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A B S T R A C T

Purpose
Recent clinical trials of antivascular endothelial growth factor (VEGF) agents for glioblastoma
showed promising progression-free and overall survival rates. However, available clinical imaging
does not separate antitumor effects from antipermeability effects of these agents. Thus although
anti-VEGF agents may decrease tumor contrast-enhancement, vascularity, and edema, the
mechanisms leading to improved survival in patients remain incompletely understood. Our goal
was to determine whether alleviation of edema by anti-VEGF agents alone could increase survival
in mice.

Methods
We treated mice bearing three different orthotopic models of glioblastoma with a VEGF-targeted
kinase inhibitor, cediranib. Using intravital microscopy, molecular techniques, and magnetic
resonance imaging (MRI), we measured survival, tumor growth, edema, vascular morphology and
function, cancer cell apoptosis and proliferation, and circulating angiogenic biomarkers.

Results
We show by intravital microscopy that cediranib significantly decreased tumor vessel permeability
and diameter. Moreover, cediranib treatment induced normalization of perivascular cell coverage
and thinning of the basement membrane, as mirrored by an increase in plasma collagen IV. These
rapid changes in tumor vascular morphology and function led to edema alleviation—as measured
by MRI and by dry/wet weight measurement of water content—but did not affect tumor growth.
By immunohistochemistry, we found a transient decrease in macrophage infiltration and signifi-
cant but minor changes in tumor cell proliferation and apoptosis. Systemically, cediranib increased
plasma VEGF and placenta growth factor levels, and the number of circulating CXCR4�CD45�

cells. However, by controlling edema, cediranib significantly increased survival of mice in the face
of persistent tumor growth.

Conclusion
Anti-VEGF agents may be able to improve survival of patients with glioblastoma, even without
inhibiting tumor growth.

J Clin Oncol 27:2542-2552. © 2009 by American Society of Clinical Oncology

INTRODUCTION

In a recent phase II study, we showed that cediranib
(AZD2171, Recentin; AstraZeneca Pharmaceuti-
cals, Wilmington, DE), a potent panvascular endo-
thelial growth factor (VEGF) receptor tyrosine
kinase inhibitor, can transiently normalize tumor
vessels in recurrent glioblastoma,1 causing rapid
changes in tumor vessel structure and function and
alleviating cerebral edema evaluated by magnetic
resonance imaging (MRI). In addition, cediranib
reduced tumor-associated contrast enhancement to

less than one half of the pretreatment value and
reduced tumor bulk and mass effect in the majority
of patients. Similar antiedema effects and improve-
ment in progression-free and overall survival have
also been reported in other VEGF-targeted clinical
trials of recurrent glioblastoma.2-4 These encourag-
ing findings have led to randomized phase II and III
studies with anti-VEGF agents in combination with
chemotherapy and as monotherapy. However, the
underlying mechanisms for their success remain
poorly understood. Although the antiedema effects
of VEGF-targeted therapy are widely accepted, its
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contribution to the survival benefits remains unknown. Thus these
clinical data raise an important question: Is controlling edema by
anti-VEGF agents sufficient to increase survival? In patients, this de-
termination is difficult because MRI-based determinations of tumor
progression are confounded by changes in vascular permeability after
anti-VEGF therapy.5,6 To address this question, we used intravital
microscopy, histology, molecular and cellular marker analyses, and
functional MRI to investigate the effects of cediranib in three ortho-
topic models of glioblastoma in mice (two human gliomas—U87 and
U118—and a highly invasive rat glioma, CNS1).

METHODS

Animal Models and Cell Lines

We implanted cranial windows into nude mice as previously described.7

After 1 week, we implanted small fragments (0.2 to 0.3 mm diameter) of U87
or U118 or CNS1 tumors superficially into the left cerebral cortex under the
cranial window at a depth of 0.4 to 1 mm. To gain the ability to measure the
tumor size in real-time, green fluorescence protein (GFP) was stably trans-
fected into U87, U118, and CNS1 cells using a retroviral construct. All cell lines
were maintained in DMEM medium with 10% fetal bovine serum. All exper-
iments were approved by the Massachusetts General Hospital Subcommittee
on Research Animal Care.

Tumor Size Monitoring and Treatment Protocols

U118-GFP, U87-GFP, and CNS1-GFP tumors were measured daily by
intravital microscopy. Tumor size was measured by fitting an ellipse to the
GFP signal (Appendix Fig A1, online only). Tumor volume was calculated
based on the equation:

Tumor volume � (long axis) � (short axis)2 � �/6 (1)

After reaching a diameter of 2.5 mm (or to a volume 6 to 8 �l) for U87 and
U118 and 2 mm for CNS1—defined as day 0—treatment was started with
either cediranib, dexamethasone (Baxter Healthcare Corp, Deerfield, IL), or
saline. Cediranib dissolved in 1% Tween was administered via oral gavage at
the dose of 6 mg/kg each day.8 Dexamethasone was administered intraperi-
toneally at a dose of 10 mg/kg each day. For all cediranib studies, mice
bearing gliomas were treated until reaching the end point with cediranib or
Tween. For all dexamethasone studies, mice bearing gliomas were treated
every day until reaching the end point with dexamethasone or saline. For
survival studies, lethargic mice or mice with severe neurologic symptoms were
humanely euthanized.

Histology and Immunostaining

Tumor-bearing mice were perfusion-fixed by infusion of 4% parafor-
maldehyde through the left ventricle. For immunofluorescence analysis,
mouse brains were postfixed for 1 hour in 4% formaldehyde in phosphate-
buffered saline (PBS) followed by incubation in 30% sucrose in PBS overnight
at 4°C and subsequent mounting in freezing media (OCT, Tissue-Tek, Tor-
rance, CA). Brains were sectioned every 20 �m and incubated for 4 hours at
room temperature in a mixture of anti-CD31 antibody (2.5�g/mL; clone 2H8,
Millipore Chemicon International, Temecula, CA) and either anti-NG2 anti-
body (2.5 �g/mL; Millipore), anti-CD13 antibody (1.7 �g/mL, clone R3-63,
Serotec R3-63; AbD Serotec, Morphosys UK Ltd, Oxford, UK), antilaminin
antibody (0.95 �g/mL; Dako, Carpinteria, CA), or anti-collagen IV antibody
(0.5 �g/mL; Millipore) in 0.2% Triton-X100% and 5% normal horse serum
(NHS) in PBS. After several washes in PBS, tissue sections were incubated for
1 hour at room temperature with 1:400 dilutions of Cy5-conjugated antiarme-
nian hamster antibody and Cy3 conjugated antirat or antirabbit antibody in
0.2% Triton-X100% and 5% NHS in PBS. After several washes in PBS,
tissues were postfixed in formaldehyde and mounted with 4’-6-diamidino-
2-phenylindole–containing mounting media (Vectashield, VectorLabs, Bur-

lingame, CA) for confocal microscopy. Brain sections were stained also for
CD11b and F4/80 incubating allophycocyanin (CD11b, clone M1/70) or phy-
coerythrin (F4/80, clone BM8) –conjugated primary antibodies (BD Bio-
sciences Pharmingen, Franklin Lakes, NJ) for 1 hour at room temperature in
5% NHS in PBS. Apoptotic cells were detected using ApopTag Red In Situ
Apoptosis Detection Kit following manufacturer’s (Millipore) protocol. For
the detection of cell proliferation, mice were injected intraperitoneally with 1
mg of 5-bromo-2-deoxyuridine (BrdU; Sigma-Aldrich, St Louis, MO) 24
hours before sacrifice. For the detection of the incorporated BrdU from the
U87-bearing brain sections, antigen retrieval was performed by incubating
tissue sections in pH6 citrate antigen retrieval solution (Dako) at 95°C for 10
minutes before staining sections with Alexa Fluor 546 conjugated anti-BrdU
antibody (2 �g/mL; clone PRB-1, Invitrogen Molecular Probes, Carlsbad, CA)
for 1 hour at room temperature in 0.2% Triton-X100% and 5% NHS in PBS.

Quantification of the stained area was performed using an in-house
segmentation algorithm (MATLAB, The Mathworks, Natick, MA). Anal-
ysis of vascular proximity was performed by fitting the intensity profile
around the vessels (determined by CD31 staining) to an exponential func-
tion (I � Ae-x/L � C), where I � pixel intensity, x � distance from vessels
(1 to 10 �m), and L � characteristic length. This method was used for
assessment of the perivascular cell proximity to the vessel wall, as well as
basement membrane thickness.

MRI-Based Measurement of Permeability, Edema, and

Tumor Growth

All magnetic resonance images were acquired on a 9.4 Tesla MRI scanner
(Bruker Biospin, Billerica, MA). Animals were anesthetized with a 50:50 mix-
ture of O2 and medical air plus 1.5% isoflurane and placed prone in a cradle.
Either a custom-built 1-cm transmit/receive surface coil, positioned on the
head of the animals, or a transmit/receive birdcage mouse-head coil were used
to acquire the images.

T2-weighted rapid acquisition with relaxation enhancement (RARE)
images were acquired to assess the tumor volume. The acquisition parameters
were as follows: TE � 10, RARE factor � 16, TR � 3,000 msec, NA � 4, 11
image slices, 0.5-mm slice thickness, 150-�m in-plane resolution. Tumor
volume was determined from the T2 hyperintense regions of the brain, mea-
sured using an in-house segmentation algorithm (MATLAB).

T2 relaxation maps were generated from multiecho spin-echo images
and used to assess tumor edema. Acquisition parameters were as follows:
TE � 10 msec, 10 echoes, TR � 2,500 msec, 11 image slices, 0.5 mm slice
thickness, 150 mm in-plane resolution, NA � 2. Voxelwise exponential
fitting of the image signal intensity as a function of echo-time was per-
formed (MATLAB) to determine T2 relaxation time maps.

Tumor blood vessel permeability (Ktrans) was assessed from Dynamic
Contrast Enhanced (DCE) magnetic resonance images. The DCE sequence
consisted of a T1-weighted gradient-echo sequence with TE � 2.5 msec,
TR � 50 msec, flip angle � 35°, FOV � 1.92 cm, matrix � 96 � 96 (in-plane
resolution � 200 �m), 0.5-mm slice thickness, one image slice, 70 to 100
repetitions, temporal resolution � 4.8 seconds. A total of 50 to 100 �L of 100
mmol/L Gd-DTPA (0.2 to 0.4 mmoles/kg) was injected approximately 30
seconds after commencement of the DCE imaging sequence. The signal inten-
sity in the tumor region of interest (ROI) was analyzed using an in-house
written MATLAB program, which models the tumor signal enhancement
using the two-compartment model of Tofts et al,9 to extract the volume
transfer constant (Ktrans), the volume of the extravascular extracellular space
(ne), and the flux rate constant between the extravascular extracellular space
and the blood plasma (kep). Briefly, the time dependence of tumor ROI signal
intensity was fit to the equation:

S�t� � M0

�1 � e � TR * R1�t�� * sin���

1 � cos��� * e � TR * R1�t�

R1�t� � R1�0� � r1 * Ct�t�

Ct�t� �
Ktrans

kep
Cp�0� � �1 � e � kep � t� (2)
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where R1 is the longitudinal relaxation rate, � is the flip angle, TR is the
repetition time, and Ct is the tracer (contrast agent) concentration.9

Intravital Multiphoton Laser Scanning Microscopic

Analysis of Vessel Diameter, Density, and Relative

Hematocrit Analysis

In vivo multiphoton laser scanning microscopic analysis of glio-
blastoma vessels was performed as described previously.10 The tumor
area was identified by analysis of GFP constitutively expressed by U87,
U118, and CNS1. Vessel angiography was performed after intravenous

injection of 0.1 mL of 10 mg/mL fluorescein isothiocyanate-dextran
(500,000 MW; Sigma). Hematocrit analysis was performed after injection of
150 �L of 50% hematocrit fluorescent RBCs (1,1�-dioctadecyl-3,3,3�,3�-
tetramethylindodicarbocyanine perchlorate, DiD; Invitrogen). Two adjacent
areas were imaged by acquiring three-dimensional stacks (resolution, 2.4 �
2.4 � 2.5 �m/pixel). Tumor volume was segmented using an in-house algo-
rithm (MATLAB). Vessels were traced as described.11 Hematocrit analysis was
performed by scanning through a line perpendicular to the vessel direction and
extracting RBC velocity and flux. Hematocrit was calculated based on
the equation:
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Fig 1. Cediranib treatment leads to increased survival without effects on tumor growth. Cediranib (6 mg/kg of body weight per day) treatment leads to statistically
significant survival benefit in U87 (A; **P � .001, n � 6), U118 (B; **P � .01, n � 4), and CNS1 (C; **P � .01, n � 8). (D) Single animal tumor growth curves acquired
by fluorescence microscopic imaging show the lack of growth delay after cediranib treatment. (E) Maximal tumor volume (measured at end point). Cediranib-treated
animals survived with statistically significantly larger U87 (**P � .001, n � 6), U118 (**P � .001, n � 4), and CNS1 (**P � .001, n � 8) tumors. (F) Representative
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Ht �
MCV � flux

�
d2

4
Vrbc

(3)

For vessels with velocity lower then 10 �m/s, relative hematocrit was measured
by counting the number of RBCs in the vessel in a snapshot.

Water Content Analysis by Dry/Wet Weight Measurements

Anesthetized mice were euthanized by cervical dislocation and the brains
were collected. Brains were dissected into several compartments: tumor, ipsi-
lateral hemisphere, and contralateral hemisphere. Tissues were weighed im-
mediately and dried in a vacuum for up to 2 weeks. Weights were collected
throughout the drying period until the final dry weight was established. Water
content was calculated as follows:

Water content � (wet weight 	 dry weight)/wet weight (4)

Statistical Analysis

Data are expressed as mean 
 standard error of the mean. The principal
statistical test was the t test (two-tailed with unequal variance). We analyzed
the experiments involving multiple comparisons using repeated measures
multivariate analysis of variance followed by posthoc within and between
groups hypothesis testing (SYSTAT 12; SYSTAT Soft Inc, Chicago, IL). We
used the nonparametric log-rank test for survival studies. We considered a P
value of less than .05 to be statistically significant.

RESULTS

Monotherapy With Cediranib Significantly Increases

Survival of Mice With Glioma

GFP-expressing U87, U118, and CNS1 tumors were orthotopi-
cally grown into the cerebral cortex of nude mice bearing cranial
windows. We started treatment when gliomas reached a diameter of 2
to 2.5 mm, measured by intravital microscopy. Cediranib increased
survival in all the tumor models (Figs 1A through 1C), even though
tumor growth was not affected at the dose used (Figs 1D through 1I).
Because cediranib-treated mice had longer survival without a delay in
tumor growth, their tumors were twice as large as those in the control
group at the experiment end point (Fig 1E). Untreated mice tended to
die suddenly, despite their healthy appearance and relatively small
tumor size. In contrast, mice treated with cediranib survived longer
and slowly became cachectic and had to be euthanized.

Mechanism of Action of Cediranib Monotherapy Is

Alleviation of Edema

Although multifactorial, one of the major causes of death of
patients with glioblastoma is cerebral herniation (seen in more than
60% of patients), which is primarily caused by cerebral edema and
intracranial hypertension.12 The clinical effects of cerebral edema have
been extensively studied in preclinical models of vasogenic and cyto-
toxic edemas. Cerebral physiology was found to be hypersensitive to
increase in water content, which leads to intracranial hypertension,
clinical deterioration, and morbidity.13-15 A major contributor to this
edema is increased vascular permeability and accumulation of inflam-
matory cells (macrophages). Cediranib inhibits both VEGF receptor 2
(VEGFR2) signaling in endothelial cells (a major determinant of vas-
cular permeability16) and VEGF receptor 1 (VEGFR1) signaling (a key
pathway in monocyte/macrophage recruitment to tumors17). Hence
we hypothesized that the survival benefits seen in our models are

primarily due to the alleviation of cerebral edema by cediranib. To
investigate the mechanisms of cediranib survival benefit, we focused
on the U87 model, in which the cancer cells do not express functional
VEGF receptors (data not shown). We assessed edema directly by the
dry/wet weight ratio of the brain ex vivo (Fig 2A) and indirectly using
MRI-T2 maps in vivo (Fig 2B). Cediranib significantly decreased
tumor water content at day 2, but this effect was transient, reverting to
control levels at day 8 through 11 (Fig 2A). This suggests that cediranib
could no longer control cerebral edema caused by the tumor enlarge-
ment at later time points.

Brain Edema Alleviation Can Increase Survival Despite

Tumor Enlargement

To determine whether a transient decrease in edema alone is
sufficient to increase survival, we treated a separate cohort of tumor-
bearing mice with dexamethasone, a corticosteroid commonly used to
alleviate cerebral edema in patients with glioma. Dexamethasone
treatment induced a modest enhancement of survival but also did not
inhibit tumor growth (Figs 2D and 2F). Interestingly, the survival
benefit provided by dexamethasone was not as pronounced as that of
cediranib: the dexamethasone group had smaller tumors at end point
than those in the cediranib-treated group. This is similar to an earlier
report in which vascular normalization in an animal glioma model
after dexamethasone treatment was also noted.18 Next, we investi-
gated the mechanisms by which cediranib treatment led to a more
pronounced survival benefit.

Edema Alleviation Is Caused by Decreased

Glioblastoma Vascular Permeability Associated

With Vascular Normalization

To determine whether cediranib normalizes tumor vascula-
ture in our models, we measured changes in the tumor vascular
morphology and function after cediranib treatment. Similar to
patients with glioblastoma, postcontrast MRI showed that cediranib
significantly decreased Ktrans—a parameter dependent on vascular
permeability—in the glioblastoma xenografts (Fig 3A). Furthermore,
intravital microscopy measurements demonstrated that cediranib sig-
nificantly decreased tumor vessel permeability and diameter, as well as
vascular hemoconcentration (elevated hematocrit, Figs 3B through 3E
and 4), all hallmarks of tumor vascular normalization.19 Given the
decrease in vessel diameter seen with intravital microscopic measure-
ments after cediranib, we sought further evidence of normalization of
the structure of glioblastoma vessels. Fluorescence immunohisto-
chemistry showed that cediranib increased the proximity of perivas-
cular to endothelial cells without significant changes in the extent of
perivascular cell coverage (Figs 5A and 6). In addition, cediranib
treatment led to thinning of the vascular basement membrane (Fig
5B), similar to that seen after anti-VEGFR2 antibody therapy,20 and an
increase in plasma collagen IV at day 2 (Appendix Fig A3, online only).
Additionally, cediranib-mediated vascular normalization was limited
to a time window after which most of the functional and morphologic
vascular parameters reverted to the abnormal phenotype. Specifically,
at later time points, all normalization parameters reversed—including
vascular permeability, vessel diameter, basement membrane thick-
ness, and hemoconcentration—except for pericyte proximity.

Edema Control by Anti-VEGF Therapy
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Transient Nature of the Vascular Normalization and

Edema Control May Be Caused by Activation of

Inflammatory Mechanisms Independent of VEGF

and Angiogenesis

In contrast to early time points, when cediranib normalized ves-
sel function without detectable pruning of vessels, extended cediranib

treatment decreased microvascular density in the center of the tumors
(Fig 5C). This was associated with a modest but significant increase in
tumor cell apoptosis and decrease in tumor cell proliferation (Figs 5D
and 5E). However, the ratio of proliferating to apoptotic tumor cells
remained high (more than 20-fold), explaining the sustained tumor
growth rate. This result is consistent with other reports, in which a
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reduction of microvascular density was achieved without significant
reduction of tumor growth.21

In addition, immunohistochemical analyses showed that
cediranib significantly reduced macrophage infiltration (Fig 5F). This

effect might be due to direct VEGFR1 blockade by cediranib and/
or could be secondary to normalization of the tumor vessels and
environment. However, infiltration of macrophages as well as other
myeloid cells significantly increased at later time points during
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cediranib treatment (Fig 5F). The accumulation of these inflamma-
tory cells may be involved in the escape from vascular normalization
and edema control at the later time points.22

Finally, preclinical studies have also suggested that antiangio-
genic therapy (eg, sunitinib) exerts systemic effects, causing eleva-

tion in multiple circulating angiogenic markers, which can
promote tumor growth.17,23,24 In clinical studies, we found that
cediranib increased circulating angiogenic markers in patients with
recurrent glioblastoma.1 In mice with U87 gliomas, we found that
cediranib significantly increased the plasma levels of both mouse
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and human (tumor-derived) placenta growth factor and human
VEGF but not mouse VEGF. Cediranib also rapidly increased the
number of circulating CXCR4�CD45� cells (Appendix Fig A2,
online only). Future studies should establish whether activation of
systemic inflammatory and/or angiogenic markers are causally
related to the persistent growth of gliomas through antiangio-
genic treatment.

DISCUSSION

In summary, our results show that cediranib decreases edema by
normalizing tumor vasculature, increasing survival in brain tumor
models—even in the face of persistent glioblastoma growth. We
hypothesize that this may be a “class effect” of agents that target the
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VEGF signaling pathway, including tyrosine kinase inhibitors and
antibodies. Moreover, our preclinical observations regarding re-
duction in vascular permeability, vessel diameter, and vasogenic
cerebral edema mirror the clinical findings with cediranib mono-
therapy inpatients with recurrent glioblastoma obtained by vascu-
lar MRI. In the latter study, we also observed extensions of
progression-free and overall survival, relative to historical controls,
in patients with rapid decreases in vascular permeability after
cediranib treatment.25 However, our observations in preclinical
model systems do not exclude thepossibility that anti-VEGF ther-
apy in human tumors may improve survival by mechanisms be-
yond alleviation of edema. In fact, thevascular normalization
window induced by anti-VEGF therapeutics may enhance the sen-
sitivity of tumors to the cytotoxic effects of ionizing radiation and
chemotherapy by a number of potential mechanisms.8,19,20,26 Col-
lectively, these results highlight the need for novel antiangiogenic
and antitumor strategies to combat tumor resistance to anti-VEGF
therapies and the need for methods to distinguish antitumor,
antiedema, and antivascular effects in patients.
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