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On-board cone-beam computed tomography �CBCT� is a new imaging technique for radiation
therapy guidance, which provides volumetric information of a patient at treatment position. CBCT
improves the setup accuracy and may be used for dose reconstruction. However, there is great
concern that the repeated use of CBCT during a treatment course delivers too much of an extra dose
to the patient. To reduce the CBCT dose, one needs to lower the total mAs of the x-ray tube current,
which usually leads to reduced image quality. Our goal of this work is to develop an effective
method that enables one to achieve a clinically acceptable CBCT image with as low as possible
mAs without compromising quality. An iterative image reconstruction algorithm based on a penal-
ized weighted least-squares �PWLS� principle was developed for this purpose. To preserve edges in
the reconstructed images, we designed an anisotropic penalty term of a quadratic form. The algo-
rithm was evaluated with a CT quality assurance phantom and an anthropomorphic head phantom.
Compared with conventional isotropic penalty, the PWLS image reconstruction algorithm with
anisotropic penalty shows better resolution preservation. © 2009 American Association of Physi-
cists in Medicine. �DOI: 10.1118/1.3036112�
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I. INTRODUCTION

Integration of the cone-beam computed tomography �CBCT�
with a linear accelerator1 makes it possible to acquire volu-
metric image of high spatial resolution for a patient at treat-
ment position. There is growing interest in using on-board
CBCT for patient setup and dose reconstruction.2 Repeated
use of CBCT during a treatment course has raised concern of
the extra radiation dose delivered to patients.3,4 One cost-
effective way to reduce the CBCT dose is to acquire CT with
a lower mAs protocol. However, image quality will degrade
dramatically due to excessive noise,5,6 rendering the low-
mAs CBCT a less attractive option for the therapeutic guid-
ance.

In this work, we incorporate the noise properties of CBCT
log-transformed projection data7,8 in a statistical iterative im-
age reconstruction algorithm to improve the low-dose CBCT
image quality. Compared with analytical reconstruction algo-
rithms, a major advantage of iterative algorithms is that it
takes into consideration the image physics, noise properties,
and imaging geometry elegantly. Advantages of iterative re-
construction algorithms have been demonstrated in the image
reconstruction of emission tomographic images.9–12 How-
ever, when applying iterative reconstruction algorithms for
CT imaging,13–17 long computational time may pose a chal-
lenge for their clinical applications. With the development of
fast computers and dedicated hardwares,18,19 iterative recon-

struction algorithms may be used for clinical CT reconstruc-
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tion in the near future. Recently, iterative image reconstruc-
tion algorithms have demonstrated superior performance for
reconstruction of the multislice helical CT �Ref. 20� and car-
diac micro-CT.21 Prototype products based on iterative re-
construction methods have been exhibited by major CT ven-
dors in a number of national and international meetings.

In statistics-based iterative reconstruction algorithms, to-
mographic images are reconstructed by minimizing or maxi-
mizing a cost function, which is constructed based on noise
characteristics of the measured data. There are usually two
terms in the objective function. The first term models the
statistics of measured data and the second term reflects a
prior information to regularize the solution. Many efforts7,22

have been devoted to investigate the noise models of the
measurements in CT. Accurate noise modeling is a prerequi-
site of a statistical iterative reconstruction algorithm. The
second term, i.e., the regularization term, also plays an im-
portant role for successful image reconstruction. One com-
mon choice of the regularization term is the Gaussian Mar-
kov random field in quadratic form.16,23–25 Such quadratic
penalty with equal weights for neighbors of equal distance
encourages equivalence between neighbors without consid-
ering discontinuities in images, which may lead to over-
smoothing around edges or boundaries. Several edge-
preserving regularization methods have been proposed to
address this problem. For example, the edge-preserving Hu-
ber penalty, which penalizes neighbors of small differences

quadratically while applying a linear penalty on neighbors of
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larger difference, has been used by Elbakri and Fessler26 for
CT image reconstruction and by Chlewicki et al.27 for posi-
tron emission tomography reconstruction. A line process has
been introduced by Geman and Geman28 to define the edge
lattice during Bayesian restoration of images. Geman and
Reynolds29 proposed a finite asymptotic edge-preserving
function and Charbonnier et al.30 introduced an auxiliary
variable in the prior constraint to mark the discontinuities in
the images. These modifications make the objective function
nonquadratic and complicate the computation. In this work,
we propose a quadratic regularization term with anisotropic
weights for different neighbors. The role of the anisotropic
penalty is to discourage the equivalence between neighbors
if the gradient is large; thus the edges or discontinuities will
be better preserved in the final reconstructed image.

In the following sections, we first introduce the penalized
weighted least squares �PWLS� objective function for image
reconstruction of CBCT based on the noise properties of
CBCT projection data. We then describe the proposed aniso-
tropic penalty in details. In Sec. III, the evaluation of the
proposed algorithm is presented using a quality assurance
phantom and an anthropomorphic head phantom, followed
by the discussion in Sec. IV and the conclusion in Sec. V.

II. METHODS AND MATERIALS

II.A. PWLS image reconstruction

Noise in x-ray CT projection data after logarithm trans-
form follows approximately Gaussian distribution and the
variance of the noise can be determined by an exponential
formula7,8

�i
2 = exp�p̄i�/Ni0, �1�

where Ni0 is the incident photon number at detector bin i, p̄i

and �i
2 is the mean and variance of projection datum pi,

respectively. Based on the noise properties of CT projection
data, the PWLS cost function in the image domain can be
written as

���� = �p̂ − A����−1�p̂ − A�� + �R��� . �2�

The first term in Eq. �2� is the weighted least-squares crite-
rion, where p̂ is the vector of log-transformed projection
measurements, and � is the vector of attenuation coefficients
to be reconstructed. Operator A represents the system or pro-
jection matrix. The element of aij is the length of the inter-
section of projection ray i with pixel j and it is calculated by
a fast ray-tracing technique.31 In our implementation, the el-
ement of matrix A was precomputed, stored as a file, and
used as a lookup table later. The projection data p̂ and the
attenuation map � is related by p̂=A�. � is a diagonal ma-
trix with the ith element of �i

2, i.e., an estimate of the vari-
ance of measured ŷi at detector bin i which can be estimated
from the measured projection data according to Eq. �1�. The
element of the diagonal matrix plays the role of weighting in
the WLS cost function and it determines contribution of each
measurement. The symbol � denotes the transpose operator.
The second term in Eq. �2� is a smoothness penalty or a prior

constraint, where � is the smoothing or penalty parameter
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which controls relative contribution from the measurement
and prior constraint. The image reconstruction task is to find
attenuation map � by minimizing the objective function �2�
with a positive constraint. The Gaussian–Seidel updating
strategy was used for the minimization and details about the
implementation are described in the Appendix.

II.B. Edge-preserving anisotropic penalty

The prior constraint in Eq. �2� enforces a roughness pen-
alty on the solution. The quadratic penalty with equal
weights for neighbors of the same distance has been used
widely for iterative image reconstruction16,17,23,25

R��� = ��R� =
1

2�
j

�
m�Nj

wjm�� j − �m�2, �3�

where index j runs over all image elements in the image
domain, Nj represents the set of neighbors of the jth image
pixel. The parameter wjm was set to 1 for first-order neigh-
bors and 1 /�2 for second-order neighbors in previous
applications.17,23,25 This type of penalty only takes distance
information of the neighbors into account. That is, the neigh-
bors of the same distance play an equivalent role in regular-
izing the solution, and vise versa. A major shortcoming of
the approach is that the regularization does not take the dif-
ference in intensities of the neighboring voxles �e.g., edges
or discontinuities� into account, which may lead to an over-
smoothed solution for reconstructed images. To overcome
this limitation, we propose an anisotropic penalty to regular-
ize the solution. In this formulation, the weight is smaller if
the difference between a neighbor and the concerned voxel is
larger, since the coupling between two such neighbors is
smaller. There are many choices that satisfy this behavior of
weighting. In this work, we chose the form of wjm to be the
same as the conduction coefficient in the well-known aniso-
tropic diffusion filter.32 The weight wjm can be written as

wjm� = wjm exp�− �� j − �m

�
	2
 , �4�

where the gradient and the parameter � determine the
strength of the diffusion during each iteration. The parameter
� can be set either by hand or to the value at 90% of the
histogram of the gradient magnitude of the image to be pro-
cessed. In this work, we set the value of � to be 90% of the
histogram of the gradient magnitude of the FDK recon-
structed image �which is used as the initial during iterative
reconstruction�.

II.C. CBCT data acquisition

Cone-beam CT projection data were acquired by an Acu-
ity simulator �Varian Medical Systems, Palo Alto, CA�. The
number of projections for a full 360° rotation is 680 and the
total time for the acquisition of one full circle of the projec-
tion data is about 1 min. The dimension of each acquired
projection image is 397 mm�298 mm, containing 1024
�768 pixels. To save computational time during iterative re-

construction, the projection data at each projection view
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were downsampled by a factor of 2 and only 16 out of 768
projection data along the axial direction were chosen for re-
construction. The system has a field of view of 25 cm
�25 cm �full-fan mode� in the transverse plane and 17 cm in
the longitudinal direction, which can be increased to 45 cm
�45 cm in the transverse plane by shifting the detector lat-
erally �half-fan mode�.

Two phantoms were used to evaluate the performance of
the proposed PWLS algorithm. The first is a commercial
calibration phantom CatPhan® 600 �The Phantom Labora-
tory, Inc., Salem, NY�. The second is an anthropomorphic
head phantom. In both phantom studies, the tube voltage was
set to 125 kVp. The x-ray tube current was set at 10 mA and
the duration of the x-ray pulse at each projection view was
10 ms during the acquisition of low-dose CBCT projection
data. During acquisition of the corresponding high-dose
CBCT image, the tube current was set at 80 mA and the
duration of the x-ray pulse was set at 12 ms. The projection
data were acquired in full-fan mode and the full-fan bow-tie
filter was used for both phantoms. The distance of source-to-
axis is 100 cm and source-to-detector distance of 150 cm.
The size of reconstructed image is 350�350�16 and voxel
size is 0.776�0.776�0.776 mm3.

II.D. Performance evaluation

We used the CatPhan® 600 phantom to study the spatial
resolution of images reconstructed by different algorithms.
The CTP591 module of the CatPhan® 600 phantom contains
a bead point object with a diameter of 0.28 mm �see Fig. 1�.
The point object can be used to calculate the modulation

FIG. 1. The bead point object in the CatPhan® 600 phantom was used to
calculate the MTF of reconstructed images. Display window:
�0,0.03� mm−1. The white square in the image indicates the region used to
calculate the standard deviation.
transfer function �MTF� which characterizes the spatial res-
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olution of images. The reconstructed image contains the
point object provides the point-spread-function for each re-
construction algorithm and the in-plane MTF can be ob-
tained by calculating two-dimension Fourier transform and
averaging over 2� angles. A 10�10 matrix centered about
the point object was used to calculate the MTF after the
background value �which can be estimated by averaging the
values of a uniform background region� was subtracted from
the value of each pixel.

In the CTP404 module of the CatPhan® 600, there are
several circles of different intensities which can be used to
quantify the contrast-to-noise �CNR� of the reconstructed im-
ages in different reconstructions. We selected a low-contrast
region of interest �ROI� for calculation of the CNR in the
image reconstructed by different algorithms since a low-
contrast region is of interest in CT imaging. The contrast was
calculated as the absolute difference between the mean value
of the region inside the ROI and the mean value of the uni-
form background region. The noise level was characterized
by the standard deviation of a uniform area of size 15 pixels
by 15 pixels. The CNR was defined as the contrast divided
by the standard deviation.

III. RESULTS

III.A. CatPhan® 600 phantom

III.A.1. MTF measurement

Figure 2 shows the MTFs of two iterative reconstruction
algorithms with different smoothing parameters � ranging
from 1.0�104 to 30�104. It can be observed that the spatial
resolution of the reconstructed image using an isotropic qua-
dratic penalty decreases as smoothing strength increases. The
frequency of 50% MTF for the iterative reconstruction using
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FIG. 2. MTF curves of two PWLS iterative image reconstruction algorithms
with different smoothing parameters. Curves in the blue color are results of
reconstruction using an isotropic quadratic penalty. Curves in the black color
are results of reconstruction using the edge-preserving anisotropic quadratic
penalty.
the isotropic penalty decreases from 5.25 to 2.91 1 /cm as
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the smoothing parameter increases from 1.0�104 to 30
�104. In contrast, MTF curves of the image reconstructed
using the proposed edge-preserving anisotropic quadratic
penalty are clustered together with various smoothing param-
eters. This indicates that the spatial resolution in images re-
constructed using the anisotropic quadratic penalty is better-
preserved.

III.A.2. Full width at half maximum measurement

We then tested the proposed algorithm on the CTP404
module of the CatPhan® 600 phantom. A representative slice
of the CBCT images obtained by different reconstruction
methods are shown in Fig. 3. Figure 3�a� is the low-dose

(a) (b)

(c) (d)

(e) (f)

FIG. 3. CBCT of the CatPhan® 600 phantom: �a� analytical FDK recon-
structed image from projection data acquired using a low-dose protocol
�10 mA /10 ms� and �b� a high-dose protocol �80 mA /12 ms�; �c� PWLS
iterative image reconstruction with the isotropic quadratic penalty from pro-
jection data acquired using a low-dose protocol and �d� with the proposed
anisotropic penalty; �e� PWLS iterative image reconstruction with the Huber
penalty; �f� analytical FDK reconstructed image after low-dose projection
data processed by the PWLS criterion �Ref. 34� with a smoothing parameter
of 0.09. Display window: �0,0.02� mm−1.
image reconstructed by analytical FDK algorithm. It can be
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observed that noise level is high in this low-dose CBCT
image. Figure 3�c� shows the image reconstructed by the
PWLS algorithm using the isotropic quadratic penalty with
the penalty parameter �=30�104. Figure 3�d� displays the
image reconstructed by the PWLS algorithm using the pro-
posed edge-preserving anisotropic penalty with the same
penalty parameter. The noise in the images reconstructed by
iterative algorithms is greatly suppressed compared with the
image reconstructed using the analytical method. It is seen
that the edges were blurred in Fig. 3�c�, as indicated by the
arrows in the image. This is not surprising since an isotropic
quadratic form penalty simply encourages equivalence
among neighbors along all directions without considering the
boundary information presented in the image. However,
edges were well preserved when the anisotropic penalty was
used as the constraint �see the corresponding area in Fig. 3�d�
indicated by the arrows�.

To quantitatively analyze the gain by using the anisotropic
penalty in the iterative reconstruction algorithm, we then
studied the full-width-at-half-maximum �FWHM� of two
pointlike objects �one is brighter than background and the
other one is darker than the background� in the reconstructed
images. Figure 4 shows the profiles passing through two
pointlike objects in Figs. 3�c� and 3�d�. Through those pro-
files, it can be observed that the major difference between the
solutions using isotropic and anisotropic penalties is nearby
edges. The intensity values in both images at a uniform re-
gion are nearly identical; see line along value 0.016 in both
Figs. 4�a� and 4�b�. It can also be observed in Fig. 4 that the
peak of the profile from the image reconstructed using the
isotropic quadratic penalty is lower than that from the recon-
structed image using the anisotropic penalty, while the bot-
tom of the profile from the image reconstructed using the
isotropic quadratic penalty is higher than that from the re-
constructed image using anisotropic penalty. These observa-
tions show that there is a signal loss when an image is re-
constructed by the PWLS algorithm using the isotropic
penalty. The standard deviation of a uniform region �indi-
cated by a white square� is 0.50�10−3 in Fig. 3�c� and
0.54�10−3 in Fig. 3�d�. We then fitted the profile to a Gauss-
ian functional. The FWHM of brighter source is 3.48 pixels
for the image reconstructed with the isotropic penalty and
3.19 pixels for the anisotropic penalty. The FWHM for the
darker source is 3.71 pixels for the image reconstructed with
the isotropic penalty and 3.48 pixels for the anisotropic pen-
alty. In both cases, better edge preserving was observed in
the image reconstructed using the anisotropic penalty.

III.A.3. CNR measurement

Table I lists the CNR of two iterative reconstruction algo-
rithms with different smoothing parameters. It can be ob-
served that in both reconstruction algorithms the CNR in-
crease as smoothing parameter increases. The CNR of the
image reconstructed using the anisotropic penalty is slightly
larger than that of the isotropic penalty when the same
smoothing parameters are used. However, at the matched

resolution between the two methods, CNR was increased
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from 0.84 in the image reconstructed using the isotropic pen-
alty with �=1.0�104 to 2.83 in the image reconstructed
using the anisotropic penalty with �=30�104.

III.A.4. Comparison study with the Huber penalty

In this section, we compared the proposed anisotropic
quadratic penalty with a representative edge-preserving non-
quadratic penalty: the Huber penalty.26,27 The Huber penalty
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FIG. 4. Vertical profile through column 139 in Figs. 3�c� and 3�d�. �a� shows
the profile through the hot spot and �b� shows the profile through the cold
spot. Edges are better preserved by using the anisotropic penalty as mea-
sured by the FWHM.
function has the following form:
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H�t� = �t2/2, �t� 	 



��t� − 
� + 
2/2, �t� � 
 .
 �5�

The Huber function penalizes the difference between neigh-
boring pixels quadratically if the absolute difference pixel
value �t� is smaller than some threshold 
 and it will apply a
linear penalty to the larger differences of �t��
 which usu-
ally occur at edges.

Figure 3�e� shows the PWLS reconstructed CatPhan® 600
phantom by using the Huber penalty with threshold 

=0.001 and the penalty parameter �=35�104. It can be ob-
served that the edges are better preserved in the images re-
constructed using the Huber penalty than the images recon-
structed by using the isotropic quadratic penalty. To
quantitatively compare the performance of the Huber penalty
and the anisotropic quadratic penalty, we calculated the MTF
of the CTP591 module of the CatPhan® 600 phantom at
matched noise level. Figure 5 shows the MTF curves from
the proposed anisotropic quadratic penalty with penalty pa-
rameter �=30�104 and the Huber penalty with threshold

=0.001. The penalty parameter � in the PWLS reconstruc-
tion with Huber penalty was set at 35�104 so that the noise
level in the reconstructed image is matched to the anisotropic
quadratic penalty. The standard deviation of the uniform re-
gion �indicated by a white square in Fig. 1� in the image
reconstructed using the Huber penalty is 0.73�10−3 and is
0.70�10−3 in the image reconstructed using the anisotropic
quadratic penalty. MTF curves in Fig. 5 show that the aniso-

TABLE I. CNRs of the low-contrast ROI in Fig. 3.

� ��104� 1 2.5 7.5 10 20 30

PWLS isotropic 0.84 0.98 1.40 1.60 2.35 3.01
PWLS anisotropic 0.77 0.82 1.04 1.20 2.22 2.83

FDK �10 mA /10 ms� 0.95
FDK �80 mA /12 ms� 2.66
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FIG. 5. MTF curves of the low-dose CBCT image reconstructed by different

algorithms at a match noise level.
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tropic quadratic penalty produces better image resolution at
the matched noise level. The advantage of the anisotropic
quadratic penalty may be attributed to that the Huber func-
tion depends on a hard threshold of the gradient while the
anisotropic quadratic penalty considers the gradient informa-
tion continuously by introducing Eq. �4�.

III.A.5. Comparison with high-dose CBCT

For the projection data acquired with a tube current of
80 mA and x-ray pulse duration of 12 ms protocol, we re-
constructed the CBCT image using the analytical FDK algo-
rithm. We first compared the MTF of the image recon-
structed by the analytical FDK algorithm with the image
reconstructed by iterative PWLS algorithms at a matched
noise level. The standard deviation of the uniform area is
5.95�10−4 in the FDK-reconstructed image. By setting the
smoothing parameter �=2�104, the standard deviation of
the same region in the PWLS-reconstructed image is 5.96
�10−4 with the isotropic penalty and 5.98�10−4 with the
anisotropic penalty. Figure 6 shows the MTF curves from the
image reconstructed by FDK and the iterative PWLS algo-
rithms. It can be observed that the MTF of the PWLS algo-
rithm with the anisotropic penalty is slightly better than that
of the FDK algorithm, whereas the MTF of the FDK algo-
rithm is better than that of the PWLS algorithm with isotro-
pic penalty. This demonstrates that better spatial resolution is
achieved by the PWLS algorithm using the proposed edge-
preserving anisotropic penalty. The same trend can also be
seen from the profiles through the pointlike objects in the
CTP404 module �Fig. 4�. The FWHM obtained from the fit-
ted Gaussian function also shows that better spatial reso-
lution is achieved by using the PWLS image reconstruction
algorithm with the anisotropic penalty.

From Table I, it is seen that the CNR of the PWLS recon-
structed low-dose image using the anisotropic penalty with
the penalty parameter �=30�104 is 2.83, which is slightly
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FIG. 6. MTF curves of the high-dose CBCT image reconstructed by differ-
ent algorithms.
higher than that of the FDK reconstructed high-dose
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image—2.66. In Fig. 6, we also show the MTF curve of the
PWLS algorithm using the anisotropic penalty with the pen-
alty parameter �=30�104. It can be observed that the MTF
of the PWLS algorithm with the anisotropic penalty is com-
parable to that of the FDK algorithm. This result suggests
that the PWLS iterative image reconstruction with the aniso-
tropic penalty is capable of producing images with a CNR
comparable to FDK-reconstructed high-dose images using
only about 1 /10 dose without sacrificing image spatial reso-
lution.

III.B. Anthropomorphic head phantom

Results of the anthropomorphic head phantom are shown
in Fig. 7. Figure 7�a� shows one slice of the image recon-
structed by the analytical FDK algorithm from projection
data acquired using a low-dose protocol �10 mA /10 ms�;
Fig. 7�b� is the FDK reconstructed image for the same phan-
tom acquired with a high-dose protocol �80 mA /12 ms�.
Figure 7�c� shows the same slice of a low-dose CBCT image
reconstructed by the PWLS iterative algorithm using the iso-
tropic penalty with the penalty parameter of �=30�104 and
Fig. 7�d� shows the low-dose CBCT image reconstructed by
the PWLS image reconstruction algorithm using the aniso-
tropic penalty with the same penalty parameter. Figure 7�e�
shows the PWLS reconstructed low-dose CBCT image using
the edge-preserving Huber penalty with threshold 
=0.001
and the penalty parameter �=35�104. It can be observed
that noise in low-dose CT images is efficiently suppressed in
images reconstructed by the PWLS iterative reconstruction
algorithms. The quality of low-dose CBCT reconstructed by
the PWLS with anisotropic penalty is comparable to that of
the high-dose FDK reconstructed image. With the anisotropic
penalty in the PWLS iterative reconstruction, edges are bet-
ter preserved in the reconstructed image. In the regions indi-
cated by arrows in Fig. 7�d�, it is seen that the structure is
well preserved in the image reconstructed using the aniso-
tropically penalized PWLS algorithm. The structure is
blurred if the isotropic penalty was used during the PWLS
reconstruction. This observation is consistent with the quan-
titative evaluation using the CatPhan® 600 phantom.

IV. DISCUSSION

The weighted least-squares criterion reflects that the mea-
sured data with a lower SNR will contribute less to the esti-
mation of the attenuation map. The PWLS objective function
is equivalent to the penalized maximum likelihood or maxi-
mum a posteriori criterion for Gaussian distributed noise.
This is consistent with the observations from repeated mea-
surements of x-ray CT projection data after logarithm
transform.7,8 The PWLS criterion for the CT projection data
can also be derived from Poisson noise model of detector
counts using the second-order Taylor expansion.16 Measure-
ment of x-ray counts can be modeled more accurately using

the compound Poisson noise of polyenergetic x-ray beam
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plus Gaussian electronic noise.22 The performance of itera-
tive reconstruction algorithms for x-ray CT may be further
improved by more accurate noise modeling.

The penalty reflects the prior information of the CT im-
ages. In this work, the anisotropic penalty of the quadratic
form was proposed to encourage smoothness among neigh-
boring pixels of similar intensities but discourage the
smoothness if a large difference exists between neighboring
pixels. Thus, edges are better preserved in reconstructed im-

(a) (b)

(c) (d)

(e) (f)

FIG. 7. CBCT of the anthropomorphic head phantom: �a� analytical FDK
reconstructed image from projection data acquired using a low-dose proto-
col �10 mA /10 ms� and �b� a high-dose protocol �80 mA /12 ms�; �c�
PWLS iterative image reconstruction with an isotropic quadratic penalty
from projection data acquired using a low-dose protocol and �d� with a
proposed anisotropic penalty. �e� PWLS iterative image reconstruction with
the Huber penalty; �f� analytical FDK reconstructed image after low-dose
projection data processed by the PWLS criterion �Ref. 34� with smoothing
parameter 0.09. Display window: �0,0.02� mm−1.
ages. In radiotherapy, CT images of the same patient are
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usually available before treatment. The high-quality planning
CT images provide strong a priori information of the patient
and it may be used to improve the performance of iterative
image reconstruction algorithms. However, interfractional
variation in treatment position and deformation of organs
may make such application challenging. Dedicated registra-
tion algorithms33 are necessary to extract information from
the planning CT as a prior constraint for iterative reconstruc-
tion.

Based on the same noise properties of projection data, the
PWLS objective function can also be constructed in the pro-
jection or sinogram domain where the penalty is applied be-
tween neighboring projection pixels.34 CT images can then
be reconstructed by analytical algorithms such as FDK.
Compared with fully iterative image reconstruction methods,
the strategy of projection smoothing followed by analytical
image reconstruction is advantageous in computational effi-
ciency because projection and backprojection cycles in the
iterative image reconstruction algorithm are avoided. Re-
cently, La Riviere and Vargas35 have shown potential equiva-
lence between the image-domain based iterative reconstruc-
tion methods and the strategy of sinogram restoration plus
analytical filtered backprojection reconstruction. The studies
performed in their work35 are based on a simple isotropic
quadratic penalty. It will be interesting to perform a similar
study based on the proposed anisotropic quadratic penalty.
The edge-preserving penalty in image domain may have
some advantages compared with the same penalty used in
projection domain because edges are better defined in the
image domain than of that in the projection domain. In this
work, we also included the results obtained using the strat-
egy presented in Ref. 34, i.e., the projection image is pro-
cessed according to the PWLS criterion before the analytical
FDK reconstruction. Figures 3�f� and 7�f� show the results
from the projection-domain approach34 with smoothing pa-
rameter �=0.09 for the CatPhan® 600 phantom and the an-
thropomorphic head phantom, respectively. It can be ob-
served that the edges in the image reconstructed by FDK
from the PWLS processed projection image are blurred com-
pared with the image reconstructed by the PWLS using the
anisotropic quadratic penalty. For a quantitative comparison,
we calculated the MTF and noise level of the image of
CTP591 module. The MTF curve was plotted in Fig. 5 and
the standard deviation around the uniform region was 0.74
�10−3. The MTF curves in Fig. 5 show that PWLS image
reconstruction using the anisotropic quadratic penalty pro-
duces better image resolution at the matched noise level.
This initial comparison study indicates that the edge-
preserving penalty in the image domain produces higher im-
age resolution than the same penalty applied in the projection
domain because better edge definition is in the image domain
than the projection domain.

In this work, our effort was focused on the noise suppres-
sion of CBCT using the iterative reconstruction algorithm.
The presented iterative reconstruction algorithm can also be
used to improve image quality of the 4D-CBCT.36,37 In 4D-
CBCT, projection views for a specific phase are usually ir-

regular and undersampled. Direct reconstruction using the
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conventional FDK algorithm from phase-binned projection
data may lead to unacceptable results due to view aliasing
artifacts. Several strategies, such as using slow-rotating
imager37 and interphase motion model,38,39 have been pro-
posed to enhance the image quality of 4D-CBCT. Iterative
reconstruction algorithms incorporate both data acquisition
geometry and sampling of projection views into the projec-
tion matrix automatically. Consequently, the quality of the
CBCT image so obtained is generally superior over that re-
constructed using an analytical method.40

Although iterative reconstruction algorithms have shown
advantages for CT imaging in terms of noise suppression and
structure preservation, computational time could be a chal-
lenge for its practical use. In our implementation, we com-
puted the projection matrix A before iterative reconstruction.
The projection matrix was stored as a file and served as a
lookup table during iterations. It takes about 15 min to finish
one iteration to reconstruct the CBCT images of a size 350
�350�16 using a PC with 3 GHz CPU. Nevertheless, the
reconstruction can be sped up by graphics card
acceleration19,41 and parallel computation using PC clusters42

and cell broadband engine.18

V. CONCLUSION

In this work, we presented a statistics-based iterative re-
construction algorithm for CBCT. The objective function
was based on the PWLS criterion. To preserve edges in the
reconstructed images, an anisotropic quadratic penalty was
proposed. Noise and artifacts in low-dose CBCT are greatly
suppressed using the presented PWLS reconstruction algo-
rithm. Comparison studies with reconstruction based on the
isotropic penalty have clearly shown the benefit of the pro-
posed approach. The statistical iterative reconstruction algo-
rithm significantly improves low-dose CBCT image quality
and may find useful clinical applications in the future.
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APPENDIX: IMAGE RECONSTRUCTION
ALGORITHM

The task for image reconstruction is to estimate the at-
tenuation coefficient distribution map � from the projection
data p̂ by minimizing Eq. �2�. In this study, the minimization
was performed iteratively using the Gauss–Seidel update al-

gorithm, similar to that in Ref. 25,
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Initialization:
�̂=FDK�p̂�
r̂= ŷ−A�̂
�=diag��i

2�pi��=diag�exp�pi� /Nio�
sj =aj��

−1aj, ∀j,

wjm� =wjm exp�−�� j −�m

� �2�, m�Nj

For each iteration: �A1�
begin

For each pixel j:
begin
�̂ j

old
ª �̂ j

� jªsj +��m�Nj
wjm�

�̂ j
new

ª

aj��
−1r̂+sj�̂ j

old+��m�Nj
wjm� �̂m

� j�̂ jªmax�0, �̂ j
new�

r̂ª r̂+aj��̂ j
old− �̂ j�

wjm� =wjm exp�−�� j −�m

� �2�, m�Nj
end

end

The iterations can be stopped by setting a threshold for
the change of objective function or the number of iterations.
In all of cases presented in this work, we stopped the com-
putation at 20 iterations at which good convergence was seen
through the observation of the reconstructed image at each
iteration.
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