between the images. The deformation field repre-
sents graphically the magnitude of the deformation at each
pixel in the image. Each vector in the deformation field rep-
resents the geometric distance between a pixel in the original
CT image and the corresponding pixel in the deformed im-
age. The magnitude of the vector deformation ranges from 0
to 20 mm.

We repeat this procedure for 50 different CT images of
the rectum, and use the multiscale registration algorithm to
register the noisy deformed images with the original CT im-
ages. To quantitatively evaluate the results, we compute the
pixelwise sum of mean absolute differences �MADs� be-
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FIG. 5. The X translation, Y translation, and rotation angle deformation pa-
rameters obtained upon registering the noisy deformed rectum images with
the CT images using the multiscale registration algorithm.

FIG. 6. The deformation field illustrating the known vector deformation be-
tween the original rectum CT image and the noisy deformed image. The

magnitude of the vector deformation ranges from 0 to 20 mm.
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tween the vector deformation field computed by the multi-
scale algorithm and the known exact vector deformation field
for each pair of images

MAD�C,K� =
1

N
�
i=1

N

�Ci − Ki� ,

where N is the total number of pixels, Ci is the magnitude of
the ith vector in the deformation field computed by the mul-
tiscale registration algorithm, and Ki is the magnitude of the
ith vector in the known exact deformation field. If the com-
puted deformation field C and the known deformation field E
are exactly the same �i.e., if the multiscale algorithm recov-
ers the exact deformation between the images�, then
MAD�C ,K�=0. Poor matches result in larger values of
MAD�C ,K�. In Table I, we present the mean, median, mini-
mum, and maximum MADs obtained upon registering the 50
CT images with the noisy deformed images using the multi-
scale algorithm. For reference, we also include in Table I the
mean, median, minimum, and maximum MADs obtained
upon registering the 50 CT images with the non-noisy de-
formed images using a standard B-splines deformable regis-
tration algorithm. Since the B-splines technique has been
validated to accurately recover deformations,3,8,14 we can use
the MADs obtained with the B-splines algorithm for non-
noisy registration as benchmark values for comparison with
the multiscale algorithm for both non-noisy and noisy regis-
tration. We observe that the MADs obtained using the mul-
tiscale registration algorithm are similar to or better than
those obtained using a standard B-splines registration algo-
rithm. Thus, we conclude that the multiscale registration al-
gorithm accurately registers the CT images with both the
non-noisy and noisy deformed images. See Refs. 10–12 for
additional data on multiscale registration of noisy images.

III.B. Clinical results

Next, we present the results obtained with the multiscale
registration algorithm for clinical CT-CBCT rectum, head-
neck, and prostate registration �Figs. 7–9�. In each example,
we illustrate a two-dimensional slice of the CT image �upper

TABLE I. The mean, median, minimum, and maximum MADs between the
computed and known vector deformation fields. The first column contains
the MADs obtained upon using the multiscale registration algorithm to reg-
ister the CT images with the non-noisy deformed images; the second column
contains the MADs obtained upon using the multiscale registration algo-
rithm to register the CT images with the noisy deformed images; the third
column contains the MADs obtained upon using a standard B-splines de-
formable registration algorithm to register the CT images with the non-noisy
deformed images.

Multiscale MAD:
non-noisy

Multiscale MAD:
noisy

B-splines MAD:
non-noisy

Mean 0.0224 0.0257 0.0236
Median 0.0213 0.0251 0.0229
Minimum 0.0095 0.0104 0.0110
Maximum 0.0340 0.0415 0.0352
left�, the corresponding slice of the CBCT image �upper
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right�, a checkerboard comparison of the images after ordi-
nary �i.e., nonmultiscale� B-splines deformable registration
�lower left�, and a checkerboard comparison of the images
after multiscale registration �lower right�. We have high-
lighted areas of misregistration in the checkerboard images
after ordinary B-splines registration with arrows. In particu-
lar, we notice that misalignment occurs in bony structure
regions after ordinary registration, and that we are able to
recover this misalignment using the multiscale registration
algorithm. The accurate registration of bony structures ob-
tained with multiscale registration is due to the fact that we

FIG. 7. Rectum example. Planning CT image �upper left�, daily CBCT im-
age �upper right�, checkerboard comparison after ordinary B-splines deform-
able registration �lower left�, checkerboard comparison after multiscale reg-
istration �lower right�. The arrows indicate examples of areas of
misalignment between the images after ordinary registration.

FIG. 8. Head and neck example. Planning CT image �upper left�, daily
CBCT image �upper right�, checkerboard comparison after ordinary
B-splines deformable registration �lower left�, checkerboard comparison af-
ter multiscale registration �lower right�. The arrows indicate examples of

areas of misalignment between the images after ordinary registration.
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approach mapping of bony structures differently than map-
ping of other regions �such as tissue�. We first register bony
structures with one another using a coarse-scale landmark-
based registration, and then use an iterative splines-based
registration to refine the result.

To demonstrate the accuracy and applicability of our
method, we have illustrated example slices which contain
different anatomical features. We performed a total of 50
two-dimensional rectum CT-CBCT registration examples, 50
two-dimensional head-neck CT-CBCT registration examples,
and 50 two-dimensional prostate CT-CBCT registration ex-
amples. Here, we present the visual registration results for
one rectum example, one head-neck example, and one pros-
tate example, and note that the results obtained with all other
slices are similar to those presented here. All of the registra-
tions presented in this section were performed slice-by-slice
�i.e., no three-dimensional motion was considered�. In Sec.
III B 2, we consider three-dimensional registration.

III.B.1. Mutual information similarity measures

In Fig. 10, we present the mutual information similarity
measures between the planning CTs and daily CBCTs before
registration �circles�, after ordinary B-splines deformable
registration �squares�, and after multiscale registration
�crosses� for all 50 slices considered for the rectum registra-
tion example. The mutual information similarity measures
for the head-neck and prostate examples are similar to those
presented in Fig. 10 for the rectum example, so we do not
include them here. In Table II, we present the mean mutual
information measure �taken over all 50 slices� before regis-
tration, after ordinary B-splines registration, and after multi-
scale registration. For all examples, and for all image slices,
the similarity measures increased after multiscale registration
and were slightly higher than the similarity measures after
B-splines registration. However, we note that the increased
mutual information similarity values do not completely rep-
resent the improved accuracy obtained with multiscale reg-
istration that we have observed visually in Figs. 7–9. Never-

FIG. 9. Prostate example. Planning CT image �upper left�, daily CBCT im-
age �upper right�, checkerboard comparison after ordinary B-splines deform-
able registration �lower left�, checkerboard comparison after multiscale reg-
istration �lower right�. The arrows indicate examples of areas of
misalignment between the images after ordinary registration.
theless, they do capture the qualitative trend of a better
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matching using our multiscale registration algorithm. See,
Refs. 2 and 17 for an overview of the use of mutual infor-
mation in multimodality image registration.

Finally, we note that, although the visual results and mu-
tual information similarity measures indicate that the multi-
scale registration algorithm accurately registers the planning
CT and daily CBCT images, there is some mismatch ob-
served in the registration results. For example, in Fig. 7,
there is mismatch observed in the checkerboard comparison
after multiscale registration in skin on the left and right sides,
and in bone on the right side. We are currently working on
techniques for further improving the accuracy of the multi-
scale registration algorithm.

III.B.2. Three-dimensional multiscale registration

In Ref. 12, we extended the multiscale hierarchical
�BV,L2� image decomposition of Ref. 16 to three-
dimensional images and presented the details of the compu-
tational implementation of multiscale registration for three-
dimensional images. In clinical practice, three-dimensional
registration of CT and CBCT volumes is an important com-
ponent of adaptive radiation therapy, as two-dimensional reg-
istration of image slices cannot account for all possible de-
formations between the planning and daily images.

We used the three-dimensional multiscale registration al-
gorithm described in Ref. 12 to register three-dimensional
rectum, head-neck, and prostate planning CT and daily
CBCT volumes with one another. To evaluate the accuracy

TABLE II. The mean mutual information between the planning CTs and daily
CBCTs before registration, after B-splines deformable registration, and after
multiscale registration.

Mutual information Rectum Prostate Head-neck

Before registration 0.34 0.21 0.20
After B-splines registration 0.75 0.64 0.74
After multiscale registration 0.79 0.65 0.76
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FIG. 10. The mutual information similarity measures between the rectum
planning CTs and daily CBCTs before registration, after B-splines deform-
able registration, and after multiscale registration.
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of the registration algorithm, we computed the mutual infor-
mation similarity measure between the planning CT volumes
and daily CBCT volumes before registration, after B-splines
deformable registration, and after multiscale registration. The
results are presented in Table III. As in the two-dimensional
cases, we observe that the multiscale registration algorithm
accurately registers the three-dimensional volumes with one
another.

III.C. Computation

For all of the examples presented in this article, compu-
tations were performed on a Dell Dimension 8400 Intel Pen-
tium 4 CPU �3.40 GHz, 2.00 GB of RAM�. The total time
required per slice for the multiscale registration algorithm
�including decomposition of the images to be registered� is
approximately 30–50 s. For the types of medical images
considered here, decomposition of the images �illustrated
schematically in Fig. 1� into hierarchical scales requires ap-
proximately 5 s per image. Landmark-based registration of
the coarse scales �illustrated schematically in Fig. 2� requires
approximately 15–20 s per image, and iterative deformable
registration of all of the remaining scales �illustrated sche-
matically in Fig. 3� requires approximately 15–20 s. In an
ideal implementation of ART, real-time registration of the
CT and CBCT images will be performed in the treatment
room so that treatment can be continuously updated and op-
timized; thus, we are currently working on improving the
computational efficiency of the multiscale registration algo-
rithm. Parallel computing techniques can be used to increase
the speed of the algorithm.

The Insight Toolkit �ITK�, an open-source software tool-
kit sponsored by the National Library of Medicine and the
National Institutes of Health, was used for the iterative
B-splines deformable registration portion of the multiscale
registration algorithm. MATLAB was used for the multiscale
decomposition and for the landmark-based registration.

IV. CONCLUSIONS

In this article, we have presented the results of a multi-
scale registration algorithm for registration of planning CT
and daily CBCT medical images. The multiscale algorithm is
based on combining the hierarchical multiscale image de-
composition of Ref. 16 with standard landmark-based and
free-form deformable registration techniques. Our hybrid
technique allows the practitioner to incorporate a priori

TABLE III. The mutual information similarity measures between the
three-dimensional planning CT volumes and daily CBCT volumes before
registration, after B-splines deformable registration, and after multiscale
registration.

Mutual information Rectum Prostate Head-neck

Before registration 0.33 0.29 0.32
After B-splines registration 0.78 0.71 0.82
After multiscale registration 0.86 0.81 0.89
knowledge of corresponding bony or other anatomical struc-
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tures into the registration process by using a landmark reg-
istration algorithm to register the coarse scales of the fixed
and moving images with one another. The transformation
produced by this coarse scale landmark registration is then
used as the starting point for a multiscale deformable regis-
tration in which the remaining scales are iteratively regis-
tered with one another, at each stage using the transformation
computed by the previous scale registration as the starting
point for the current scale registration.

We have demonstrated with several synthetic and clinical
image registration experiments that the multiscale registra-
tion algorithm is applicable to CT-CBCT registration, which
is an important component of ART and IGRT. One of the
main features of our multiscale registration algorithm is that
it can be used in conjunction with any standard registration
technique�s�. Thus, the multiscale algorithm can be easily
customized to various image registration problems.
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