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Abstract
Juvenile social play behavior is one of the earliest forms of non-mother directed social behavior in
rodents. Juvenile social play behavior is sexually dimorphic, with males exhibiting higher levels
compared to females, making it a useful model to study both social development and sexual
differentiation of the brain. As most sexually dimorphic behavior, juvenile play behavior is
organized by neonatal steroid hormone exposure. The developmental organization of juvenile play
behavior also appears to be influenced by the early maternal environment. This review will focus
briefly on why and how rats play, some brain regions controlling play behavior, and how
neurotransmitters and the social environment converge within the developing brain to influence
sexual differentiation of juvenile play behavior.

Overview of play
Juvenile social play behavior is regarded as one of the earliest forms of non-mother directed
social behavior in rodents (1). An appealing aspect of juvenile social play behavior is that it
is sexually dimorphic, with males exhibiting higher levels of social play than females,
making it an attractive model behavior to understand both normal juvenile social
development and sex differences in social behavior in a non-reproductive context. It is also
becoming clear that while this sexually dimorphic behavior is organized by neonatal steroid
hormone exposure, the differentiation of social play can be also influenced by the early
social environment, such as the amount of maternal care received. Investigations of social
play are centered on why and how rats play, brain regions controlling play behavior, sex
differences, and how neurotransmitters and the social environment might influence the
organization of play behavior. It will be interesting to understand how the social
environment impinges on neurotransmitters to influence the steroidreceptor mediated
organization of juvenile social play behavior.

Why do rats play?
There are several intriguing concepts as to why rats play. Juvenile play behavior is
considered to be rewarding, as the opportunity to play can be used as an incentive for maze
learning (2,3) and juvenile rats develop conditioned place preferences for areas associated
with play (4). Anticipation of play also elicits 50 KHz ultrasonic vocalizations (5), which are
associated with positive affect (6). Indeed, it has been suggested that play is “joyful” (7),
and that some vocalizations during juvenile play might be akin to human laughter (8).
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Another possible function of play is to establish dominance in the group. Following multiple
play bouts, juveniles develop dominance hierarchies which remain relatively stable over the
juvenile period (9,10), although play dominance does not always appear to predict
dominance in adulthood (11). Play may also function to better prepare for adult behaviors
such as male sexual and aggressive behaviors (12), as play behavior predicts adult
aggressiveness in males (13). Preventing males from playing has lasting consequences on
social (14–16), aggressive (16), and sexual behavior (16,17). The effect of juvenile isolation
on these behaviors appears mainly due to deprivation of play, as isolated animals provided
with a brief daily period of play do not develop these deficits (16). Therefore play may serve
to prepare for more adaptive social behaviors in adulthood.

How do rats play?
Juvenile social play behavior starts to form around 18 days, peaks during the peripubertal
period (days 30–40), and wanes after puberty. Play is observed as bites, boxing/wrestling,
pouncing, pinning. Pouncing, the act of jumping on or attacking the nape of a conspecific, is
considered an initiation or solicitation of play (10). If the conspecific responds playfully,
boxing or wrestling frequently ensues. Boxing occurs when both rats stand on their
hindpaws and push at each other with their forepaws. Wrestling occurs when two rats roll
and tumble over each other. Pinning, or one rat holding a conspecific in a supine position, is
often the result of boxing and wrestling bouts. Pinning is used to determine dominance
status among juveniles (10).

Interestingly, the expression of some types of play changes over the course of the juvenile
period. For example, play initiation accounts for most of the temporal changes in the
frequency of play behavior (18). In contrast, the probability of responding to a playful attack
remains relatively constant over time, although the defense tactics used by males do change
with age (18). Younger animals appear to withdraw from play sooner than older animals
following boxing or wrestling bouts (19). In older animals, boxing and wrestling are more
likely to end with pinning (19), and occurs more frequently (10). The target of play also
appears to change over time. Prior to postnatal days 31– 35, males prefer to play with other
males; however, preference shifts towards females as males approach puberty (10,18). These
studies suggest that the combinations of play and the target of play are changing over age,
and that the functional role of play may also be changing over time.

Methods to assess play
Paired-exposure testing is one method used to assess play behavior. In this paradigm,
animals are isolated before testing to increase motivation to play. A pair of animals is then
placed into a neutral arena and allowed to interact for a short time, while play behavior is
observed (20). This method allows for observation of many play bouts within a short time,
and often requires only a single test session per animal; however, it does investigate levels
of social play in response to brief isolation. Alternately, play behavior can be examined in a
more naturalistic manner by observing group-housed animals undisturbed in their home
cages using a focal observation method (21). Although this method requires longer
observation periods, it exposes animals to multiple play partners and does not require
isolation or exposure to a novel environment, both of which can act as stressors. As
discussed below, the method of testing impacts the reliability of observed sex differences in
social play.

Neuroanatomy of play
Several brain regions have been implicated in juvenile play behavior. For example, lesions
to the cortex, nucleus accumbens, hypothalamus, and the amygdala have been shown to
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decrease social play behavior. In contrast, lesions to the septum increased social play
behavior. Interestingly, lesions to the medial preoptic area appear to be without effect of
social play behavior. These findings are summarized in a review by Vanderschuren et al on
the neurobiology of social play behavior (1). A recent study examining changes in Fos
mRNA expression following social play behavior in juvenile rats reports increased Fos
mRNA levels within the tectum, inferior colliculus, striatum, somatosensory cortex, and the
ventromedial hypothalamus; however, no changes were observed in the amygdala (22). This
is intriguing as neonatal lesions of the amygdala severely disrupt social play behavior (23),
and local implant of steroids increase the organization of social play (24,25).

While few studies have critically examined the role of the BST on social play behavior, its
connections with the amygdala do suggest that it may be pertinent to this behavior. Indeed,
numerous investigators consider the BST as an extension of the amygdala. This is referred to
as the extended amygdala hypothesis. These regions share numerous connections and
chemical similarities. Both contain dopamine (26), vasoactive intestinal peptide (27), and
dopamine receptors (28). Indeed, the concept of the central extended amygdala includes the
central nucleus, substantia innominata, and lateral bed nucleus (29). As the amygdala is
critically involved in social play behavior, it is likely that the BST will play a role. Indeed, a
relatively recent report examined the influence of social play deprivation on opioid receptors
and found that from around 40 different brain regions examined, the bed nucleus and the
amygdala exhibited the same up regulation of opioid receptors (15). In addition, our own
data suggest that the BST responds in a similar manner to dopaminergic activation of ERs as
does the central amygdala (30).

Social play and activity level
Although few of the studies discussed address whether the reported effects on social play are
due to changes in overall playfulness, social motivation, or motor activity, social play
appears to be regulated separately from each of these factors. For example, although juvenile
males engage in more social play than females, solitary locomotor play is not sexually
dimorphic (31). Additionally, juvenile females engage in more general motor activity than
juvenile males (32). Neonatal treatment with estradiol or testosterone does not alter juvenile
motor activity (33), although these hormones do increase juvenile social play (30,34).
Similarly, lesions or pharmacological treatments that reduce social play do so without
altering arousal, responses to non-social motivating stimuli (35), or general motor activity
(36). Naloxone, which acutely reduces play behavior, does not alter motivation for social
interaction (35). Cannabinoid receptor agonists (37) increase social play, but do not
influence social investigation or overall motor activity. Although these data do not rule out
the possibility that changes in overall playfulness, motivational processes, or motor activity
can impact the expression of social play, these data suggest that social play can be regulated
separately from these processes.

Sex differences in play
As in many mammalian species, including cats (38), dogs (39), nonhuman primates (40) and
humans (41–43) males engage in more rough-and-tumble juvenile social play than females.
Similarly, the frequency of social play in rats is sexually dimorphic, with male rats engaging
in social play more often than females (10,19,21,24,44,45). This sex difference has been
attributed largely to an increased rate of play initiation by males (10,18,34,46). Interestingly,
prospective partners are also more likely to respond to play solicitation by males compared
to females (18). In addition to play initiation, other components of social play are also
sexually dimorphic. For example, males are more likely to counterattack (18), thus
extending the play bout, than females. Males also engage more frequently in boxing (10),
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and pin their play partners more often than females (9,10). Pellis and Pellis have reported
that defensive responses to play initiation are also sexually dimorphic. Females are more
likely to allow themselves to be pinned by a play partner and this difference increases with
age, as males adopt defensive tactics that lead more frequently to boxing (18).

The reliability of sex differences in the frequency of social play appear to depend upon the
method of testing. Consistent sex differences are found when animals are group housed and
observed undisturbed (19,21,47). In contrast, sex differences are less reliably found in paired
exposure paradigms. Particularly when long-term isolation or short testing times are used,
sex differences are often not detected using this method (48–50), although some sex
differences have been observed (34,44). Sex differences in paired exposure testing are more
reliable following shorter isolation periods (i.e. about 24 hours) and longer observation
periods (18,51,52).

Hormones and play development
Sexual differentiation of social play behavior depends upon differential exposure to
testosterone during the perinatal period. Male rats castrated early in the postnatal period
engage in female-typical levels of juvenile social play (21,53). Additionally, the social play
behavior of females can be masculinized by peripheral testosterone (34) treatment or
following implants of testosterone into the amygdala (24,25) during the early neonatal
period. Androgen receptors (ARs) are known to play a major role in mediating the effects of
testosterone on the organization of social play. For example, males exposed perinatally to
the AR antagonists flutamide (45,54,55) or vinclozolin (55) display reduced levels of
juvenile social play. Additionally, peripheral treatment with 250µg testosterone or 250µg of
its androgenic metabolite, dihydrotestosterone, during the neonatal period can masculinize
social play behavior. Low doses (5µg) of estradiol benzoate (EB) during the neonatal period
appear to have little effect on juvenile play (21). In contrast, higher doses (100 µg) of EB,
which resemble male-typical levels of estradiol in the neonatal brain (56), appear to
masculinize juvenile social play in females to male-typical levels (30). Although males with
the testicular feminization mutation (Tfm), which renders them insensitive to androgens,
showed decreased play behavior compared to normal males (45), Tfm males did tend to play
more frequently than females. Recent evidence from Tfm males also suggests that while
these males engage in some aspects of play at female-typical levels, Tfm males display other
components of social play at male-typical levels (57), supporting the idea that ERs also play
a role in differentiating social play behavior. Additionally, perinatal exposure to the
environmental estrogen, bisphenol A, can masculinize play behavior in female rats and
hypermasculinize play in males (58). Perinatal treatment with the synthetic estrogen,
diethylstilbestrol, has also been reported to increase the social play of females [Hines et al,
1982 cited in (59)]. Additional data from non-human primates also suggest the possibility
that ERs may contribute to the masculinization of play. While androgen systems contribute
strongly to the masculinization of juvenile social play behavior in nonhuman primates (60),
female rhesus macaques exposed prenatally to the synthetic estrogen, diethylstilbestrol
dipropionate, show increased social play behavior during the juvenile period (40).
Therefore, the organization of social play behavior may involve both AR and ER; however,
as neonatal estrogen exposure increases AR mRNA expression (61), it is possible that ERs
influence play development by increasing AR sensitivity.

Neurotransmitters and play development
While the effects of numerous neurotransmitters and drugs on play behavior have been
examined, most appear to decrease juvenile play with only a few increasing play behavior
[see review (59)]. One neurotransmitter, dopamine, appears to be important in sexually
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differentiating the brain. Male sexual behavior can be disrupted by neonatal treatment with
dopamine receptor agonists (62) and antagonists (63), as well as dopamine synthesis
inhibitors (62). Furthermore, the adult female sexual behavior is defeminized following
perinatal treatment with dopamine agonists (64,65). Dopamine also appears to be important
for sexual differentiation of social play behavior. Neonatal treatment of females with a
dopamine receptor agonist, lisuride, masculinizes the juvenile and peripubertal play
behavior (64,65). We have recently confirmed that neonatal treatment of female rats with the
dopamine D1-like receptor agonist, SKF 38393, also masculinizes juvenile social play (30).
Within the developing brain, dopamine appears to be sexually dimorphic. While females
have more catecholaminergic neurons than males within the anteroventral periventricular
nucleus of the hypothalamus (66), males have more catecholaminergic neurons in the
mediobasal hypothalamus (67). Males also have increased DA content in the hypothalamus
(68) and cortex (69), as well as greater hypothalamic DA release (70) during the early
postnatal period contrasted to females. Taken together, these data indicate that increased DA
activity in some areas might contribute to the masculinization of social play behavior. In
addition to dopamine, the opioid system appears to contribute to the organization of social
play behavior. Prenatal treatment with morphine, an opioid receptor agonist, increases the
juvenile social play of male rats (71–73).

Possible convergence of neurotransmitters and steroid receptors on play
development

In 1994, Mani and colleagues reported that progestin receptors in female rat brain can be
activated in a ligand-independent manner by dopamine to facilitate female sex behavior
(74). Since then, numerous factors have been found to ligand-independently activate
progestin receptors in female rats (75–77). ERs are also activated in a ligand-independent
manner (78,79), and recent data indicate that this may be occurring in the adult female rat
brain to influence reproductive behavior (80). We recently reported that dopamine can alter
gene expression within regions of the developing central extended amygdala via an ER-
dependent mechanism (30,81). As discussed above, dopamine and ERs appear to both
influence the organization of social play behavior, and the central amygdala is an important
area controlling play behavior. This led us to hypothesize that the effects of dopamine on the
development of social play may be mediated in part by ERs (30). To address this question,
we first confirmed a role for ERs and dopamine in the organization of social play. Neonatal
treatment with a male-like dose of estradiol increased the social play of females to male-
typical levels and this effect was blocked by pretreatment with an ER antagonist. Similarly,
female rats treated as newborns with the dopamine D1-like receptor agonist, SKF 38393,
displayed increased levels of social play. To determine if ERs mediate the effect of SKF
38393 on play, we treated neonatal females with an ER antagonist prior to SKF 38393
treatment. ER antagonist pretreatment completely blocked the SKF-induced increase in
social play, suggesting that dopamine might be altering the development of social play via
an ER-dependent mechanism (30). It is not known if dopamine converges directly upon ER
containing cells or indirectly through other factors known to activate ER in a ligand-
independent manner, such as EGF, IGF, cAMP, or protein kinase A. It is also not known if
any of these factors can locally increase the synthesis of neurosteroids. As neurotransmitters
are sensitive to the social environment, it will be important to determine how early social
interactions influence neurotransmitters in the developing brain. As state above, increased
ER activity in developing brain can increase AR expression (61); therefore, it is not clear if
ERs regulate play development via AR-independent mechanisms or by increasing AR
sensitivity.
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Social experience and play development
Work in non-human primates has demonstrated that social environment, particularly
maternal interaction, is important for the development of social play (82). Prior to the start
of juvenile social play, the primary social contact experienced by rat pups is interaction with
the dam. This maternal interaction influences the development of behavior in the offspring.
Interestingly, the amount of maternal grooming provided to pups is sexually dimorphic;
male pups receive more maternal grooming of the anogenital region than females (83). This
sex difference depends upon the pup’s gonadal hormone exposure (84) and influences the
development of sexually dimorphic behavior, including juvenile social play. The outcome of
increased maternal grooming appears to reduce later juvenile social play. For example, male
offspring of dams treated throughout lactation with intranasal zinc sulfate or dietary saline,
treatments which specifically reduce maternal anogenital grooming, display increased social
play behavior between days 33 and 42 (85). Similarly, reducing maternal grooming by
applying perfume to the pups’ anogenital region leads to more frequent social play in males
(86). Naturally occurring variations in maternal care also impact the development of social
play. Male pups of dams that provide low levels of grooming play more frequently
compared to male offspring of dams that provide high levels of grooming (87). Interestingly,
maternal grooming does not appear to impact the social play of females (85–87).

Because increased maternal grooming is associated with gonadal hormone exposure (84),
which increases social play, it is counterintuitive that maternal grooming reduced social
play. It is important to note that the studies discussed above all examined social play after
day 30. It is possible that maternal grooming may alter the expression of play prior to day
30, or may change the developmental timing of social play, such as advancing the onset and/
or peak of social play. For this reason, it is important to examine the effects of maternal
grooming on social play earlier in the juvenile period. Alternately, it has been proposed that
some developmental sex differences act to reduce the expression of sex differences later in
life (88); therefore, it is possible that maternal grooming may act as a compensatory
mechanism to limit the effects of gonadal hormones or factors that impact sexual
differentiation social play

Epigenetic contributions to play development
Emerging data suggest that there is a convergence of both steroid hormones and the social
environment on DNA to program lasting differences in juvenile social play behavior.
Interestingly, it is not clear if this convergence is synergistic or opposing, as discussed in the
previous paragraph. Differences in maternal care received are reflected in differences in the
methylation status of ER promoter region (89). As dams maternally groom males more than
females during the early neonatal period, it will be intriguing to determine if this sex
difference in amount of maternal grooming received creates a sexually dimorphic
epigenome. Our recent data indirectly support the possibility that the methylation status of
DNA influences the organization of social play. We recently reported that expression of the
methyl-binding protein, Mecp2, is sexually dimorphic within the developing rat brain, with
males expressing lower levels of Mecp2 within the amygdala during the first week of
postnatal life (90). We then used siRNA targeted at Mecp2 within the developing amygdala
during the first few days of postnatal life and assessed the enduring impact on juvenile social
behavior. We found that neonatal Mecp2 siRNA treatment reduced the frequency of juvenile
social play behavior in males to female typical levels. Interestingly, females remained
resilient to this disruption and exhibited typical levels of juvenile play behavior. As Mecp2
binds methylated DNA (91), and DNA methylation patterns are sensitive to maternal cues
(92), the functional role of this protein in social organization may be dictated by the
maternal and hormonal environment. It is also likely that steroid hormones and
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environmental factors converge on DNA to create a sexually dimorphic epigenome that
underlies lasting sex differences social behavior.

Conclusions
The data discussed above indicate that gonadal steroid hormones, neurotransmitters, social
experience, and epigenetic factors contribute to the development of social play and suggest a
possible convergence of these factors in sexually differentiating juvenile social play. Future
research should examine the mechanisms of convergence, and whether these mechanisms
influence similar or different components of play. As the organization of juvenile play is
similar across a variety of species, the biological investigation of how this particular
behavior is organized may give us a better insight into the development of typical and
atypical juvenile social behavior.
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