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  Purpose: The diverse experimental environments in 
microarray technology, such as the different platforms 
or different RNA sources, can cause biases in the anal-
ysis of multiple microarrays. These systematic effects 
present a substantial obstacle for the analysis of micro-
array data, and the resulting information may be incon-
sistent and unreliable. Therefore, we introduced a sim-
ple integration method for combining microaray data  
sets that are derived from different experimental con-
ditions, and we expected that more reliable information 
can be detected from the combined data set rather than 
from the separated data sets. 
  Materials and Methods: This method is based on the 
distributions of the gene expression ratios among the 
different microarray data sets and it transforms, gene by 
gene, the gene expression ratios into the form of the 
reference data set. The efficiency of the proposed inte-
gration method was evaluated using two microarray 
data sets, which were derived from different RNA sour-

ces, and a newly defined measure, the mixture score.
  Results: The proposed integration method intermixed 
the two data sets that were obtained from different RNA 
sources, which in turn reduced the experimental bias 
between the two data sets, and the mixture score
increased by 24.2%. A data set combined by the pro-
posed method preserved the inter-group relationship of 
the separated data sets. 
  Conclusion: The proposed method worked well in 
adjusting systematic biases, including the source effect. 
The ability to use an effectively integrated microarray 
data set yields more reliable results due to the larger 
sample size and this also decreases the chance of false  
negatives. (Cancer Res Treat. 2007;39:74-81)
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INTRODUCTION

  DNA microarrays are a useful tool for studying complex 
systems and they are being applied to many areas of the 
biological sciences. However, systematic biases due to different 
handling procedures are often present and they are a challenge 
in these types of experimental studies. Microarray experiments 
are often performed over many months and different institutions 

may collect and process the samples, which may be assayed 
by using different array hybridization protocols or by using 
different microarray print batches or platforms. These syste-
matic biases can be detected as differences in the gene expre-
ssion patterns when one microarray data set is compared di-
rectly with other microarray data set and, as a result, this 
obscures the true biological information. Hence, these syste-
matic biases from the differences in the experimental conditions 
present a substantial obstacle for the analysis of microarray 
data.
  Due to the limited number of microarray experiments that 
have been performed, the use of whole data sets is increasing, 
regardless of the platforms or the experimental procedures used. 
When such data sets that are derived from different experi-
mental processes were analyzed individually, the results of the 
analysis were often inconsistent and they contained little reli-
able information. Therefore, it is necessary to investigate 
methods that would effectively combine microarray data sets 
that are derived from different experimental environments in 
order to minimize systematic bias.
  Many studies have analyzed several independently collected 
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microarray data sets and these studies have focused on the 
differential gene expressions by comparing two or more data 
sets in order to find the discriminative genes that can classify 
the different experimental groups (1～8). These studies have 
exploited the possibility of identifying more robust data sets 
with using multiple data sets rather than a single data set. The 
integration of separate data sets has the same effect of 
increasing the sample size of a single microarray (9), and so 
this allows performing analysis of multiple microarray data sets 
to overcome one of the main limitations of single microarray 
data set, that is, a small sample size. However, a proper 
integration method has not yet been established and one of the 
previous studies suggested that microarray data sets that are 
derived from different experimental processes could not be 
combined directly because these studies have shown that there 
is poor correlation between the arrays (10).
  The integration of multiple data sets prior to selecting the 
significant gene has been recently introduced. Singular Value 
Decompositions (SVDs) were used to correct the systematic 
bias of multiple data sets, and this was used in yeast cell cycle 
experiments (11) and for a data set that contained information 
on many soft tissue tumors (12). SVD is a method to remove 
systematic effects by projecting the expression ratios onto the 
directions of large variation, but it has been suggested that SVD 
may be inappropriate to use when the magnitude of the 
systematic effect variation is similar to the other components 
of variations (13). Meanwhile, Distance Weighted Discrimi-
nation (DWD), which is the modified form of the Support 
Vector Machine (SVM), and which adjusts for systematic 
effects, could eliminate the source effect, and it has demon-
strated good performance (Benito et al., 2004). However, DWD 
could not regulate the dispersion of the different data sets.
  A method that transforms the distributions of the gene 
expressions of two data sets similarly was proposed (14). 
However, this method did not consider the biological differ-
ences between the two different experimental groups, such as 
the normal group and the tumor group because the authors used 
the average expression value of these two groups to define a 
reference sample. A recent study introduced an Analysis of 
Variance (ANOVA) model to select the discriminative genes 
from several datasets that were derived from different experi-
mental environments (15). This flexible method can consider 
any clinical variables as well as genetic information, including 
several effect factors that represent experimental conditions. 
But with this method, we can not evaluate how well the data-
sets are intermixed, and we can not explore the expression 
patterns of any interesting genes in a combined data set. There-
fore, in this study, we suggest a method to effectively integrate 
different experimental environments.

MATERIALS AND METHODS

    1) Data source 

  (1) Tissue sample preparation: A total of 158 colorectal 
tissues (84 tumors and 74 normal tissues) were obtained from 
colorectal cancer patients who underwent surgery at Severance 
Hospital in the Yonsei University College of Medicine, Seoul, 
Korea. Informed consent was obtained from the patients in 
order to use their surgical specimens and the clinicopathologic 

data for research purposes. The fresh tissues obtained were 
snap-frozen and stored at -80

oC. 
  (2) Microarray: The total RNA was extracted from the 
tissues by using Trizol reagent (Invitrogen, Grand Island, NY) 
according to the manufacturer's protocol. The extracted RNA 
was purified prior to using an RNeasy kit for probe preparation 
(Qiagen, Germany) by following the manufacturer's protocol. 
The purified RNA samples were divided into two groups for 
gene expression profiling with using the total RNA and the 
amplified mRNA. Gene expression profiling on the total RNA 
was performed for 20 paired normal colon and tumor tissues, 
23 tumor tissues and 15 normal colon tissues. The remaining 
36 paired samples, 5 tumor tissues and 3 normal colon tissues 
were used for gene expression profiling with the amplified 
mRNA. The linear T7 mRNA amplification method was used 
for mRNA amplification with using the Megascript T7 kit 
(Ambion, Austin, TX) and by following the manufacturer's 
protocol. The total RNA (50 ug) and amplified mRNA (2 ug) 
were directly labelled with Cy5-dUTP and transcribed into 
cDNA. The microarray experiment was performed according to 
a reference design with the Cy-3 dUTP labeled Yonsei refer-
ence RNA. We used the 17K human cDNA microarray (Geno-
micTree Co., Korea) for probe hybridization based on the 
Yonsei CMRC protocol (16). Following the hybridization, the 
microarrays were scanned using a GenePix 4000B (Axon Ins., 
Foster City, CA), and the images were analyzed using a 
GenePix Pro 4.0 (Axon Ins., Foster City, CA).
  The only difference between these two microarray data sets 
was the source of the RNA. Previous studies have concluded 
that it is vital to use equally treated samples for any particular 
study, and all other samples should be amplified when one 
sample requires amplification. In addition, the sensitivity to 
detect differential gene expressions from the microarray data set 
with using amplified RNA was also different compared to using 
the total RNA (17,18). Therefore, we used these two data sets 
for evaluating our method.

    2) Data normalization

  The expression intensities were normalized so that they had 
similar distributions across a series of arrays. In this study, the 
MAD (median-absolute-deviation) scale estimator was replaced 
with the median-absolute-value and the A-values were nor-
malized, as well as the M-values. Within-slide normalization 
transformed the expression values in order to make the inten-
sities consistent within each array, and between-slide normali-
zation transformed the expression values in order to achieve 
consistency between the arrays. Between-slide normalization 
was applied to the expression data because there were different 
dispersions between the arrays after within-slide normalization. 
The normalization process was executed using the ‘limma’ 
library of the R package (http://www.r-project.org) for both 
within-slide and between-slide normalization.

    3) Data transformation 

  The gene expression ratios of data set A were transformed 
into the form of data set B when assigning data set B as the 
reference data set. The transformed expression ratios of the 
normal and tumor groups in data set A were calculated as 
follows for each gene.
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A.
  AN’ and AT’ are the transformed expression ratios of the 
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  nAN, nAT are the number of experiments of the normal and 
tumor groups in data set A. nBN, nBT are the number of 

experiments of the normal and tumor groups in data set B.

    4) Evaluation of data set integration

  The proposed integration method was evaluated by the plots 
and by the newly defined metric known as the mixture score.
  (1) Boxplot: A boxplot, which shows the shape of the 
distribution, its central value and variability, consists of the 
most extreme values in the data set (the maximum and mini-
mum values), the lower and upper quartiles and the median. 
It is used for comparing the expression patterns of two different 
data sets.
  (2) Dendrogram: A dendrogram is tree diagram that's 
frequently used to illustrate the arrangement of the clusters 
produced by a clustering algorithm and it is often used to 
illustrate the clustering of genes or experiments. It was used 
in order to explore whether the experiments in different data 
sets were well-intermixed by the proposed method. The eucli-
dean distance was used as a similarity measure and the average 
linkage method was used in this work.
  (3) Density plot for the gene expression distribution: The 
distributions of expression values of 20 randomly selected 
genes were observed with using a density plot to compare the 
different integration methods. The function ‘density’ in R (the 
R-project) was used in order to compute kernel density 
estimates using ‘Gaussian' distribution and 512 was used as the 
number of equally spaced points at which the density was to 
be estimated.
  (4) Plots for the two principal components (PC): The PCs 

is a set of variables that defines a projection that encapsulates 
the maximum amount of variation in a data set. It is orthogonal 
and therefore uncorrelated to the previous principle component 
of the same data set. Plots for two PCs were considered for 
the evaluation of the proposed method.
  (5) Correlation coefficient: A correlation coefficient is a 
number between -1 and 1 that measures the degree to which 
two variables are linearly related and it is calculated as follows.
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genes in experiment x.
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  If there is a perfect linear relationship with a positive slope 
between the two variables, then we have a correlation 
coefficient of 1. A mean value of the correlation coefficients 
was used to evaluate whether the similarities of the gene 
expression patterns from the same experimental groups were 
preserved in the integrated data set by the proposed method. 
  (6) Mixture score: A metric, Mixture score was defined to 
evaluate the efficiency of the proposed integration method. The 
principle of this metric is to measure the ratio of the number 
of experiments in data set A that belong to the k-nearest 
neighbours (kNNs) of each experiment of data set B. The 
metric was calculated as follows when k is the number of 
nearest neighbors (NNs).

Mixture score = #{x/x∈ kNNs (data set B) ∩ (data set A)}/k

where x is any experiment belonging to kNNs (data set B) and 
data set A.
  The mixture score ranges from 0 to 1. A value close to 0.5 
means that two different data sets are perfectly intermixed and 
a value close to 0 or 1 means that two different data sets are 
not intermixed.

RESULTS

  The whole data set had a range of 448 to 1,298 missing 
entries for each experiment, and the 12,293 genes that had no 
missing entries were used for further analysis. Prior to data 
transformation, there were significant differences in the scales 
and locations of the expression ratios of the randomly selected 



Ki-Yeol Kim, et al：Integration Method of Microarray Data Sets Performed with Different RNA Sources   77

Gene expression

Gene expression

Normal

Tumor

Normal_A

Tumor_A

Normal_A'

Tumor_A'

Normal_B

Tumor_B

Normal_B

Tumor_B

0.0

1.0

0.0

0.0

0.5

-1.0
-1.0

0.0 -0.5

-2.0 -2.0

-1.0 -1.0

Before After

Fig. 1. Boxplots for the expression 
ratios of a randomly selected gene. 
Boxplots for the expression ratios of 
a randomly selected gene in both the 
normal and tumor groups from two 
different data sets and a transformed 
data set (normal_A, tumor_A, nor-
mal_B and tumor_B: the normal and 
tumor groups in data set A and data 
set B, respectively; normal_A' and 
tumor_A': the normal and tumor 
groups in transformed data set A).
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Fig. 2. Density plots of 20 randomly 
selected genes. Density plots of 20 
randomly selected genes from the 
data set comprising the normal 
group (red: data set A, black: data 
set B, blue: transformed data set). 
The horizontal and vertical axes 
represent the gene expression values 
and relative frequency, respectively.

gene from the two data sets that were in the same group, as 
shown in Fig. 1. However, these differences were adjusted by 
the transformation of the expression ratios of data set A with 
reference to data set B.
  When we evaluated 20 randomly selected genes with using 
density plots, there were significant differences in the expre-
ssion ratios between data set A and data set B. These 
differences were found in the locations of gene8 and gene13 
and in the dispersions of gene6 and gene7 (Fig. 2). If the data 
sets are analyzed prior to transformation, then gene6 and gene7 
in data set A, which have larger variations, may be relatively 
more influential than those in data set B in further analysis. 
Due to the large differences in the locations of the expression 
ratios between the two different data sets, gene8 and gene13 
may lose some chance to be selected as differentially expressed 
genes between the two experimental groups. However, after 
transformation of the gene expression ratios of data set A into 
data set B, thus preserving the expression patterns of data set 

A, the expression patterns of the two data sets were adjusted 
in further analysis.
  While the two most important Principal Components (PCs) 
can be used in order to compare the expression patterns of two 
data sets, the two data sets were not only separated into the 
normal and tumor groups, but data set A was also separated 
from data set B, as shown in Fig. 3A. This confirmed that there 
was a significant systematic effect in the expression ratios 
between the two different data sets. However, the difference in 
the location between the PCs from the two data sets was 
adjusted for by the proposed transformation method. In 
addition, the clear separation of the normal and tumor groups 
and the good mixture of the two data sets are shown with using 
a scatter plot (Fig. 3B).
  Unsupervised hierarchical cluster analysis was applied to the 
data sets in order to assess the mixture of the two data sets. 
Two clusters, data set A and data set B, were identified and 
this indicated that there was an experimental bias between the 
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two data sets (Fig. 4A), even though the whole gene set was 
able to separate the normal groups from the tumor groups 
within both data set A and data set B. However, in the 
hierarchical cluster analysis after the transformation of data set 
A, the transformed data set A and data set B were well 
intermingled, indicating that the experimental bias was 

minimized. Two previously identified subgroups, the normal 
and the tumor group, were also well separated (Fig. 4B).
  When we evaluated the mixture score of the data sets prior 
to transformation, the normal group within data set B was 
hardly intermixed with the normal group of data set A. On the 
other hand, the tumor group was intermixed slightly more as 
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Table 1. Comparison of the mixture score in each case
󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚

Similarity measure
󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏

Euclidean distance Pearson correlation coefficient
󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏 󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏

Normal Tumor Normal Tumor
󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏 󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏 󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏 󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏

k (# of NNs) AB A'B AB A'B AB A'B AB A'B
󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏

 5 0.00000 0.00513 0.00000 0.00952 0.00000 0.00293 0.00293 0.01099
10 0.00000 0.02125 0.00000 0.03333 0.00000 0.01245 0.00586 0.03736
15 0.00000 0.04664 0.00147 0.06276 0.00000 0.03468 0.01099 0.07131
20 0.00000 0.08114 0.00348 0.09908 0.00037 0.07015 0.01777 0.10842
25 0.00000 0.12176 0.00660 0.14051 0.00037 0.11179 0.02711 0.15018
30 0.00037 0.16654 0.00965 0.18535 0.00940 0.15763 0.03858 0.19512
35 0.00314 0.21277 0.01455 0.23171 0.01811 0.20460 0.05275 0.24176

󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏
AB: integrated data set prior to transformation, A'B: integrated data set after transformation. The Euclidean distance and Pearson's 
correlation coefficient were considered as similarity measures to calculate the mixture score and the NNs ranged from 5 to 35.

Table 2. Comparison of the correlation coefficient within the same 
group prior to and after data transformation
󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚󰠚

Method
󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏

A B AB A'B
󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏
Normal group 0.8537108 0.8117674 0.7524499 0.8099954
Tumor group 0.719063 0.6806154 0.6205274 0.6770875
󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏󰠏
A, B: data set A, data set B, AB: integrated data set before 
transformation, A'B: integrated data set after transformation.

the number of the Nearest Neighbors (NNs) increased prior to 

transformation (Table 1). This may be due to the larger 
variation within the tumor groups than that in the normal 
groups. The average correlation coefficient was 0.85 within the 
normal group in data set A, it was 0.81 in data set B, it was 
0.72 within the tumor group in data set A and it was 0.68 in 
data set B (Table 2). After the transformation, the mixture 
scores increased by as much as 24.2% as the number of NNs 
were increased, suggesting that the two different data sets were 
well intermixed. In addition, the values were similar whether 
the euclidean distance or the Pearson correlation coefficient was 
used as a similarity measure.
  The mean value of the correlation coefficients was used to 
evaluate how well the proposed integration method preserved 
the similarity of the gene expression patterns within the same 
groups. When the correlations within a group of an integrated 
data set are similar or larger than those of the individual data 
sets prior to integration, the proposed method can then be 
interpreted as having effectively integrated the data sets. Data 
set A had higher correlations within the same groups than did 
data set B prior to integration, indicating that the experiments 
in data set A had more homogeneous gene expression patterns 
than that in data set B. The integrated data set achieved by the 
proposed transformation method had a higher correlation 

coefficient within the same groups than did the combined data 

set prior to transformation, and this indicated that the proposed 
method more effectively preserved the homogeneity of the 
experiments within the same group.

DISCUSSION

  The previous studies have encouraged the use of an inte-
grated data set of two or more independent data sets for a 
variety of microarray applications (1,3～9). When the micro-
array data sets are used without adjusting for the experimental 
bias and the experimental bias exceeds the biological variation, 
then the meaningful biological variation is not identifiable and 
reliable results are not obtainable. In addition, due to the limited 
number of microarray experiments performed, the use of whole 
data sets, regardless of the platforms or experimental proce-
dures, is increasing. Therefore, adjustment of the experimental 
bias caused by the different experimental environments should 
be accounted for in further analysis of the data. Fig. 1 showed 
that the expression ratios of the same genes from different data 
sets may be significantly different, even within the same 
experimental group, when microarrays from different experi-
mental conditions are analyzed after integration without any 
prior transformation.
  In order to minimize experimental bias in the present study, 
the expression ratios of a data set (data set A) were transformed 
to have an expression pattern that was similar to the reference 
data set (data set B). This transformation allowed each gene 
in the different data sets to have a similar expression pattern 
within the same experimental group. The algorithm we used 
was relatively simple compared to the ones used in previous 
studies (11～13). By using the proposed method, the expression 
patterns of genes in two data sets were transformed to have 
similar expression patterns, preserving the form of the 
distribution of the original expression ratios (Fig. 2). From this 
result, we were able to confirm that the two different data sets 
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have a fair influence on the subsequent analysis.
  The double matrix of the 1D and 2D PCA (Principal 
Component Analysis) projections and the obvious experimental 
bias are shown in Fig. 3. The diagonal plots of the first two 
PCs are shown as density plots. The other diagonal plots 
showed the relationship of a pair of two PCs as scatter plots. 
Two PCs were selected from two different data sets and they 
had similar expression patterns, but there were differences in 
the location of the expression ratios. However, the two different 
data sources were very well mixed after the transformation was 
performed, meaning that the systematic sample source effects 
in these two data sets were effectively removed. The repre-
sentative expression patterns of these two data sets became 
similar to one another via the process of transformation, which 
was a problem that was not solved in a previous study (13).
  As seen in Fig. 4A, there was no intermixture of the two 
data sets prior to transformation. Meanwhile, data set A and 
data set B were separated into normal and tumor groups within 
each data set with using the whole gene set. After 
transformation, there was a great intermixing of the two 
different data sets, but some of the data set in the end-node 
of the dendrogram had not been intermixed, as is shown in Fig. 
4B. This may have been due to the usage of a whole gene set, 
not a discriminative gene set, for clustering. Two previously 
identified subgroups, the normal and tumor subsets, separated 
well in the intermixed data set.
  A metric measuring how well the two data sets were mixed 
(the mixture score), can be interpreted that the experimental 
bias was removed as the value was large. The two data sets 
were mixed well by the proposed method, but the mixture score 
was less than 25%, which is lower than the ideal perfect 
mixture value, suggesting that the two data sets were not yet 
perfectly intermingled. This may have been caused by the 
characteristics of the experiments included in the two data sets. 
The proposed method was more effective in the tumor group 
than in the normal group (Table 1), which is a more hetero-
geneous population biologically. Therefore, the current method 
might be more effective in those experiments with larger 
variations among the experiments, as in the tumor group. In 
addition, on comparison of the average correlation coefficients, 
the tumor groups had lower correlation coefficients than did the 
normal groups, suggesting that the tumor groups were more 
heterogeneous and this may have been due to various tumor 
stages within the group. Consequentially, the tumor groups 
were intermixed better by the proposed integration method than 
the normal groups. 
  The proposed integration method transformed the expression 
ratios of the two data sets similarly in the corresponding 
experimental group, thus preserving the expression patterns of 
the data sets prior to transformation. Our method considered the 
biological differences among different experimental groups by 
transforming the expression ratios for each experimental group. 
This may distort the differences between the tumor and the 
normal groups and so cause false positive results, but this is 
a problem that may not be considered when the ranking 
approach is used for selection of a discriminative gene set.
We used two microarray data sets that used amplified and 
non-amplified RNA sources for evaluating our method. Even 
though previous studies have concluded that equally treated 

samples for any particular study are essential (18), and we also 
confirmed that there were clear biases between the two data 
sets with using unsupervised hierarchical clustering, this may 
not be sufficient to show that our method has general applica-
bility. Therefore, we are currently evaluating the method with 
using other publicly available data sets that were experimented 
on with using different platforms. 
  When selecting the reference data set, we considered data set 
B as a reference data set in this work, without any considera-
tion of the biological meaning. The data set A also can be used 
as a reference data set or both of two data sets can be 
transformed with using pooled standard deviations.
  The proposed method can be used for any data set with more 
than two experimental groups, and it is able to combine more 
that 2 data sets. However, this method might not be appropriate 
when the different experimental features in the different data 
sets include biological differences (for example, early disease 
stages I and II in data set A and advanced disease stages III 
and IV in data set B). This is because the proposed method 
transforms the expression values of a specific experimental 
group into the form of a corresponding experimental group of 
the reference data set. Hence, we suggest using the current 
method for the integration of data sets, of which each data set 
is phenotypic or biologically homogenous, at least to the 
experimenters' current knowledge.

CONCLUSIONS

  The proposed method worked well for adjusting systematic 
biases, including the source effect. The ability to use an 
effectively integrated microarray data set yields more reliable 
results due to the larger sample size and it also decreases the 
chance of false negatives. The discriminative gene set, which 
was selected from the integrated data set by our method, is 
expected to include more significant biological pathways. 
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