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Abstract
The metabolism of tamoxifen is being redefined in the light of several important pharmacological
observations. Recent studies have identified 4-hydroxy N-desmethyl tamoxifen (endoxifen) as an
important metabolite of tamoxifen necessary for antitumor actions. The metabolite is formed through
the enzymatic product of CYP2D6 which also interacts with specific selective serotonin reuptake
inhibitors (SSRIs) used to prevent the hot flashes observed in up to 45% of patients taking tamoxifen.
Additionally, the finding that enzyme variants of CYP2D6 do not promote the metabolism of
tamoxifen to endoxifen means that significant numbers of women might not receive optimal benefit
from tamoxifen treatment. Clearly these are particularly important issues not only for breast cancer
treatment but also for selecting premenopausal women, at high risk for breast cancer, as candidates
for chemoprevention using tamoxifen.
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Introduction
The aim of the body’s biotransformation mechanisms is to prevent potentially toxic xenobiotic
substances that include drugs, from damaging the body. That being the case, an orally active
medicine must overcome numerous challenges to reach a target organ and produce the
appropriate pharmacological effect at a receptor system. There is not one but several stages of
biotransformation of a lipophilic drug such as tamoxifen that are designed to enhance the
hydrophilic nature of the chemical so it can be rapidly eliminated. The stages of
biotransformation are called phases I, II and III.

Phase I metabolism enhances the water solubility of a lipophilic chemical by hydroxylating an
aromatic compound to become a phenol or hydrolyzing an esterified compound. These
reactions are conducted by the family of cytochrome P450 enzymes referred to as CYP’s. Phase
II metabolism further increases the water solubility of the Phase I product by attaching highly
water soluble entities. In the case of selective estrogen receptor modulators (SERMs) sugars
(glucuronic acid) and salts (sulfates) are the most important conjugation products. In contrast,
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the phase III system are efflux pump molecules (also known as p-glycoproteins and multi-drug
resistance transports protein) that exclude unmetabolized drugs from the epithelial cells of the
intestinal tract immediately upon absorption.

In general terms, the ingested SERM must survive “first pass” metabolism from the intestine
to the liver to have any chance of reaching target organs around the body. The general principles
are illustrated in Figure 1 where the SERM is biotransformed by CYPs in the intestinal wall
and Phase II metabolism occurs via intestinal bacteria. A fraction of the administered dose is
then absorbed into the hepatic portal vein and further biotransformed by phase I CYPs and/or
glucuronidated or sulfated in phase II metabolism in the liver. By way of example, only 2% of
the administered raloxifene survives and is bioavailable for systemic distribution[1].

Tamoxifen, the first SERM
The nonsteroidal antiestrogen tamoxifen (ICI 46,474 Nolvadex®) is a pioneering medicine
[2] used to treat all stages of breast cancer in more than 120 countries throughout the world.
The compound ICI 46,474 was discovered in the Fertility Control Program at Imperial
Chemical Industries (ICI Pharmaceuticals Division, now AstraZeneca) in Alderley Park,
Cheshire, England in the early 1960’s [3–5]. The drug was found to be an extremely potent
postcoital contraceptive in the rat [4,5]. Unfortunately, ICI 46,474 did not exhibit antifertility
properties in women, in fact, quite the opposite, it induced ovulation [6,7]. As a result, the
medicine was, at one time, marketed in the United Kingdom for the induction of ovulation in
subfertile women with a functional hypothalamo-pituitary-ovarian axis.

There is a known link between estrogen and the initiation and growth of some breast cancers
[8] so the nonsteroidal antiestrogen ICI 46,474 was tested as a potential treatment for advanced
breast cancer in postmenopausal women. The antiestrogen produced response rates of 25–35%
in unselected patients comparable to diethylstilbestrol and high dose androgen therapy, the
standard endocrine therapies at the time [9,10]. However, fewer side effects were noted with
tamoxifen [9,10]. As a result, the drug was approved as a palliative option for the hormonal
treatment of breast cancer in the UK in 1973. There the story may have ended had not tamoxifen
been reinvented as the first targeted therapy for breast cancer[2].

The seminal observations by Elwood Jensen that estrogen action is mediated by the estrogen
receptor (ER)[11,12] in its target tissues (uterus, vagina pituitary and breast tumors) opened
the door to targeting tamoxifen to select patients with the ER in their metastatic tumor[13,
14]. However, a strategic plan was developing to use tamoxifen in a broader range of patient
populations. Laboratory studies conducted in the 1970’s showed that tamoxifen blocked
estrogen binding to the ER [15–17], should be used as a long-term adjuvant therapy to suppress
tumor recurrence [18–20] and the drug also had potential as a chemopreventive agent [21,
22].

Clinical studies subsequently confirmed that long-term adjuvant tamoxifen therapy, targeted
to the patients with ER positive breast cancers, significantly decreased the death rate from the
disease [23] and contributes to the current decline in death from breast cancer nationally [24].
Overall, the strategy of targeted long-term “antiestrogenic” [25] treatment for breast cancer
has presaged the current fashion of targeting anticancer agents to other organ sites in the body.

Despite the fact that aromatase inhibitors show superiority over tamoxifen as adjuvant therapy
in postmenopausal women[26–29], several issues have surfaced that have retained tamoxifen
as a useful therapeutic agent worldwide. The medicine is extremely cheap compared to
aromatase inhibitors so tamoxifen remains an essential anticancer agent in undeveloped
countries or in countries with under-funded managed healthcare systems. Furthermore,
tamoxifen is the only appropriate antiestrogenic therapy for premenopausal women whether
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they are being treated for breast cancer or whether chemoprevention is being considered[30].
For these reasons, new knowledge that can enhance the appropriate use of an established drug
is of value to improve healthcare.

There are current initiatives to translate emerging knowledge on genetic variations in drug
metabolism to target patient populations.[31] It is reasoned that by applying pharmacogenomic
tests to specific patient populations, there will be fewer surprises with side effects, drug
interactions, and a higher probability of increasing therapeutic effectiveness in the treatment
or prevention of disease. The promise of practical progress is exemplified in this article using
tamoxifen as the model drug.

Tamoxifen is a prodrug and can be metabolically activated to 4-hydroxytamoxifen[32–34] or
alternatively can be metabolically routed via N-desmethyltamoxifen to 4-hydroxy-N-
desmethyltamoxifen [35,36] (Figure 2). The hydroxy metabolites of tamoxifen have a high
binding affinity for the ER[32,37]. The finding that the enzyme produced by CYP2D6 activates
tamoxifen to hydroxylated metabolites 4-hydroxytamoxifen and endoxifen[38] has
implications for cancer therapeutics. Women with enzyme variants that cannot make endoxifen
may not have as successful an outcome with tamoxifen therapy. Alternatively, women who
have a normal enzyme may make high levels of the potent antiestrogen endoxifen and
experience hot flashes. As a result, these women may take selective serotonin reuptake
inhibitors (SSRIs) to ameliorate hot flashes but there are potential pharmacological
consequences to this strategy. Some of the SSRIs are metabolitically altered by the CYP2D6
enzyme product[39]. It is therefore possible to envision a drug interaction whereby SSRIs block
the metabolic activation of tamoxifen.

This article will describe the scientific twists and turns that tamoxifen and its metabolites have
taken over the past 30 years. The story is naturally dependent on the fashions in therapeutic
research at the time. What seems obvious to us as a successful research strategy today, with
millions of women taking tamoxifen, was not so 30 years ago at the beginning when the clinical
community and pharmaceutical industry did not see “antihormones” as a priority at all for drug
development[25]. In 1972, tamoxifen was declared an orphan drug with no prospects[2].

Basic mechanisms of tamoxifen metabolism
The original survey of the putative metabolites of tamoxifen was conducted in the laboratories
of ICI Pharmaceuticals Division and published in 1973 [40]. A number of hydroxylated
metabolites were noted (Figure 3) following the administration of 14C labeled tamoxifen to
various species (rat, mouse, monkey, and dog). The major route of excretion of radioactivity
was in the feces. The rat and dog were used to show that up to 53% of the radioactivity derived
from tamoxifen was excreted via the bile and up to 69% of this was reabsorbed via a
enterohepatic recirculation until eventual elimination occurs[40]. The hydroxylated
metabolites are excreted as glucuronides. However, no information about their biological
activity was available until the finding that 4-hydroxytamoxifen had a binding affinity for the
ER equivalent to 17β estradiol [32]. Similarly, 3,4 dihydroxytamoxifen (Figure 3) bound to
the human ER but interestingly enough, 3,4 dihydroxytamoxifen was not significantly
estrogen-like in the rodent uterus despite being antiestrogenic [32].

Additional studies on the metabolism of tamoxifen in four women [41] identified 4-
hydroxytamoxifen as the primary metabolite using a thin layer chromatographic technique to
identify 14C labeled metabolites. This assumption, coupled with the potent antiestrogenic
actions of 4-hydroxytamoxifen [32] and the conclusion that it was an advantage, but not a
requirement for tamoxifen to be metabolically activated [33,42] seemed to confirm the idea
that 4-hydroxytamoxifen was the active metabolite that bound in rat estrogen target tissues to
block estrogen action[34]. However, the original analytical methods used to identify 4-
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hydroxytamoxifen as the major metabolite in humans were flawed[43] and subsequent studies
identified N-desmethyltamoxifen (Figure 4) as the major metabolite circulating in human
serum[44]. The metabolite was found to be further demethylated to N-desdimethyltamoxifen
(Metabolite Z)[45] and then deaminated to Metabolite Y, a glycol derivative of tamoxifen
[46,47]. The metabolites (Figure 4) that are not hydroxylated at the 4 position of tamoxifen
(equivalent to the 3 phenolic hydroxyl of estradiol) are all weak antiestrogens that would each
contribute to the overall antitumor actions of tamoxifen at the ER based on their relative binding
affinities for the ER and their actual concentrations locally.

At the end of the 1980’s the identification of another metabolite tamoxifen 4-hydroxy N-
desmethyltamoxifen in animals[48] and man [35,36] was anticipated but viewed as obvious
and uninteresting. The one exception that was of interest was Metabolite E (Figure 3) identified
in the dog [40]. This phenolic metabolite without the dimethylaminoethyl side chain is a full
estrogen[47,49]. The dimethylaminoethoxy side chain of tamoxifen is necessary for
antiestrogenic action[49].

It is not a simple task to study the actions of metabolites in vivo. Problems of pharmacokinetics,
absorption and subsequent metabolism all conspire to confuse the interpretation of data. Studies
in vitro using cell systems of estrogen target tissues were defined and refined in the early 1980’s
to create an understanding of the actual structure function relationships of tamoxifen
metabolites. Systems were developed to study the regulation of the prolactin gene in primary
cultures of immature rat pituitary gland cells[42,50] or cell replication in ER positive breast
cancer cells[51–54]. Overall, these models were used to describe the importance of a phenolic
hydroxyl to tether a triphenylethylenes appropriately in the ligand binding domain of the ER
and to establish the appropriate positioning of an “antiestrogenic” side chain in the
“antiestrogen region” of the ER[50] to modulate gene activation and growth[42,50,55–58].
These structure function studies, that created hypothetical models of the ligand-ER/complex,
were rapidly advanced with the first reports of the x-ray crystallography of the estrogen, 4-
hydroxytamoxifen[59] or raloxifene ER[60] complexes. The ligand-receptor protein
interaction was subsequently interrogated by examining the interaction of the specific amino
acid, asp 351 with the antiestrogenic side chain of the ligand[61]. A mutation was found as the
dominant ER species in a tamoxifen-stimulated breast tumor grown in athymic mice[61,62].
The structure function relationships studies, that modulated estrogen action at a transforming
growth factor alpha gene target, demonstrated that the ligand shape would ultimately program
the shape of the ER complex in a target tissue [30,63–65]. This concept is at the heart of
metabolite pharmacology and is required to switch on and switch off target sites around the
body. The other piece of the mechanism of SERMs puzzle that was eventually solved was the
need for another player to partner with the ER complex. Coactivators[66] can enhance the
estrogen-like effects of compounds at a target site[67]. However, in the early 1990’s, the
molecular and clinical use of this knowledge with the development and application of SERMs
was in the future[68].

The urgent focus of translational research in the early 1990’s was to discover why tamoxifen
was a complete carcinogen in rat liver[69,70] and to determine whether there was a link
between metabolism and the development of endometrial cancer noted in very small but
significant numbers of postmenopausal women taking adjuvant tamoxifen[71,72].

All interest in the metabolism of tamoxifen focused on the production of DNA adducts[73]
that were responsible for rat liver carcinogenesis and, at the time, believed to be potentially
responsible for carcinogenesis in humans[74]. Although many candidates were described
[75–78], the metabolite found to be responsible for the initiation of rat liver carcinogenesis is
α-hydroxytamoxifen[79–83] (Figure 5) Alpha-hydroxytamoxifen has been resolved into R-
(+) and S- (−) enantiomers. Metabolism by rat liver microsomes gave equal amounts of the
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two forms, but in hepatocytes the R form gave 8x the level of DNA adducts as the S form. As
both had the same chemical reactivity towards DNA, Osborne and coworkers[84] suggested
that the R form was a better sulfotransferase substrate. This enzyme is believed to catalyze
DNA adduct formation. Subsequently, Osborne and coworkers[85] conducted studies with
alpha-hydroxy-N-desmethyltamoxifen; the R-(+) gave 10x the level of adducts in rat
hepatocytes as the S-(−).

There were reasonable concerns that the hepatocarcinogenicity of tamoxifen in rats would
eventually translate to humans but fortunately this is now known to be untrue[86]. The
demonstration of carcinogenesis in the rat liver appears to be related to poor DNA repair
mechanisms in the inbred strains of rats. In contrast, it appears that the absence of liver
carcinogenesis in women exposed to tamoxifen [87] is believed to result from the sophisticated
mechanisms of DNA repair inherent in humans cells..

It is clear from this background about the early development of tamoxifen and the fact that
tamoxifen was considered to be such a safe drug in comparison to other cytotoxic agents used
in therapy during the 1970’s and 1980’s, that there was little enthusiasm for in-depth studies
of tamoxifen metabolism. However, this perspective was to change in the 1990’s with the
widespread use of tamoxifen as the gold standard for the treatment and prevention of breast
cancer. Questions needed to be addressed: 1) what happens to tamoxifen in patients? and 2)
can improvements be made to the molecule?

Clinical pharmacology
A number of analytical techniques are available to evaluate blood levels of tamoxifen and its
metabolites once the drug is absorbed. The early method of thin layer chromatography, and
the current method of high performance liquid chromatography (HPLC) both depend on the
conversion of the triphenylethylenes to fluorescent phenanthrenes for their detection (Figure
6). The original description of the reaction [88] was successfully adapted [89] to identify
tamoxifen, N-desmethytamoxifen and 4-hydroxytamoxifen in plasma samples.

Subsequent improvements were made [90] but the method significantly underestimated
phenolic metabolites (4-hydroxytamoxifen) and had no internal standardization. In contrast, a
method of post column fluorescence activation [91] or preliminary purification from interfering
substance using a Sep-Pack C18 cartridge (Waters Association, Milford MA) [92] with internal
standardization considerably improved accuracy. The detection of tamoxifen metabolites in
serum was further improved by Lien and coworkers [93] and recently by Lee and coworkers
[94] who adapted the methods [95,96] developed to perform “on line” extraction and post
column cyclization. Using this methodology the limits of detection for 4-hydroxy tamoxifen
and endoxifen are 0.5 and 0.25 ng/ml respectively [97]. Since there was such initial controversy
about the identification of metabolites in patient serum, it is perhaps important to describe the
validation of 4-hydroxy-desmethyltamoxifen as a metabolite of tamoxifen in patients.
Tamoxifen metabolites were investigated in a 57 year old female patient receiving tamoxifen
treatment[35]. Two major chromatographic peaks were identified in bile following treatment
with β-glucuronidase. On major peak co-elevated with 4-hydroxytamoxifen but the second
peak was proven to be 4-hydroxy-N-desmethyltamoxifen using a) co-elution with an authentic
standard on reversed-phase chromatography and formation of fluorescent derivative by
cyclization; b), the detection of a molecular ion (M+l)+ of 374 m/2 as determined by liquid
chromatography-mass spectrometry; and c) a fragmatogram identical to that of the authentic
standard, obtained by mass spectrometry. Subsequent refinement of the technology improved
detection for identification of 4-hydroxy-N-desmethyltamoxifen in human serum, tissues[36]
and rat tissues[93].
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Studies confirm that tamoxifen is 98% bound to serum albumin which ultimate creates a long
biological half life (plasma half life 7 days)[93]. A single oral dose of 10 mg tamoxifen (half
the daily dose) produces peak serum levels of 20–30 ng of tamoxifen/ml within 3–6 hours but
it must be stressed that patient variation is very large [98]. Nevertheless, continuous therapy
with either 10mg bid [98] or 20 mg bid [99] produces steady state levels within 4 weeks. Blood
levels of tamoxifen can average around 150 ng/ml for 10 mg tamoxifen bid and 300 ng/ml for
20 mg tamoxifen bid. A strategy of using loading doses [98,100] to elevate blood levels rapidly
has not produced any therapeutic benefit.

Overall, the results from the metabolic studies with tamoxifen during the 1970’s and 80’s did
not help clinicians to use tamoxifen more effectively. The structures of metabolites were in
fact used as leads to create new molecules for clinical development.

Metabolic Mimicry
The demonstration [32] that the class of compounds referred to as nonsteroidal antiestrogens
were metabolically activated to compounds with high binding affinity for the ER created
additional opportunities for the medicinal chemists within the pharmaceutical industry to
develop new agents. This was particularly true once the nonsteroidal antiestrogens were
recognized to be SERMs [101–103] and had applications not only for the treatment and
prevention of breast cancer but also as potential agents to treat osteoporosis and coronary heart
disease[104,105]. The reader is referred to other recent review articles to obtain further details
of new medicines under investigation [104,105] but some current examples are worthy of note
and will be mentioned briefly. Compounds of interest that have their structural origins as
metabolites from nonsteroidal antiestrogens are summarized in Figure 7. Raloxifene is an agent
that originally was destined to be a drug to treat breast cancer but it failed in that application
[106]. It appears that the pharmacokinetics and bioavailability of raloxifene are a challenge.
Only about 2% of administered raloxifene is bioavailable [1] but despite this, the drug is known
to have a long biological half life of 27 hr. The reason for this disparity is that raloxifene is a
polyphenolic drug that can be glucuronidated and sulfated by bacteria in the gut so the drug
cannot be absorbed[107,108]. This phase II metabolism in turn controls enterohepatic
recirculation and ultimately impairs the drug from reaching and interacting with receptors in
the target. This concern has been addressed with the development of the long-acting raloxifene
derivative arzoxifene that is known to be superior to raloxifene as a chemopreventive in rat
mammary carcinogenesis. [109]. One of the phenolic groups (Figure 7) is methylated to provide
protection from Phase II metabolism. Nevertheless, arzoxifene has not performed well as a
treatment for breast cancer [110,111]; higher doses are less effective than lower doses. These
data imply that effective absorption is impaired by phase III metabolism. That being said, the
results of trials evaluating the effects of arzoxifene as a drug to treat osteoporosis, using lower
doses, are eagerly awaited. Perhaps arzoxifene will be a better breast cancer preventive than a
treatment.

Unfortunately, the bioavailability of phenolic drugs is also dependent on Phase II metabolism
to inactive conjugates in the target tissue. 4-Hydroxytamoxifen,[32] is only sulfated by three
of seven sulfotransferase isoforms whereas raloxifene is sulfated by all seven [112]. Maybe
local phase II metabolism plays a role in neutralizing the antiestrogen action of raloxifene in
the breast. Falany and coworkers [112] further report that SULT1E1, that sulfates raloxifene
in the endometrium, is only expressed in the secretory phase. In contrast, 4-hydroxytamoxifen
is sulfated at all stages of the uterine cycle.

Lasofoxifene is a diaryltetrahydronaphthalene derivative referred to as CP336156 [113] that
has been reported to have high binding affinity for ER and have potent activity in preserving
bone density in the rat[114,115]. The structure of CP336156 is reminiscent of the putative
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antiestrogenic metabolite of nafoxidine[116] that failed to become a breast cancer drug because
of unacceptable side effects[117]. There are two disasterometiric salts of the chemical shown
in Figure 7. CP336156 is the l enantiomer that has 20 times the binding affinity for the ER as
the d enantiomer. Studies demonstrate that the l enantiomer had twice the bioavailbility of the
d enantiomer. The authors [113] ascribed the difference to enantioselective glucuronidation of
the d isomer. An evaluation of CP336156 in the prevention and treatment of rat mammary
tumors induced by N-nitroso-N-methylurea shows activity similar to that of tamoxifen[118].

Ospemifene or deaminohydroxytoremifene is related to metabolite Y formed by the
deamination of tamoxifen[47]. Metabolite Y has a very low binding affinity for the ER[47,
119] and has weak antiestrogenic properties compared with tamoxifen. Ospermifene is a known
metabolite of toremifene (4 chlorotoremifene) but unlike tamoxifen, there is little carcinogenic
potential in animals[120]. It is possible that the large chlorine atom on the 4 position of
toremifene and ospermifene reduces α hydroxylation to the ultimate carcinogen related to α
hydroxy tamoxifen (Figure 6) D eaminohydroxytoremifene has very weak estrogenic and
antiestrogenic properties in vivo[121] but demonstrates SERM activity in bone and lowers
cholesterol. The compound is proposed to be used as a preventative for osteoporosis.
Preliminary clinical data in healthy men and postmenopausal women demonstrate
pharmacokinetics suitable for daily dosing between 25 and 200 mg[122]. Interestingly enough,
unlike raloxifene, ospermifene has a strong estrogen-like action in the vagina but neither
ospermifene nor raloxifene affect endometrial histology[123,124]. Overall, the goal of
developing a bone specific agent is reasonable, but the key to commercial success will be the
prospective demonstration of the prevention of breast and endometrial cancer as beneficial side
effects. This remains a possibility based on prevention studies completed in the laboratory
[125,126].

Tamoxifen Metabolism Today
A comprehensive evaluation of the sequential biotransformation of tamoxifen has been
completed by Desta and colleagues[38]. They used human liver microsomes and experiments
with specifically expressed human cytochrome P450’s to identify the prominent enzymes
involved in Phase I metabolism. Their results are summarized in Figure 2 with the relevant
CYP genes indicated for the metabolic transformations. The authors make a strong case that
N-desmethyltamoxifen, the principal metabolite of tamoxifen that accumulates in the body, is
converted to endoxifen by the enzymatic product of CYP2D6. The CYP2D6 product is also
important to produce the potent primary metabolite 4-hydroxytamoxifen but the metabolite
can also be formed by the enzymatic products: CYP2B6, CYP2C9, CY2C19 and CYP3A4.

The CYP2D6 phenotype is defined as the metabolic ratio (MR) by dividing the concentration
of an unchanged probe drug, known to be metabolized by the CYP2D6 gene product, by the
concentration of the relevant metabolite at a specific time. These measurements have resulted
in the division of the CYP2D6 phenotype in four metabolic classes; poor metabolizers (PM),
intermediate metabolizers (IM), extensive metabolizers (EM) and ultrarapid metabolizes
(UM). Over 80 different single nucleotide polymorphisms have been identified but there are
inconsistencies in the precise definitions of the ascribing a genotype to a phenotype[127,
128]. Bradford[128] and Raimondo and coworkers[129] have described the frequency of
common alleles for CYP2D6. Pertinent to the current discussion of tamoxifen metabolism, the
CYP2D6*4 allele[130] is estimated to have a frequency of 12–23% in Causasians, 1.2–7% in
black Africans and 0–2.8% in Asians[127,128]. A lower estimate of (<10%) of the PM
phenotype is presented by Bernard and coworkers[131].

The molecular pharmacology of endoxifen has recently been reported [37,132,133]. Endoxifen
and 4-hydroxytamoxifen were equally potent at inhibiting estrogen stimulated growth of ER
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positive breast cancer cells MCF-7, T47D and BT474. Both metabolites are significantly
superior in vitro to tamoxifen the parent drug. Additionally, the estrogen-responsive genes
pS2 and progesterone receptor were both blocked to an equivalent degree by endoxifen and 4-
hydroxytamoxifen[132,133]. Lim and co-workers[133] have extended the comparison of
endoxifen and 4-hydroxytamoxifen in MCF-7 cells by comparing and contrasting global gene
regulation using the Affymetrix U133A Gene Chip Array. There were 4062 total genes that
were either up or down regulated by estradiol whereas, in the presence of estradiol, 4-
hydroxytamoxifen or endoxifen affected 2444 and 2390 genes respectively. Overall, the
authors[133] demonstrated good correlation between RTPCR and select genes from the
microarray and concluded that the global effects of endoxifen and 4-hydroxytamoxifen were
similar.

Stearns and coworkers[97] and Jin and coworkers[134] have confirmed and significantly
extended Lien’s original identificatiaon of endoxifen and observation[35,36] that there are
usually higher circulating levels of endoxifen than 4-hydroxytamoxifen in patients receiving
adjuvant tamoxifen therapy. However, Flockhart’s group[97] have advanced the
pharmacogenomics and drug interactins surrounding tamoxifen therapy that should be a
consideration in the antihormonal treatment of breast cancer.

The ubiquitous use of tamoxifen for the treatment of node negative women[135] during the
1990’s, the use of tamoxifen plus radiotherapy following lumpectomy for the treatment of
ductal carcinoma in situ (DCIS)[136] as well as the option to use tamoxifen for
chemoprevention in high risk pre and postmenopausal women[137] enhanced awareness of
the menopausal side effects experienced by women when taking tamoxifen. Up to 45% of
women with hot flashes grade them as severe[137] therefore there have been efforts to improve
quality of life. Treatments with the SSRIs are popular [97,138,139] (Figure 8). The SSRIs are
twice as effective as the “placebo” effect at reducing menopausal symptoms in randomized
clinical trials[138–140], so there is naturally an increased usage of SSRIs with long-term
tamoxifen treatment to maintain compliance. Unfortunately, the metabolism of tamoxifen to
hydroxylated metabolites[141–143] and the metabolism of SSRIs[39,144–147] both occur via
the CYP2D6 gene product. Indeed Stearns and coworkers[97] showed that the SSRI inhibitor
paroxetine reduced the levels of endoxifen during adjuvant tamoxifen therapy and endoxifen
levels decrease by 64% in women with wild type CYP2D6 enzyme. Patients were examined
who were taking venlafaxine, sertraline, and paroxetine and compared with those women who
were homozygotes for the CYP2D6 *4/*4 inactive genotype. Patients with the wild type gene
who took the most potent inhibitor paroxetine had serum levels of endoxifen equivalent to the
patients with the aberrant CYP2D6 gene. In fact, the clinical data were consistent with the
inhibition constants for the inhibition of CYP2D6 by paroxetine (potent), fluoxetine, sertraline,
citalopram (intermediate) and venlafaxine (weak) which are 0.05, 0.17, 1.5, 7 and 33μmol/L
respectively.

The CYP2D6 gene product that is fully functional (wild type) is classified as the CYP2D6*1.
A large number of alleles are associated with no enzyme activity or reduced activity.
Conversely, high metabolizers can have multiple copies of the CYP2D6 allele[31]. A recent
study by Borges[148] continues to expand our understanding of the detrimental effect of
CYP2D6 variants plus concomitant administration of SSRIs on endoxifen levels. But, it is the
clinical correlations with tumor responses and side effects that are starting to provide clues
about the importance of pharmacogenomics for tamoxifen to be optimally effective as a breast
cancer drug.
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Clinical Correlations
The significance of genotyping on clinical outcomes of a tamoxifen trial have been addressed
using paraffin-embedded tumor blocks from a North Central Center Treatment Group
(NCCTG) trial NCCTG 89-30-52[149]. The postmenopausal women with ER positive tumors
received 5 years of adjuvant tamoxifen therapy. The tumor blocks were used to determine
CY2D6 (*4 and *6) and CYP3A5 (*3) and 17 buccal swabs were used to test the veracity of
the tumor genotyping. The concordance rate for the buccal swabs was 100%. Overall, the
CYP3A5*3 variant was not associated with any adverse clinical outcomes but the women with
the CYP2D6*4/*4 genotype had a higher risk of disease relapse but a lower incidence of side
effects such as hot flashes.[149] The implication is that tamoxifen must be converted to
endoxifen, a more potent antiestrogen.

In a follow up study[150] using the same database established for trial NCCTG 89-30-52,
patient records were screened to determine the extent of SSRI prescribing. The goal was to
establish the combined effect of genotyping and SSRI inhibition of the CYP2D6 enzyme.
Overall, the authors[150] concluded that a mutated CYP2D6 gene or the inadvertent use of
SSRIs that inhibit the CYP2D6 enzyme product are independent predictors of breast cancer
outcomes for postmenopausal women with breast cancer taking tamoxifen. In a recent
complimentary study, Mortimer and coworkers[151] demonstrated that hot flashes were a
strong predictor of positive outcomes for adjuvant tamoxifen treatment.

Although all of the current emphasis has been on the biological effects of tamoxifen in patients
with the CYPD6*4 variant, studies of CYP3A5* 1 AND *3 1A1 *1 and 2 and UGT2B15 * and
*2 have been undertaken and compared with carriers of CYP2D6*4. In contrast to the studies
of Goetz and colleagues[149], patients who carry the SULT1A1*1, CYP2D7*4 and
CYP3A5*3 alleles, and would be predicted to give rise to lower concentrations of metabolites
with high affinity for the ER, might actually benefit from tamoxifen[152–155]. No differences
were noted between genotypes CYP2D6, SULT1A1 or UGT 2B15 and tamoxifen treatment but
Wegman and coworkers[155] claim that genetic variants of CYP3A5 may predict response to
tamoxifen. Clearly, reasons for the different conclusions need to be advanced. The hypothesis
that variants of metabolizing enzymes can affect patient outcomes for the treatment of breast
cancer must now be addressed in large populations and with prospective studies.

Conclusions
Overall, the study of tamoxifen metabolism has provided important clues which guided
medicinal chemists to synthesize and develop new medicines. The study of metabolites has
also provided valuable insight into the mechanism of action of SERMs at their target the ER.
However, it is the recent research on the value of genotyping CYPs in breast cancer patients
to improve response rates to tamoxifen therapy that is showing important promise. Genotyping
patients for CYP2D6 appears to be valuable to exclude the suboptimal use of tamoxifen in
select individuals. Additionally, and perhaps more importantly, an effect of SSRIs on the blood
levels of endoxifen has raised the possibility that the cheap and effective veteran tamoxifen
could be targeted further to select populations of women to improve response rates. Avoiding
SSRIs with a high affinity for CYP2D6 gene product could improve tamoxifen’s efficacy. Since
tamoxifen is still the antihormonal treatment of choice for premenopausal patients and the only
choice for breast cancer risk reduction in premenopausal women, then genotyping from buccal
swabs appears to be a cheap and effective way of ensuring that tamoxifen is used to treat the
appropriate woman.

It is necessary, however, to close on a note of caution. Very few patients have been studied to
create definitive guidelines. That being said, the task of proving the value of these tantalizing
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clues and hypotheses is the responsibility of clinicians to organize prospective clinical trials
or at least there must be investment in the further analysis of archival material from randomized
trials. The value of committing resources to establish hypothesis as fact is clear. An important
cheap medicine should potentially be given only to women who will benefit from it. Indeed,
it may be the role of CYP2D6 in tamoxifen metabolism that is creating the small but significant
advantage of aromatase inhibitors vs. tamoxifen in postmenopausal women.[26,27]. Again,
this can be tested as the tumor blocks and patient records could be reviewed to determine
genotyping and whether SSRIs were used. It would be remarkable to discover that the
pharmacology of tamoxifen is undermining activity rather than the current view that aromatase
inhibitors were better medicines because they have, unlike the SERMs, no estrogen-like actions
at the level of the tumor.
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Figure 1.
The stylized representation of the absorption of two selective estrogen receptor modulators
(SERMS) tamoxifen (TAM) or raloxifene (RAL) into the circulation as bioactive molecules.
The polyphenolic SERM raloxifene must transverse phase II and phase III obstacles in the gut
and the liver to get into the general circulation. This results in very little of the ingested drug
being bioavailable at target sites. In contrast, tamoxifen is extremely lipophilic and 98% protein
bound to serum albumin. This extends the duration of action of tamoxifen because phase II
metabolism to phenolic compounds is retarded.
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Figure 2.
The metabolic activation of tamoxifen to phenolic metabolites that have a high binding activity
for the human estrogen receptor. Both 4-hydroxytamoxifen and endoxifen are potent
antiestrogens in vitro.
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Figure 3.
The original hydroxylated metabolites of tamoxifen noted in animals by Fromson et al.[40]

Jordan Page 21

Steroids. Author manuscript; available in PMC 2009 September 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
The serial metabolic demethylation and deamination of the antiestrogenic side chain of
tamoxifen. Each of the metabolites is a weak antiestrogen with poor binding affinity for the
estrogen receptor.
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Figure 5.
The putative metabolite of tamoxifen, α hydroxytamoxifen that produces DNA adducts through
covalent binding to deoxyguanosine.
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Figure 6.
The UV activation of a triphenylethylenes to a florescent phenanthrene. This basic reaction is
exploited in the detection of serum tamoxifen levels.
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Figure 7.
The formulae of SERMs that have been developed based on the knowledge of the metabolic
activation of tamoxifen (and nafoxidine, see text) as well as the metabolism of the antiestrogen
side chain of tamoxifen to a glycol.
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Figure 8.
The structures of selective serotonin reuptake inhibitors (SSRIs) that have low intermediate or
high affinity for the CYP2D6 enzyme system. High affinity binders for CYP2D6 block the
metabolic activation of tamoxifen to endoxifen (Figure 2).
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