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Abstract
Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster
extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal
signals. In order to leverage strength from both statistics, several nonparametric permutation methods
have been proposed to combine the two methods. Simulation studies have shown that of the different
cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there
is no parametric cluster mass inference method available. In this paper, we propose a cluster mass
inference method based on random field theory (RFT). We develop this method for Gaussian images,
evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties
via simulation studies and real data. Simulation results show that the method is valid under the null
hypothesis and demonstrate that it can be more powerful than the cluster extent inference method.
Further, analyses with a single-subject and a group fMRI dataset demonstrate better power than
traditional cluster extent inference, and good accuracy relative to a gold-standard permutation test.
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1 Introduction
Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference.
Cluster extent is sensitive to spatially extended signals [7,23], while voxel intensity is sensitive
to focal, intense signals [6,25]. Both can suffer from a lack of power for signals of moderate
extent and intensity [11]. Furthermore, one does not generally know, a priori, whether the
generated signal is large in extent, intensity or both. While some practitioners simply select
the statistic that gives the most statistically significant test, this embodies a multiple testing
problem and will result in inflated false positive error rates. An ideal test statistic would
combine spatial extent and peak height intensity and would be sensitive to both without
increasing the number of tests considered.

Poline et al. [23] (henceforth referred to as PWEF) developed a method which combines extent
and intensity based on Gaussian random field theory (RFT). They derived the joint distribution
of cluster extent and voxel-wise peak height intensity and made inference on minimum P value
of a cluster extent test and a local maximum intensity test. However, their method is only
applicable to Gaussian or approximately Gaussian images (e.g. a very large group analysis, or
a single subject fMRI analysis).
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Cluster mass, the integral of suprathreshold intensities within a cluster, naturally combines
both signal extent and signal intensity. Initially suggested by Holmes [13], he only provided
the mean of cluster mass to the power 2/(D+2) for Gaussian field, where D is dimension. In
addition, Bullmore et al. [2] used permutation to obtain cluster mass P values. Currently the
cluster mass is the default test statistic in the BAMM1 and CAMBA2 software, and is
implemented in FSL’s randomise3 tool and in the SnPM4 toolbox for SPM5.

Hayasaka & Nichols [11] studied the statistical properties of cluster mass along with a variety
of other “combining methods” in the permutation testing framework. Among the combining
methods they considered were Tippet’s method [16,22] (minimum P values, used by PWEF)
and Fisher’s method (−2 × sum of ln P values). Through simulation studies and analyses of
real data they concluded that the nonparametric cluster mass method is generally more powerful
than other methods they investigated.

A strength of nonparametric inference methods is that they rely on fewer assumptions about
the distributional form of the data. However, they require additional computational effort and
are not very flexible. For example, the precise permutation scheme used depends on the
experimental design and cannot be trivially determined from a design matrix. Nuisance
covariates cannot be accommodated in general, as they induce null-hypothesis structure which
violates exchangeability. Also, nonparametric methods cannot be used directly for single
subject data analysis as a parametric autocorrelation model or wavelet transformation is needed
to whiten the data. For all of these reasons, a parametric cluster mass inference method that
can operate with a general linear model and deal with single subject analyses would be of great
value.

In this paper we develop a theoretical distribution for the cluster mass statistic via Gaussian
RFT. We generalize the work of PWEF, deriving the cluster mass statistic, extending the
method to Gaussianized t data. We study the statistical size and power of our test on Gaussian
and Gaussianized t image data through simulations and illustrate the method on two real data
examples, a single subject fMRI dataset and a group level fMRI data analysis with low degrees
of freedom.

2 Materials and Methods
2.1 Cluster mass test theory

In a mass univariate data analysis, a general linear regression model (GLM)

(1)

is fit for each voxel i = 1,…, I, where Yi is an N × 1 vector of responses, X is a common N ×
q design matrix of predictors, βi is a q × 1 vector of unknown parameters and εi is a N × 1
vector of random errors. Typically, at each voxel, errors are assumed to be independent and
identically distributed  random variates, though dependent errors can be
accommodated [17]. The ordinary least squares estimator of βi is β ̂i = (XTX)−1XTYi, and of

 is , where ei = Yi − Xβ̂i and where η is the error degrees of freedom. Then the
Student’s t-statistic at voxel i is

1http://www-bmu.psychiatry.cam.ac.uk/BAMM
2http://www-bmu.psychiatry.cam.ac.uk/software/
3http://www.fmrib.ox.ac.uk/fsl/randomise
4http://www.sph.umich.edu/ni-stat/SnPM
5http://www.fil.ion.ucl.ac.uk/spm

Zhang et al. Page 2

Neuroimage. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www-bmu.psychiatry.cam.ac.uk/BAMM
http://www-bmu.psychiatry.cam.ac.uk/software/
http://www.fmrib.ox.ac.uk/fsl/randomise
http://www.sph.umich.edu/ni-stat/SnPM
http://www.fil.ion.ucl.ac.uk/spm


(2)

where c is a contrast of interest (row vector). We write the t-statistic image as .

Given cluster-forming threshold uc > 0, the set of suprathreshold statistics  is used
to define clusters. Contiguous clusters are defined by a neighborhood scheme, typically 18
connectivity scheme on a three dimensional image.

Let L be the number of clusters found, with cluster ℓ having Sℓ, voxels (i.e. the cluster extent),
ℓ = 1,2,…, L. Further let Iℓ be the set of voxel indices corresponding to cluster ℓ. The cluster
mass, Mℓ, of cluster ℓ is the summation of the suprathreshold intensities:

(3)

where Hi = Ti – uc. Note that Mℓ = SℓH ̄ℓ where H ̄ℓ = ∈i∑Iℓ Hi/Sℓ is the average suprathreshold
intensity of cluster ℓ, showing cluster mass to be the product of the cluster extent and the
average suprathreshold intensity.

To use Random Field Theory results, we begin by assuming that the standardized error images,
called the component fields, are discrete samplings of a continuous, smooth, stationary
Gaussian random process. The component field for scan j is {εij/σi}i, where εij is the error for
scan j at voxel i. The component fields are assumed to follow a mean zero, unit variance
multivariate Gaussian distribution. Stationarity implies that the spatial correlation is
determined by an auto-correlation function that is homogeneous over space. The process is
regarded as “smooth” if the autocorrelation function has two derivatives at the origin. Based
on these assumptions, the t image defined by (2) defines a Student’s t random field.

While any univariate random variable can be transformed into a Gaussian variate, or
Gaussianized, a Gaussianized t image may not resemble a realization of Gaussian random field.
Randomness in  reduces the smoothness of the statistic image relative to the component
fields [25], as reviewed in Appendix B.7. However, Worsley et al [26] argues that when the
t degrees of freedom exceed 120, the Gaussianized t-statistic can be regarded as a Gaussian
Random Field. Hence we proceed by deriving results assuming T is a Gaussian image, but
later return to the issue of Gaussianization.

The full derivation of our null distribution of the cluster mass statistic is given in Appendix B,
but we sketch an overview of the result here. The derivation starts by approximating the statistic
image about a local maximum as a paraboloid, which allows cluster mass to be obtained a
function of cluster extent, Sℓ, and suprathreshold peak intensity, Hℓ = max{Hi : j ∈ Iℓ},

(4)

where D is the dimension of the image. While this parabolic approximation is essential to the
derivation of the null distribution of Mℓ, note we do not actually fit paraboloids to the image,
and the test statistic computed from the data is exactly as specified in Eq. (3). By assuming
that the autocorrelation function of the image is proportional to a Gaussian probability density
function, the distribution of Mℓ conditional on Hℓ can be found. We follow PWEF, making a
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small excursion assumption that replaces peak height uc + Hℓ with uc, creating what we denote
the  result, but also repeat the derivation without this assumption, deriving the Ƶ result.

Finding the joint distribution of (Mℓ, Hℓ) and integrating out Hℓ yields the final result, an
expression for P(Mℓ > m), the uncorrected P-value for an observed cluster mass value of m.
This requires two numerical integrations, one dependent on uc, and one on m. In practice, for
any given dataset, P-values for a grid m values can be pre-computed and interpolation used to
find the P-value for an arbitrary value of m.

This theoretical approach also produces a new result for cluster extent Sℓ, distinct from the
original ([6]) result, which we also evaluate for completeness.

As P(Mℓ > m) is an uncorrected P-value which does not account for searching over all clusters
in the image, it is only appropriate for a single cluster that can be pre-identified before observing
the data [5], a situation that rarely arises in practice. As detailed in Appendix B, the uncorrected
P-values can be transformed into familywise-error corrected P-values which accounts for the
chance of one or more false positive clusters anywhere in the image.

2.1.1 Student’s t-statistic image—As discussed above, when the degrees of freedom are
small a Gaussian random field will not provide a good approximation for a Student’s t-statistic
image. In such cases we Gaussianize the t image via the probability integral transform. The
transformed image, however, will be rougher than the component fields, and so the roughness
parameter must be adjusted according to the degrees of freedom of the t-statistic image. Thus
we can apply our method to Gaussianized t images with just a modification to the smoothness
estimate, as described in Appendix B.7.

2.2 Simulations
To evaluate the accuracy of our cluster mass result, Equation (4), both 2D (256 × 256) and 3D
(64 × 64 × 30) Gaussian noise images are simulated. In order to understand the influence of
image roughness on the proposed statistic, each of the 10,000 independent Gaussian noise
images are convolved with different isotropic Gaussian smoothing kernels. Kernel sizes 2, 4,
8, 10, and 12 voxels full width at half maximum (FWHM6) are used, and these sizes then
directly determine |Λ|, the image roughness parameter. Two cluster forming thresholds are
investigated (Uc = 2.326 and Uc = 3.090, corresponding to uncorrected P = 0.01 and P = 0.001,
respectively). A nominal significance level of 0.05 is used for all inferences.

To evaluate the method on Gaussianized t-statistic images, 15 Gaussian noise images are
simulated, mean-centered and divided by the voxel-wise standard error to produce 14 degrees-
of-freedom t images. A t-toz transformation is then applied to generate Gaussianized t images
with the necessary adjustment to the smoothness parameter (Appendix B.7).

To assess the power of our method, a spherically shaped signal (radius 1, 3, 5, 7, 10mm) with
various uniform intensities (0.25, 0.5, 0.75, 1, 1.5, 2) is added to the center of Gaussian noise
images. Power is measured as the probability of a true positive cluster, defined a significant
cluster that contains one or more non-null voxels. The cluster extent inference methods are
those from RFT [1] implemented in the Statistical Parametric Mapping (SPM2) [21] software.

One objective of the evaluations is to determine whether the  result, based on the small
excursion approximation, or the Ƶ result is more accurate. Since the derivation depends on the
joint distribution of cluster mass and peak height, we examine the approximation accuracy of

6 

Zhang et al. Page 4

Neuroimage. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



our results for this bivariate distribution with simulation. In addition to visualizing images of
the predicted and simulated densities for the Ƶ and  results, we compute the Kullback-Leibler
divergences [15], a measure of distance between two distributions. This allows a quantitative
comparison between the two results.

The ultimate accuracy of the method depends on the marginal distribution of cluster mass. We
compare the specificity and validity of the mass test statistic for the  and Ƶ results, as well
as cluster size P-values found with our derived cluster extent distribution and cluster extent P-
values produced by SPM. We present results for both uncorrected and corrected P values to
understand the performance of the method, though only the corrected P-values are of practical
interest. The specificity and validity is gauged with plots of theory-based P-values versus
Monte Carlo (“true”) P-values, called P-P plots. When a method has exact specificity the theory
will produce the same P-value as Monte Carlo simulation, and the plotted line will follow the
identity. When a method is conservative the line will fall above the identity, and when
anticonservative (fails to control Type I error rate) the line will fall below the identity.

2.3 Applications
We demonstrate our cluster mass inference method on two fMRI data sets, one single subject
and one group dataset

2.3.1 FIAC data—The first example is the Functional Imaging Analysis Contest (FIAC)
example [9]. The experiment uses a sentence listening task, considering effects of different or
same speakers and different or same sentences. We only consider the sentence effect “Different
Sentence vs. Same Sentence”: In each block, six sentences are read; in the “Different” condition
six different sentences are read, while in “Same” condition the same sentence is repeated six
times. For complete details see [9].

We use subject 3 (“func4”), block design data with 6mm FWHM smoothing, fit with a GLM
which produces a t statistic image with 179 degrees-of-freedom. Here we can assume that the
t image reasonably approximates a Gaussian image and use the method directly on the t image.
The cluster forming threshold is P = 0.001 uncorrected.

2.3.2 Working Memory Data—We also use a group level analysis with 12 subjects from a
working memory experiment. Since the degrees of freedom are rather small (11), we perform
a t-to-z transformation to generate a Gaussianized t image.

While the experiment considers different aspects of working memory, we only use the item
recognition task. In the item recognition condition subjects are shown a set of five letters and,
after a 2 second delay, shown a probe, to which respond “Y” if it was in the set, or “N”
otherwise; in a control condition five “X”s are shown and the probe is just “Y” or “N” indicating
the required response. For full details see Marshuetz et al [18].

A one-sample t-test is used to model the data. We use t-to-z transformation and a cluster
defining threshold of P = 0.01 uncorrected (t11 = 4.02 or z = 3.09). The roughness parameter
is adjusted by 1.3891 [13,25] to account for increased roughness of the Gaussianized t statistic.
In addition to parametric results in SPM, we also use SnPM to obtain nonparametric cluster
extent and mass results (see Appendix A for a summary of permutation cluster inference). With
12 subjects there are 212 = 4096 possible sign flips of the contrast data to create a permutation
distribution.
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3 Results
3.1 Simulations

For the simulation studies, we only show results for a smoothness parameter of FWHM = 8
voxels, as the results are similar to the other smoothness parameters.

3.1.1 Accuracy of derived joint distribution—The top row of Figure 1 shows the true
(simulated) joint distribution of cluster mass and peak height intensity, the Ƶ result and the

 result for 3D Gaussian noise images. The bottom row shows difference images of true and
derived distributions for the Ƶ and  results. The distributions are qualitatively similar, though
for very small cluster masses and cluster height around 0.5 to 1.0, the two results tend to
underestimate the truth; while for cluster mass between 0 and 50 and cluster heights between
0 and 0.5, the results can overestimate the truth. The Kullback-Leibler divergences are 1.285
for the Ƶ result and 1.610 for the  result.

Figure 2 displays corresponding results for 3D Gaussianized t image. Again, there is little
difference between the true distribution and the two results, and again the Kullback-Leibler
divergence between the true distribution and the Ƶ result is smaller than that between the true
distribution and the  result (1.701 vs. 2.338). Thus, for both Gaussian images and
Gaussianized images, the Ƶ result appears to be superior to the  result.

3.1.2 Accuracy of derived cluster mass null distribution—Figure 3 shows the P-P
plots for 3D Gaussian null simulated data and Figure 4 3D Gaussianized t-statistic null
simulated data. Both cluster mass (dot-dashed lines) and cluster size results (solid lines) are
shown. For all of our derived methods, the  results are more conservative (the null will be
rejected less often than nominal) than the Ƶ results. The SPM cluster size results are also more
conservative than the Ƶ results for Gaussian null simulated data and the  results for
Gaussianized t-statistic null simulated data. While our Ƶ result for cluster size exhibits some
anticonservativeness, overall the Ƶ result of cluster mass is the least conservative method,
while maintaining validity over most of the range of probabilities included in this simulation
study.

Figure 5 shows the Type I error rates for a 3D Gaussianized t image with 14 degrees of freedom
with various smoothness parameters (FWHM) and cluster defining thresholds. The figure
shows that the Ƶ cluster mass result provides better results for high thresholds and large FWHM
than for low threshold and low FWHM. For corrected P values, this result is valid for all levels
of smoothing studied, whereas the Ƶ result of cluster extent is, by and large, invalid.
Furthermore, the Ƶ cluster mass corrected P-values—those that are used in practice—are
always closer to the nominal significance level when correcting for multiple comparisons.

3.1.3 Power comparisons—Having found our own cluster extent result to be invalid, we
compare the power of our Ƶ cluster mass result only to SPM’s cluster extent result. Figure 6
illustrates simulated power for the cluster extent (SPM) and cluster mass (Ƶ). As expected, for
a given intensity, the power increases with signal intensity, and, for a given radius, power
increases as the signal intensity increases. When the image smoothness is low (FWHM ≤ 4
voxels), SPM cluster extent generally provides better power than the Ƶ mass result. However,
for greater smoothness (FWHM ≥ 8 voxels), the Ƶ result is more powerful than SPM, regardless
of signal extent or signal intensity.

3.2 Real Data Evaluations
The FIAC data results show the method’s performance at high degrees-of-freedom, while the
working memory data assess the method using Gaussianization of the t image.
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3.2.1 FIAC data—The estimated smoothness of the component fields based on the residuals
is [2.4964 2.3599 1.7525] voxel FWHM with 27,862 3.0 × 3.0 × 4.0mm3 voxels. Figure 7
shows the maximum intensity projection of all clusters found with a P = 0.001 threshold, the
three most prominent being a pair of bilateral activations in inferior frontal gyri and one in the
frontal pole. Note that the primary auditory cortex effect did not survive P = 0.001 threshold,
and inspection of the unthresholded statistic image suggests the frontal pole cluster is a false
positive activation due to susceptibility artifacts. However, the general shape and size of the
clusters are still representative of true positive signals and are useful for evaluating our method.

Table 1 provides the values of cluster extent, suprathreshold peak height intensity and cluster
mass for each cluster, as well as the P-values, all sorted by peak height. The first three clusters
have corrected significance with cluster mass, while peak height and cluster extent only find
one cluster significant each. The uncorrected significances show that if a cluster is significant
by any of the three methods, it is significant by cluster mass. Again, while we do not advocate
use of uncorrected inferences, this demonstrates the relative sensitivity of the method.

3.2.2 Working Memory Data—The estimated smoothness is [4.8611 6.4326 6.6156] voxel
FWHM with 122,659 2.0 × 2.0 × 2.0 voxels. Figure 8 shows that all of the clusters found with
a P = 0.001 cluster-forming threshold. Table 2 compares our RFT cluster mass results to an
equivalent permutation method. Our RFT method finds the five largest clusters significant, as
does the RFT cluster size statistic. Notable is the close correspondence between the RFT P-
values and the permutation P-values.

4 Discussion
Although cluster mass inference with nonparametric permutation has been found to be a quite
sensitive inference method for neuroimaging data [11], permutation is computationally
intensive, not a very flexible modeling framework. Holmes provided mean of the cluster mass
to the power 2/(D+2) for Gaussian random field without detailed proofs [13]. We propose a
new theoretical cluster mass inference method for Gaussian images and Student’s t-statistic
images, based on Gaussian RFT. Our simulation studies show that our derived null distribution
is accurate, and performs well not only for Gaussian images, but also for Student’s t-statistic
image. Like other RFT methods, our results depend only on the smoothness and the volume
of the image. While we did not find closed form results for the P-value for an arbitrary mass
value, the P-value can be quickly found based on interpolation of a pre-computed look-up table.

Our evaluations of the test’s specificity reveal that the proposed cluster mass inference method
works best when the image is sufficiently smoothed, at least 4 voxel FWHM, and ideally for
larger smoothness parameters (FWHM ≥ 8 voxels). We stress that this is a substantial
magnitude of smoothness (typical estimated smoothness is FWHM 2–4 voxels). However, our
real data evaluations found our method perform as good or better than parametric cluster size
inference, even though image smoothness was only about 2 voxels FWHM in the single subject
dataset. Hence, even with slightly conservative P-values, the mass statistic appears very
sensitive to real data signals.

Consistent with findings using the nonparametric cluster mass inference method, our
theoretical cluster mass inference statistic generally has better power than either the cluster
extent inference statistic or the voxel intensity statistic, alone. This is especially true when the
cluster extent and the suprathreshold peak height intensity are moderately sized. More
remarkable, is that despite a large number of assumptions and a sequence of approximations,
our RFT cluster mass P-values are very close to the permutation results which have very few
assumptions.
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The Gaussianization of t images is a shortcoming of the method, but it is not an uncommon
strategy. The FSL [20] software has always (as of version 4.0) used Gaussianization of t and
F images. While the SPM software has abandoned Gaussianization for voxel-wise inference
ever since SPM99, its cluster extent inference has always (as of SPM5) used Gaussian and not
t random field results cluster extent P-values and currently neglects the smoothness adjustment
described in Appendix B.7.

Although the proposed cluster mass inference method has many good statistical properties, it
has its limitations. When we derive the formulas for the marginal distribution of cluster mass,
we assume that the shape of a cluster above a certain threshold is approximated by a paraboloid.
This assumption is rational for a Gaussian image that has been convolved with a Gaussian
smoothing kernel. However, for real data, this assumption may be too strong, even after
smoothing the data. For example, we may have a large flat cluster with only one voxel of high
intensity. The activated regions may also have other shapes that are not well approximated by
a paraboloid. In addition, we use a Gaussian shaped correlation function to simplify the variance
in the derivation. We also assume that we have stationary fields, though an extension to
accommodate local variation in smoothness [12] may be possible.

While we have only attempted to derive Gaussian results, a reviewer notes that [24] derived
the Hessian of a t field which, when simplified by conditioning and combined with results from
[3], could provide a means to derive t cluster mass statistic.

Finally we note that, while both real data examples were fMRI, the method makes no
assumptions about the modality and should operate well with PET and other types of imaging
data. To this end, an extension to SPM will be available soon to allow use of our results; check
the SPM Extensions website7 for a link.
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Appendix

Appendix A Cluster P values
We use nonparametric permutation to obtain uncorrected and FWE corrected cluster mass P-
values on real data, to provide a comparison for our proposed parametric mass statistic. As
most neuroimaging permutation literature focuses on voxel-wise inference, we briefly review
nonparametric cluster inference.

An nonparametric uncorrected P-value for a single voxel is trivial, as it is just the direct
application of a univariate permutation test. Defining an uncorrected P-value for clusters,
however, is difficult as there is no unique way to define equivalent clusters after permutation
of the data. If there are L cluster the original statistic image, in a permuted-data statistic image
there will rarely be L clusters and there will almost never be a cluster in exactly the same
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location. Instead of matching clusters between permutations, an assumption of stationarity is
made, that the distribution of cluster statistics (e.g. size, mass, local peak height, etc) does not
vary with space. With such a stationarity assumption, cluster statistics can be pooled over space,
and a pooled permutation distribution created. While permutation distributions typically
containing K elements, where K is the number of permutations, the uncorrected cluster

permutation distribution will contain  elements, where Lk is the number of clusters
found in permutation k’s statistic image. The uncorrected P-value is the proportion of the

 elements that are as large or larger than an observed cluster statistic.

FWE corrected cluster P-values are more straightforward, and only require creating the
maximal cluster statistic distribution. Because the search over the image for the maximal
statistic, no assumption of stationarity is required. Even when some regions of the image that
are smoother (or, by chance, give rise to larger cluster statistics) the maximum operation
naturally accounts for such variation. (Nonstationarity is a problem for parametric cluster
inference, though see [12]). For each permutation the maximal cluster statistic is recorded, and
the corrected P-value is the proportion of the (K) maximal elements that are as large or larger
than an observed cluster statistic.

Lastly, we note that if cluster statistics are marked as significant only when FWE-significant
at 0.05, there is then 95% confidence of no false positive clusters anywhere in the image. For
more on FWE see [19].

B Derivation of Null Distribution of Cluster Mass
Our derivation of the distribution of cluster mass follows that of Poline et al. [23] (PWEF) with
several departures. A rough outline of the derivation is as follows:

1. A second order Taylor series approximates the statistic image at a local maximum as
a paraboloid, determined by peak height and curvature about the maximum.

2. The geometry of a paraboloid gives cluster extent and mass as a function of peak
height and the curvature (Jacobian determinant).

3. Distribution of the curvature, conditional on peak height, is found using an assumption
of a Gaussian autocorrelation function.

4. Combining two previous results relates extent and mass, conditional on peak height,
to a χ2 distribution. A bias correction is made using the expected Euler characteristic.

5. At this point PWEF used a small excursion assumption; we produce a pair of results,
with and without this assumption.

6. Joint distribution of mass and height are found and marginalized to produce final mass
result.

B.1 Notation & Preliminaries
Let Z(x) be a D-dimensional Gaussian image, with
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for all x ∈ Ω ⊂ ℜD in the image volume, where ∇ is the gradient operator and Λ is the D ×
D matrix which parameterizes roughness. We assume the process is smooth, in that ∇2 ρ(0)
exists, where ρ(·) is the autocorrelation function and ∇2 is the Hessian operator.

Without loss of generality, suppose there exists a local maximum at x = 0, and consider the
approximating paraboloid from a second order Taylor series about x = 0

Suppressing the spatial index, let Z = Z(0), and denote J = | – ∇2Z(0)| the negative Jacobian
determinant.

For a cluster-defining threshold uc, let H = Z – uc be the suprathreshold magnitude (note that
we suppress the ℓ subscript used in the body of the paper). Then the geometry of the
approximating paraboloid gives cluster extent as

(5)

where a = πD/2/Γ(D/2 + 1) is the volume of the unit sphere, and mass as

(6)

B.2 Distribution of S|H
Conditional on H, PWEF showed that another Taylor series yields

(7)

where η is mean zero Gaussian with variance8

While this expression is quite involved, if we assume that ρ is proportional to a Gaussian
probability density function (PDF), it simplifies to Var(η|Z) = 2D/(H + uc)2. Subsequently we
will need J−1/2, and so write the exponentiated and powered equation (7) as J−1/2 ≈ |Λ|−1/2(H
+ uc)−D/2 exp (η/2)−1. However, as in PWEF, we find that numerical evaluations of the final
result are poor when η is assumed to be Gaussian (results not shown). We instead linearize the
exponential,

(8)

and approximate 1+η/2 with η′, where νη′ is  variate. Matching the second moments of 1 +
η/2 and η’ gives ν = 4(H + uc)2/D. Combining with Equations (8) and Eq. (5) yields

(9)

8Note there is a typo in the PWEF paper’s equation (8), where 2Z should in fact be just Z, or H + Uc as we have written.
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B.3  Result for M
PWEF proceeded by using a small excursion approximation, that H is small relative to uc,
replacing H + uc with uc. With this change, and marginalizing out H, the expected cluster extent
can be found as

(10)

However, accurate results using the expected Euler Characteristic [1] give

(11)

where Φ is the standard Gaussian CDF and ϕ is the standard Gaussian PDF. Hence, the
approximation for S|H is scaled by

(12)

As a side note, this is Mill’s ratio [8] scaled by uc, which will have c  converging to 1 from
below for large uc.

The bias-adjusted result is

(13)

which is a scaled inverse χ2 random variable with  degrees of freedom and scale
parameter

The marginal distribution of H is approximately exponential with mean 1/uc [1], and thus the
joint PDF of M and H is

(14)

for M,H > 0. The uncorrected P-value for cluster mass is then found with

using numerical integration over a fine grid.

B.4 Ƶ Result for M
We repeat the preceding without the small excursion approximation. We call this the Ƶ result,
since Z = H + uc is left as is. Returning to (9) and marginalizing out H we get
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(15)

where the final term must be found numerically for a particular uc. This provides the bias
adjustment term

(16)

This provides an approximation for M|H as a scaled inverse χ2 random variable with ν degrees
of freedom and scale parameter

and joint PDF of M and H of

(17)

As before, the uncorrected P-value for cluster mass is then found with

using numerical integration over a fine grid.

B.5 Corrected P-values
The uncorrected P-values can be transformed into family-wise error (FWE) corrected P-values
with either a Bonferroni correction for the expected number of clusters or the Poisson clumping
heuristic [1,4,10]. We opt for the later, as it provides a continuous transformation between
uncorrected and corrected P-values.

A FWE corrected P-value accounts for the chance of the maximal statistic exceeding that
actually observed. Assuming the clusters arise as a Poisson process, this P-value is found as

(18)

where (L) is the expected number of clusters in the image. For moderate thresholds uc the Euler
characteristic will count the number of clusters, and hence we approximate (L) ≈ EC(L). The
most accurate results for EC(L) depends on the dimension and the topology of the search region
[26]. For a 3D, approximately spherical search region

(19)

where λ(Ω) is the volume of the search region. In addition, for a high threshold uc, the number
of clusters above the threshold will be approximated by [1,23]
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B.6 Smoothness Estimation & Λ
The preceding results depend on the roughness of the component random fields, as
parameterized by |Λ|. Worsley et al. [25] proposed re-expressing this as the FWHM Gaussian
kernel required smooth an independent random field into one with roughness Λ. Assuming the
smoothing is aligned with the major axes of the image, this relationship is

where FWHMd is the smoothness in the d-th dimension. If the smoothness is not known, |
Λ|1/2 can be estimated from the residual images of a general linear model [14]

B.7 Student’s t-image
Worsley et al. and Holmes [14] showed that if the roughness of the Gaussian component fields
is Λ, the roughness for a Student’s t-statistic image can be approximated by ΛT = λnΛ, where
n > 4 is the number of scans used to generate the t image and λn is the correction factor [13,
25]. When applying our method to Gaussianized data we adjust Λ accordingly.
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Figure 1.
Comparison of true and theoretical joint distributions of cluster mass and peak height intensity,
for Gaussian images. On top left is the true distribution obtained from simulation, on the top
middle is the  result and on the top right is the Ƶ result. Below each of the theoretical results
is the true minus estimated distributions. While only an intermediate result, the agreement is
reasonable, with better performance obtained with the Ƶ result. All distributions are
transformed by the fourth root to improve visualization. Unless otherwise noted, simulation
settings used in the figures are: uc = 2.3263 (p=0.01), 64 × 64 × 30 image at FWHM 8 voxels.
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Figure 2.
Comparison of true and theoretical joint distributions of cluster mass and peak height intensity,
for Gaussianized t14 images. Same format as in Figure 1. Again the agreement between
simulated truth and derived theoretical result is good, with a closer match seen with the Ƶ
result.
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Figure 3.
Monte Carlo simulation P-values versus theoretical P-values for uncorrected and corrected
P-values with Gaussian images. Values in the plot above the identity indicate conservative
performance, below the identity invalid performance. Our Ƶ cluster mass method exhibits
slightly conservative performance, but much less conservative than the other methods.
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Figure 4.
Monte Carlo simulation P-values versus theoretical P-values for uncorrected and corrected
P-values with Gaussianized t14 images. Despite Gaussianization, our Ƶ cluster mass method
provides close to exact performance, and less conservative performance than other methods.
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Figure 5.
Type I error rate for Gaussianized t images, for both P = 0.01 and P = 0.001 cluster-forming
thresholds, with different smoothness. While uncorrected P-values perform poorly under low
smoothness, our Ƶ cluster mass method has the corrected P-values are closest to the nominal
α = 0.05 level without being invalid.
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Figure 6.
Power of our proposed cluster mass inference method (solid lines), compared with standard
cluster extent inference method implemented in SPM (dashed lines), for different cluster sizes
and signal intensities. Gaussian images were used with a cluster defining threshold of 2.3263
(p=0.01).
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Figure 7.
Results for “sentence” effect in FIAC single subject data.

Zhang et al. Page 21

Neuroimage. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Results from item recognition effect in the working memory data.
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