TABLE 2.
Assumption1 | Effect2 | Lower Bound | Upper Bound | |
---|---|---|---|---|
None | Total | −Pr(Y≠X) | Pr(Y=X) | |
CDE | −Pr(Y≠X)−Pr(Y=X, Z≠z) | Pr(Y=X)+Pr(Y≠X, Z≠z) | ||
NDE | −Pr(Y≠X)−Pr(Y=X=1) | Pr(Y=X)+Pr(Y≠X=1) | ||
{1′} | Total | −Pr(Y≠X) | Pr(Y=X) | |
{2′} | Total | −Pr(Y≠X) | Pr(Y=X) | |
CDE | −Pr(Y≠X)−Pr(Y=X=Z≠z) | Pr(Y=X)+Pr(X=z, Y=Z≠z) | ||
NDE | −Pr(Y≠X)−Pr(Y=X=Z=1) | Pr(Y=X) | ||
{3′} | Total, NDE | 0 | Pr(Y=X) | |
CDE | 0 | Pr(Y=X)+Pr(X=z, Y=Z≠z) | ||
{4′} | Total, CDE, NDE | 0 | Pr(Y=X) | |
{5′} | Total3 | Pr(Y=1|X=1)−Pr(Y=1|X=0) | Pr(Y=1|X=1)−Pr(Y=1|X=0) | |
CDE | −1+Pr(Y=0,Z=z|X=0) + Pr(Y=1,Z=z|X=1) | 1−Pr(Y=1,Z=z|X=0)−Pr(Y=0,Z=z|X=1) | ||
NDE4 |
|
|
||
{1′,2′}, {1′,3′}, {1′,4′} | Total | 0 | Pr(Y=X=Z) | |
{2′,5′} | CDE | Pr(Y=1|X=1) − Pr(Y=1|X=0) − Pr(Y=Z≠z|X≠z) | Pr(Y=1|X=1) − Pr(Y=1|X=0) + Pr(Y=Z≠z|X=z) | |
NDE |
|
Pr(Y=1|X=1) − Pr(Y=1|X=0) | ||
{3′,5′} | CDE |
|
Pr(Y≠z|X≠z)−Pr(Y≠Z=z|X=z) | |
NDE |
|
Pr(Y=1|X=1) − Pr(Y=1|X=0) | ||
{4′,5′} | CDE |
|
Pr(Y=1|X=1) − Pr(Y=1|X=0) | |
NDE |
|
Pr(Y=1|X=1) − Pr(Y=1|X=0) |
- {1} No direct X →Y effect
- {2} Partial monotonicity
- {3} Full monotonicity
- {4} Full monotonicity and no interaction between Z and X
- {5} Exogenous (e.g. randomized)
- Total = Total Average Causal Effect
- RDC = Pr(Y=1| SET[X=1]) − Pr(Y=1| SET[X=0])
- CDE = Z-Controlled Direct Effect
- RDC|SET[Z=z] = Pr(Y=1| SET[X=1], SET[Z=z])−Pr(Y=1| SET[X=0], SET[Z=z])
- NDE = Natural Direct Effect
- RDC|SET[Z=Z(0)] = Pr(Y=1| SET[X=1], SET[Z=Z0]) −Pr(Y=1| SET[X=0])
Causal effect is completely determined (bound width = 0)
- p′(y,z,x) = Pr(Y=y, Z=z, X=x)
- p′(y,z | x)= Pr(Y=y, Z=z | X=x)