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Abstract
Purpose—To describe and evaluate a machine learning based, automated system to detect exudates
and cotton-wool spots in digital color fundus photographs, and differentiate them from drusen, for
early diagnosis of diabetic retinopathy.

Methods—Three hundred retinal images from one eye of three hundred patients with diabetes were
selected from a diabetic retinopathy telediagnosis database (non-mydriatic camera two field
photography); 100 with previously diagnosed ‘bright’ lesions, and 200 without. A machine learning
computer program was developed that can identify and differentiate among drusen, (hard) exudates,
and cotton-wool spots. A human expert standard for the 300 images was obtained by consensus
annotation by two retinal specialists. Sensitivities and specificities of the annotations on the 300
images by the automated system and a third retinal specialist were determined.

Results—The system achieved an area under the ROC curve of 0.95 and sensitivity/specificity pairs
of 0.95/0.88 for the detection of ‘bright’ lesions of any type, and 0.95/0.86, 0.70/0.93 and 0.77/0.88
for the detection of exudates, cotton-wool spots and drusen, respectively. The third retinal specialist
achieved pairs of 0.95/0.74 for ‘bright’ lesions, and 0.90/0.98, 0.87/0.98 and 0.92/0.79 per lesion
type.

Conclusions—An machine learning based, automated system capable of detecting exudates and
cotton-wool spots and differentiating them from drusen in color images obtained in community based
diabetic patients has been developed and approaches the performance level of that of retinal experts.
If the machine learning can be improved with additional training datasets, it may be useful to detect
clinically important ‘bright’ lesions, enhance early diagnosis and reduce suffering from visual loss
in patients with diabetes.
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Introduction
Diabetic retinopathy is the most common cause of blindness in the working population of the
United States (1). Early diagnosis and timely treatment have been shown to prevent visual loss
and blindness in patients with diabetes(2–4). For patients recently diagnosed with diabetes, a
high proportion of normal appearing fundi are expected, and only 5%–20% may demonstrate
fundoscopically visible diabetic retinopathy(5). Digital photography of the retina examined by
expert readers has been shown to be sensitive and specific in detecting the early signs of
retinopathy(6). Early diabetic retinopathy lesions may be classified into ‘red lesions’, such as
microaneurysms, hemorrhages and intraretinal microvascular abnormalities, and ‘bright
lesions’, such as lipid or lipoprotein exudates and superficial retinal infarcts (cotton-wool spots)
(6;7). We and others have described machine learning computer systems capable of detecting
‘red lesions’ and blood vessels in retinal color photographs with high accuracy(8–13). Because
retinal exudates can represent the only visible sign of early diabetic retinopathy in some
patients, computer-based systems that can detect exudates have been proposed(14–18).
However, to diagnose the ‘bright lesions’ associated with diabetic retinopathy, namely
exudates and cotton-wool spots, the lesions must be differentiated from drusen, the ‘bright
lesions’ associated especially with age-related macular degeneration (AMD), which can have
similar appearance(19), as well as from posterior hyaloid reflexes and flash artifacts, which
can sometimes mimic bright lesions in appearance. A computer-based system that can detect
‘bright’ lesions must therefore be capable of differentiating among different lesion types, as
they have different diagnostic importance and management implications. Extending our
previous work on machine learning automated detection of blood vessels and red lesions, we
have developed a machine learning algorithm that can detect bright lesions in retinal color
photographs and can differentiate among exudates, cotton-wool spots and drusen.

The purpose of this study was to describe and evaluate this machine learning based computer
algorithm to detect exudates and cotton-wool spots in digital color fundus photographs, and
differentiate them from drusen. The evaluation was performed on a representative sample of
images of patients with diabetes drawn from a telediagnosis project in the Netherlands, with
100 color fundus images containing ‘bright lesions’ and 200 images with no abnormalities.
Because the purpose was to compare the machine learning algorithm to that of human experts,
a human expert reference standard was created by having three masked retinal specialists
annotate the sample photographs.

Methods
Subjects

A total of 430 retinal images, of adequate quality as originally read by an ophthalmologist for
clinical reading, were selected from the EyeCheck project in the Netherlands for this study
(20). 230 images were originally read as containing one or more of exudates, cotton-wool spots
and/or drusen, and 200 were originally read as not containing any of these bright lesions. 130
of the images, all originally read as containing bright lesions, were used to train the machine
learning algorithm, and 300 images, from 300 subjects, were used to perform diagnostic
validation. The EyeCheck project database contains images for over 18,000 exams (over
72,000 images) of patients without previously known diabetic retinopathy (20). The study was
performed according to the tenets of the declaration of Helsinki, and Investigational Review
Board approval was obtained. The researchers only had access to the anonymous images and
their original diagnosis. Because of the retrospective nature of the study and patient anonymity,
informed consent was judged not to be necessary by the IRB. The EyeCheck project
(www.eyecheck.nl) performs early diagnosis of diabetic retinopathy over the internet in a
community based population using digital cameras in primary care physicians’ offices, so the
images were obtained at multiple sites.
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Fundus photography
Images were obtained at multiple sites with three different ‘non-mydriatic’ cameras: the
Topcon NW 100, the Topcon NW 200 (Topcon, Tokyo, Japan) and the Canon CR5-45NM
(Canon, Tokyo, Japan). The imaging protocol has been described previously: briefly, digital
color photographs were obtained under natural dilation in a dark room, and if natural dilation
did not suffice, the pupil was dilated pharmacologically using one drop of Tropicamide 0.5%
per eye as per protocol(20). One disc centered and one fovea centered image was obtained for
each eye, both at 45° field of view. For the Topcon cameras, spatial resolution was
approximately 8×8μm per pixel (2048×1536), while for the Canon type cameras, it was
approximately 15×15μm (1024×768pixels). All camera types have 1-layer CCD RGB sensors,
and images were JPEG compressed at the lowest loss compression setting, resulting in image
files of approximately 0.15–0.5MB per image.

Machine learning training images
The machine learning algorithm is a so-called supervised algorithm, and therefore needs a set
of annotated lesions to ‘learn’ how to detect bright lesions and differentiate among them. For
this purpose, 130 anonymous images originally read as containing bright lesions were selected.
All pixels in all of these images were segmented by retinal specialist A as to whether they were
(part of) an exudate, cotton-wool spot, drusen or background retina. Vessels, disc and red
lesions, if present, were treated as background retina. The images utilized to create the training
set were not included in the test set (see below). The training set contained 1113 exudates
(93067 pixels), 45 cotton-wool spots (33959 pixels) and 2030 drusen (287186 pixels).

Image data set for testing performance
Three hundred anonymous images were selected as the testing set. One hundred images were
selected at random from all images that were originally read clinically as containing one or
more bright lesions, and two hundred images were selected from all images originally read as
containing no lesions (not containing any exudates, cotton-wool spot, or drusen). Three masked
retinal specialists (A, B, C) performed annotation on all images in random order indicating
whether one or more exudates, cotton-wool spots or drusen or any combination thereof was
present. A consensus annotation was then obtained, using a teleconference discussion format,
by asking two of the retinal specialists (A, B) to reach consensus on all images where their
independent annotations had differed. The consensus annotation was used as the reference
standard, and contained 105 images with bright lesions and 195 without. In other words, some
images originally thought to be without bright lesions did contain one or more bright lesions
according to the consensus reference standard and vice versa). There were 42 images with
exudates, 30 with cotton-wool spots and 52 with drusen in this test set. Some images also
contained ‘red’ lesions (microaneurysms, hemorrhages, microvascular abnormalities or
neovascularizations), and the distribution of the presence of lesions is given in Table 1.

Machine learning algorithm
The machine learning algorithm is based on our earlier work using retinal pixel and lesion
classification(8–10). To perform detection and differentiation of bright lesions, if any, in a
previously unseen image, the following steps were performed:

1. Each pixel was classified, resulting in a so-called lesion probability map that indicates
the probability of each pixel to be part of a bright lesion

2. Pixels with high probability were grouped into probable lesion pixel clusters

3. Based on cluster characteristics each probable lesion pixel cluster was assigned a
probability indicating the likelihood that the pixel cluster was a true bright lesion.
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4. Each bright lesion cluster likely to be a bright lesion was classified as exudate, cotton-
wool spot or drusen.

Figure 1 illustrates the above steps. The system performs the classification steps (1, 3, and 4)
using a statistical classifier that, given a training set of labeled examples, can differentiate
among different types of pixels or clusters based on so-called features or numerical
characteristics, such as pixel color, cluster area, etc. The features used depend on the type of
objects that are to be classified. For each classification step several statistical classifiers were
tested on the training set and the one demonstrating the best performance was used on the test
set. A k-nearest neighbor classifier was selected for steps 1 and 3, and a linear discriminant
classifier for the third classification step(17). When presented with an unseen image in the test
set, the automated algorithm gave two outputs: whether bright lesions were present or not, and
which class each lesion was: exudate, cotton-wool spot, or drusen. A more extensive
description of the algorithm is given in the Appendix.

Outcome parameters and data analysis
The machine learning algorithm annotated all images in the test set repeatedly while varying
the threshold for normal/abnormal cutoff (steps 1 and 3). Sensitivity, specificity, and kappa of
the annotation compared to the consensus standard was calculated at each threshold setting.
Sensitivity, specificity, and kappa, of retinal specialist C compared to the consensus standard
were also determined. For the machine learning algorithm, these sensitivity/specificity pairs
can be used to create Receiver Operator Characteristic (ROC) curves for all bright lesions, and
for the differentiation of exudates, cotton-wools and drusen. The ROC curve shows the
sensitivity and specificity at various thresholds, and the system can be set for a specific
sensitivity/specificity by selecting the corresponding threshold. For a screening system,
sensitivity is more important than specificity, so a threshold could be chosen that maximizes
sensitivity while still maintaining enough specificity. Because human experts cannot
(consciously) adjust their lesion detection threshold, only a single sensitivity/specificity pair
was obtained for each human grader, and plotted in the ROC curve as a point (see Figure 2).
The area under the ROC curve is regarded as the most accurate and comprehensive measure
of system performance: an area of 1.0 has sensitivity = specificity = 1 and represents perfect
detection, while an area of 0.5 is the performance of a system that essentially performs a coin-
toss. In addition, the number of images where the original annotations of all three retinal
specialists (A,B,C) and the machine learning algorithm agreed, were also determined for all
bright lesions as a group, and for the three classes of lesions individually.

Results
Table 2 shows sensitivity, specificity, and kappa values of the machine learning algorithm and
retinal specialist C, compared to the consensus standard.

Figure 2 shows the ROC curves for the system and the ROC points for retinal specialist C, for
both overall bright lesion detection and bright lesion differentiation per image. The area under
the curve of the automated system for the detection of bright lesions was 0.95, and for the
detection of exudates, cotton-wool spots and drusen it was 0.94, 0.85 and 0.88 respectively.

The automated system achieved sensitivity/specificity of 0.95/0.88 for the detection all bright
lesions, and 0.95/0.86, 0.70/0.93 and 0.77/0.88 for the detection of exudates, cotton-wool spots
and drusen respectively. The third retinal specialist achieved 0.95/0.74 for bright lesions, and
0.90/0.98, 0.87/0.98 and 0.92/0.79 for the detection of exudates, cotton-wool spots and drusen,
respectively.
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In total, 1739 bright lesions were detected at this optimal threshold setting. Of these 1739
lesions, 1513 lesions were classified correctly, and 226 were misclassified: of these 226
confusions, 124 drusen were misclassified as exudates, 49 exudates were misclassified as
drusen, 5 drusen were misclassified as cotton-wools spots, 2 exudates were misclassified as
cotton-wool spots and there were 45 other confusions, either misclassifications or non-lesions.
Because the consensus standard was determined by two independent retinal specialists, it was
useful to determine the kappas of their (independent) annotations before the consensus process,
and these were 0.80, 0.65, 0.73 and 0.65, respectively.

In 225 of 300 images, the consensus standard, the automated system and retinal specialist C
were all in full agreement on the presence of bright lesions. In 167 of 300 cases, the consensus
standard, the automated system and retinal specialist C were in full agreement on the type(s)
of bright lesion. Examples are shown in Figure 3A and 3B. Two examples of cases where
human experts did not agree among themselves and the automated system also did not agree
with the human experts are shown in Figures 3C and 3D.

Discussion
Our results demonstrate that a machine learning algorithm as described herein is capable of
detecting exudates, cotton-wool spots and drusen and differentiating among them on color
images of the retina obtained in a community-based population of patients with diabetes. The
area-under-the-ROC-curve of 0.95 shows that this proof-of-concept system has sensitivity and
specificity approaching that of retinal experts.

Differentiating among the three types of bright lesions from color photographs can be
challenging, as illustrated by Figures 3A–D. The lesions in these images are subtle, and correct
differentiation may be improved with knowledge of patient age, consideration of contextual
lesions and the size of lesion classes. Despite the complexity of this task, in 1513/1739 (87%)
of cases, the automated system and the three retinal specialists agreed on the presence and type
of lesion. As might be expected, drusen and exudates were easily confused because they are
often similar in size, while cotton-wool spots are much less often confused with the other two
types of lesions.

The existing literature has focused almost exclusively on the automatic detection of exudates,
only a single study included the detection of cotton-wool spots, and no studies took account
of drusen in this context (14–16;18;19;21). Our results indicate that of all three bright lesion
types, exudates present the easiest lesion to detect for both automated system and retinal
specialist C. The capacity of our system algorithm to detect and differentiate all three types of
lesions distinguishes it from prior studies.

Despite the encouraging performance achieved by the present system, several major issues
remain. One disadvantage of this study is its simple application. We compare the machine
learning system and human experts’ performance on digital fundus photographs obtained in a
telediagnosis setting with non-mydriatic cameras. The accepted standard for detection of
diabetic retinopathy is 7-field stereo fundus photography by certified photographers and read
by certified readers(22). However, the reference standard utilized here is the consensus reading
of the photographs by retinal specialists. This study, and the trained algorithm, may be biased
and some bright lesions may have been missed by both human experts and the automated
system because of the limitations of digital 2-field non-stereo photography (6). Because we set
out to compare the performance of the system to human experts on the same photographs, our
results are only valid in that context. To achieve a more comprehensive evaluation of this or a
similar system, a comparison of the machine learning algorithm on non-mydriatic non-stereo
images, to 7-field non-mydriatic images evaluated by human experts, would be necessary.
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A second limiting factor that might limit optimal performance of the machine learning
algorithm could be a constraint of the quality of the annotations of the training images. In other
words, the ‘better’ this training set, the better the theoretical performance of the algorithm.
Improving the quality of the training data using multiple experienced clinicians and larger
numbers of training pixels, may improve system performance, and also lessen the problem of
clinician inter-observer variability as evidenced in Figure 3C and 3D.

Thirdly, both human readers and algorithms have difficulty detecting retinal thickening
especially in the absence of context lesions such as exudates, beading or hemorrhages. Judging
retinal thickening is especially difficult when using non-stereo fundus photography for early
diagnosis(2;6;22). Retinal thickening without context lesions, if present, will be missed by the
algorithm. This is a downside of non-stereo fundus photography, whether read by human
experts or an algorithm, though the relative frequency of retinal thickening without context
signs may be low (23;24).

Fourthly, the system has been tested on a small number of patients. If tested on a larger
prospective dataset, performance may not be comparable to these results. The ROCs in Figure
2 are interesting because they suggest that professional experience or training differences may
affect the performance of human experts. Retinal specialist C is an expert on AMD research
and drug trials, in addition to being an expert in diabetic retinopathy, while retinal specialists
A and B are primarily diabetic retinopathy specialists. As Table 2 depicts, the performance of
C compared to the consensus standard on cotton-wool spots and exudates is comparable, but
C is much more sensitive to drusen: one possible explanation is C’s heightened awareness of
subtle AMD lesions.

An important question that cannot be answered by a preliminary study such as the present one
is how the current algorithm, capable of detecting and differentiating exudates, cotton-wool
spots and drusen, might fit into a complete system for diabetic retinopathy classification and
health care delivery. We envision several different approaches, one of which would be a system
for early detection of diabetic retinopathy in patients with diabetes that currently are not
receiving the recommended regular dilated eye exams. Such a system may require the following
subcomponents, many of which we and others have presented previously:

-quality assurance: an algorithm capable of detecting images that are not adequate, such
as flash artifacts, blinking, blur, cataract (25)

-vessel segmentation: an algorithm capable of segmenting the retinal blood vessels even
where pathology is present(8;9;26)

-segmentation of optic disc, and possibly fovea: an algorithm capable of localizing and
segmenting these substructures(27–30)

-microaneurysm, retinal hemorrhage, neovascularization and other retinal microvascular
abnormalities: an algorithm for detecting these ‘red lesions’(10)

-exudate and cotton-wool spot detection, and differentiation from non-DR bright lesions:
the algorithm presented herein

-combination of the outputs of these subcomponents over multiple images of a single
patient into a simple ‘diabetic retinopathy probability’ statistic

In conclusion, we have developed and tested a machine learning system capable of detecting
exudates, cotton-wool spots and drusen, and differentiating amongst these, on color images of
the retina obtained in a population of patients with diabetes. The performance of this proof-of-
concept system has sensitivity and specificity that approaches retinal experts. If such a system
can be improved by better quality training data and tested on larger datasets, it has the potential
to help prevent visual loss and blindness in patients suffering from diabetes.
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Appendix

Appendix A. Machine learning system – feature classification

Probability of pixel being part of a bright lesion
To determine the probability for all pixels in an image (in the test set) to be part of a bright
lesion, the green channel of the RGB camera image is convolved with a set of 14 digital filters.
These filters are based on Gaussian derivatives and are invariant to rotation and translation of
the image. The specific image filters used were selected from a larger set of second order
irreducible invariants(31) using the training images and a feature selection algorithm. If a bright
lesion is present, the combination of filter responses for pixels in or close to that bright lesion
will be different from the filter responses for non-lesion pixels. The classifier used to classify
the pixels on the basis of the filter responses, was a k-Nearest Neighbor (kNN) classifier(17).
Such a classifier is capable of assigning probabilities to pixels in an image, based on the
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combination of filter responses, and can generate a lesion probability map (example: second
row of Figure 1), that indicates the probability that each pixel is part of a bright lesion. The
kNN classifier is a machine learning algorithm and is trained by offering it a set of training
pixels from the training image set where the classification has been established (bright lesion
or non-bright lesion).

Candidate bright lesion pixel clusters
By setting the threshold at 60% (pixels with a probability higher than 60% are considered part
of a bright lesion are retained and by grouping connected pixels above this threshold), a set of
bright lesion pixel clusters is obtained (example: third row of Figure 3). Because their output
is required for further processing, algorithms that perform red lesion classification, optic disc
segmentation and vessel segmentation were applied to the images as we have previously
described(8–10;27). That part of a bright lesion that overlaps with the optic disc is removed at
this step, using the segmented optic disc. From here on, such a bright lesion pixel cluster will
be termed ‘potential lesion.’

Bright lesion detection
The potential lesions include potential spurious responses, most of which occur along the major
vessels, and some of which are from posterior hyaloid reflexes. A second kNN classifier was
trained using a set of example potential lesions extracted from the training set to suppress
spurious bright lesion clusters (see Table 3 for the features used). The contrast features measure
the contrast of the cluster in multiple image RGB color planes, and other features provide
information about the size, shape and contrast of a potential lesion, its proximity to the closest
vessel, and proximity to the closest red lesion, as potential lesions close to a red lesion are more
likely to be true bright lesions. Each potential lesion is thereby assigned a probability indicating
the likelihood that it is a true bright lesion. The probability that the image contains any type of
bright lesion is now given by the maximum probability assigned to any of the potential lesions
in the image. For the final classification step all potential lesions with a probability below 70%
were discarded. The value for this threshold was determined on the training set, and the results
were not very sensitive to small variations in this threshold (see the bottom row of Figure 3).

Bright lesion classification
A third classifier was trained using the bright lesion types from the training set. The features
described in Table 3, and in addition, the following features were used:

• the number of red lesions in the image

• the number of detected bright lesions from the previous step

• the probability for the cluster

A Linear Discriminant Analysis classifier labeled all found lesions in the test set as to whether
they were exudates, cotton-wool or drusen(17).
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Figure 1.
Machine learning algorithm steps performed to detect and differentiate ‘bright lesions’. From
left to right column, exudates, cotton-wool spots, and drusen. From top to bottom, first row
shows the relevant region in the retinal color image (all at the same scale), second row shows
the posterior probability map after the first classification step, third row shows the pixel clusters
that are probable bright lesions (potential lesions), and the bottom row shows those objects
which the system classified as true bright lesions overlaid on the original image.
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Figure 2.
ROC curves of the automatic system for the different detection tasks. Sensitivity/specificity
pairs of Retinal Specialist C are also plotted as points in the graph.
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Figure 3.
Figure 3A. Example image where experts and automated system agreed on the presence of
exudates and cotton-wool spots. As identified by the automated system, the red arrows denote
exudates and the green arrow a cotton-wool spot.
Figure 3B. Example image where experts and automated system agreed on the presence of
drusen. As identified by the automated system, the blue arrows denote drusen.
Figure 3C. Example image where experts and automated system did not agree on the presence
of drusen or exudates. As identified by the automated system, the blue arrows denote drusen
(retinal specialist A and automated system) or exudates (retinal specialist B and C), and the
red arrows denote exudates (retinal specialists B and C and automated system)or drusen (retinal
specialist A).
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Figure 3D. Example image where experts and automated system did not agree on the presence
of drusen/exudate/cotton-wool spot. As identified by the automated system, the blue arrow
denotes a drusen (automated system), exudate (retinal specialists B and C) or no abnormality
(retinal specialist A); the green arrow denotes a cotton-wool spot (retinal specialist C and
automated system), exudate (retinal specialist B) or no abnormality (retinal specialist A).
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Table 1
Distribution of presence of ‘red’ and ‘bright’ lesions in the test images

red + red −

bright + 34 71 105

bright − 4 191 195

38 262 300
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Table 3
Overview of the features used to determine whether a potential lesion is a true bright lesion or spurious

Feature number Description

1 Area in pixels of potential lesion.

2 Length of the perimeter in pixels of the potential lesion.

3 Compactness of the potential lesion.

4,5 Length and width in pixels of the potential lesion.

6 Mean gradient value at scale of 2 pixels at the potential lesion border

7/8 Mean/standard deviation of all green channel pixels within the potential lesion after shade correction (shade correction: a 48 pixel Gaussian
blurred version of the image is subtracted from the image itself)

9/10 Mean/standard deviation of all green channel pixels in a square region outside the potential lesion after shade correction. Square region is
50×50 pixels unless the potential lesion is larger than 25 pixels wide or high, when the width or height or both are calculated according to
the following formula: dist=(dist/25.0f)*50

11/12/13 Mean l,u,v intensities of all pixels within the potential lesion

14/15/16 Standard deviation of l,u,v intensities of all pixels within the potential lesion

17/18/19 Mean l,u,v intensities of all pixels in the square region outside the potential lesion (see above).

20/21/22 Standard deviation of l,u,v intensities of all pixels in the square region outside the potential lesion (see above).

23 Local pixel contrast in the green channel, by subtracting the average pixel intensity within the potential lesion from the average pixel value
in a three pixel wide border around the potential lesion. The border is obtained by dilating the potential lesion three times with a single pixel.

24 Local pixel variance contrast in the green channel, similar to 23 but the variance is used instead of the average.

25/26 Same as 7/8 but using a locally normalized image

27/28 Same as 9/10 but using a locally normalized image

29/30 Same as 9/10 but pixels of other potential lesions are excluded from the outside area pixel means and standard deviations

31/32 Same as 9/10 but pixels of vessels are excluded from the outside area pixel means and standard deviations

33/80 Mean/standard deviation of filter outputs. Gaussian filterbank: I, Ix, Iy, Ixy, Ixx, Iyy at scales 1,2,4,8 pixels

81 Mean vessel probability at the potential lesion boundary, obtained from vessel probability map

82 Standard deviation of vessel probability at the potential lesion boundary, obtained as before

83 Distance in pixels to the closest red lesion.
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