Skip to main content
. Author manuscript; available in PMC: 2010 Oct 1.
Published in final edited form as: J Stat Plan Inference. 2009 Oct 1;139(10):3473–3487. doi: 10.1016/j.jspi.2009.03.024

TABLE 2.

Analytic Bounds on Risk Difference Causal Effects in the Intermediate-covariate DAG [X →Z →Y, X →Y] under Various Assumptions

Assumption1 Effect2 Lower Bound Upper Bound
None Total −Pr(Y≠X) Pr(Y=X)
CDE −Pr(Y≠X)−Pr(Y=X, Z≠z) Pr(Y=X)+Pr(Y≠X, Z≠z)
NDE −Pr(Y≠X)−Pr(Y=X=1) Pr(Y=X)+Pr(Y≠X=1)

{1′} Total −Pr(Y≠X) Pr(Y=X)

{2′} Total −Pr(Y≠X) Pr(Y=X)
CDE −Pr(Y≠X)−Pr(Y=X=Z≠z) Pr(Y=X)+Pr(X=z, Y=Z≠z)
NDE −Pr(Y≠X)−Pr(Y=X=Z=1) Pr(Y=X)

{3′} Total, NDE 0 Pr(Y=X)

CDE 0 Pr(Y=X)+Pr(X=z, Y=Z≠z)

{4′} Total, CDE, NDE 0 Pr(Y=X)

{5′} Total3 Pr(Y=1|X=1)−Pr(Y=1|X=0) Pr(Y=1|X=1)−Pr(Y=1|X=0)
CDE −1+Pr(Y=0,Z=z|X=0) + Pr(Y=1,Z=z|X=1) 1−Pr(Y=1,Z=z|X=0)−Pr(Y=0,Z=z|X=1)
NDE4
max{Pr(Y=1|X=0),1+p(0,1|0)p(1,0|0)+p(1,1|1),1+p(0,0|0)p(1,1|0)+p(1,0|1)}
min{Pr(Y=0|X=0),1+p(0,1|0)p(1,0|0)p(0,0|1),1+p(0,0|0)p(1,1|0)p(0,1|1)}

{1′,2′}, {1′,3′}, {1′,4′} Total 0 Pr(Y=X=Z)

{2′,5′} CDE Pr(Y=1|X=1) − Pr(Y=1|X=0) − Pr(Y=Z≠z|X≠z) Pr(Y=1|X=1) − Pr(Y=1|X=0) + Pr(Y=Z≠z|X=z)
NDE
max{p(1,0|1)p(0,1|1)+p(0,1|0)p(1,0|0),p(1,0|1)p(1,1|0)p(1,0|0)}
Pr(Y=1|X=1) − Pr(Y=1|X=0)

{3′,5′} CDE
max{0,Pr(YZ=z|Xz)Pr(YZ=z|X=z)}
Pr(Y≠z|X≠z)−Pr(Y≠Z=z|X=z)
NDE
max{0,p(0,1|0)p(0,1|1),p(1,0|1)p(1,0|0),p(0,1|0)p(0,1|1)+p(1,0|1)p(1,0|0)}
Pr(Y=1|X=1) − Pr(Y=1|X=0)

{4′,5′} CDE
max{0,Pr(Yz,Z=z|Xz)Pr(Yz,Z=z|X=z),Pr(Y=z,Zz|X=z)Pr(Y=z,Zz|Xz),Pr(Yz,Z=z|Xz)Pr(Yz,Z=z|X=z)+Pr(Y=z,Zz|X=z)Pr(Y=z,Zz|Xz)}
Pr(Y=1|X=1) − Pr(Y=1|X=0)
NDE
max{0,p(0,1|0)p(0,1|1),p(1,0|1)p(1,0|0),p(0,1|0)p0,1|1)+p(1,0|1)p(1,0|0)}
Pr(Y=1|X=1) − Pr(Y=1|X=0)
1
Assumptions are defined in Section 3.3
  • {1} No direct X →Y effect
  • {2} Partial monotonicity
  • {3} Full monotonicity
  • {4} Full monotonicity and no interaction between Z and X
  • {5} Exogenous (e.g. randomized)
2
Effect Measures are defined in Section 3.1
  • Total = Total Average Causal Effect
    • RDC = Pr(Y=1| SET[X=1]) − Pr(Y=1| SET[X=0])
  • CDE = Z-Controlled Direct Effect
    • RDC|SET[Z=z] = Pr(Y=1| SET[X=1], SET[Z=z])−Pr(Y=1| SET[X=0], SET[Z=z])
  • NDE = Natural Direct Effect
    • RDC|SET[Z=Z(0)] = Pr(Y=1| SET[X=1], SET[Z=Z0]) −Pr(Y=1| SET[X=0])
3

Causal effect is completely determined (bound width = 0)

4
p′ notation:
  • p′(y,z,x) = Pr(Y=y, Z=z, X=x)
  • p′(y,z | x)= Pr(Y=y, Z=z | X=x)