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Summary
Individual locations of many neuronal cell bodies (>104) are needed to enable statistically significant
measurements of spatial organization within the brain such as nearest-neighbour and
microcolumnarity measurements. In this paper, we introduce an Automated Neuron Recognition
Algorithm (ANRA) which obtains the (x, y) location of individual neurons within digitized images
of Nissl-stained, 30 μm thick, frozen sections of the cerebral cortex of the Rhesus monkey.
Identification of neurons within such Nissl-stained sections is inherently difficult due to the
variability in neuron staining, the overlap of neurons, the presence of partial or damaged neurons at
tissue surfaces, and the presence of non-neuron objects, such as glial cells, blood vessels, and random
artefacts. To overcome these challenges and identify neurons, ANRA applies a combination of image
segmentation and machine learning. The steps involve active contour segmentation to find outlines
of potential neuron cell bodies followed by artificial neural network training using the segmentation
properties (size, optical density, gyration, etc.) to distinguish between neuron and non-neuron
segmentations. ANRA positively identifies 86 ± 5% neurons with 15 ± 8% error (mean ± SD) on a
wide range of Nissl-stained images, whereas semi-automatic methods obtain 80 ± 7%/17 ± 12%. A
further advantage of ANRA is that it affords an unlimited increase in speed from semi-automatic
methods, and is computationally efficient, with the ability to recognize ~100 neurons per minute
using a standard personal computer. ANRA is amenable to analysis of huge photo-montages of Nissl-
stained tissue, thereby opening the door to fast, efficient and quantitative analysis of vast stores of
archival material that exist in laboratories and research collections around the world.
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Introduction
Since the 1980s, the application of unbiased stereological approaches to quantify objects of
biological interest has allowed for rigorous measurements of many parameters of brain
structure including total neuron number, area, and volume. These approaches are based on
systematic random sampling from defined regions of interest using unbiased estimators
(Mayhew, 1991; Schmitz & Hof, 2005). Although these measurements have produced
extremely valuable insights into the structural organization of the brain, including age-related
preservation of neuron numbers (Peters et al., 1998), these ‘first order’ stereological parameters
only partially describe the structural organization of the brain, as they cannot efficiently
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quantify ‘second order’ parameters that measure more complex spatial properties of neuron
organization, such as the nearest neighbour arrangement (Asare, 1996; Duyckaerts &
Godefroy, 2000; Schmitz et al., 2002; Urbanc et al., 2002; Hof et al., 2003; Krasnoperov &
Stoyan, 2004) and arrangement into mini- or microcolumns (Buxhoeveden & Lefkowitz,
1996; Buldyrev et al., 2000; Cruz et al., 2005).

Several approaches can be used to quantify ‘second order’ parameters. Stereological methods
can quantify nearest-neighbour arrangement (Schmitz et al., 2002), but the methods are labour
intensive and would be difficult to apply to large brain areas. Image Fourier methods do not
require manual marking of neuron locations and can quantify ‘vertical bias’ of objects within
an image (Casanova et al., 2006), but do not discern between the contribution from glial and
neuronal cell bodies.

Alternatively, pair correlation methods use concepts from statistical physics to calculate
correlation properties such as cross-correlation between two different types of objects (Urbanc
et al., 2002) and microcolumnar organization (Buldyrev et al., 2000) of neurons, as well as
more discerning properties of spatial arrangement, such as the strength of microcolumnar order
and microcolumnar width and length (Cruz et al., 2005). The multitude of spatial organization
quantities that can be calculated with pair correlation analysis makes it appealing to apply to
large brain areas. To do that, we first need to address the major challenge to this approach: how
to obtain the necessarily large number of neuron locations (103–104 locations per measurement)
to get statistically significant results (see Section ‘Density map method and microcolumnar
strength’ and ‘Discussion’) over large regions of the brain, reaching ~106 for a large study.
The acquisition of such numbers of neurons by manually or semi-automatically identifying
and marking the location of each is prohibitively time-consuming and open to user bias. Hence,
correlative analysis of spatial relationships among neurons [as well as non-stereology based
cell counts (Todtenkopf et al., 2005)] would be dramatically facilitated by an automatic method
for identifying and locating the visible centres of neurons accurately and efficiently.

Although various other immunhistochemical methods could facilitate automated
discrimination of neurons and glia better than Nissl, there are important advantages to develop
automated methods for Nissl-stained tissue. Nissl-staining is the least expensive, easiest
applied method for staining both neurons and glia. Furthermore, there are thousands of unique
and often irreproducible collections of Nissl-stained brain material in clinical and research labs
around the world that could be analyzed using the Automated Neuron Recognition Algorithm
(ANRA).

There are several challenges to automatically retrieve neuron locations from two-dimensional
digitized images of Nissl-stained brain tissue (Fig. 2a). A major challenge is to distinguish
between neuron and non-neuron objects, including staining errors, tissue folds, and dirt
particles, as well as blood vessels and glial cells. Another challenge is to identify neurons that
differ almost as widely from each other as they do from non-neuronal objects. Neuron cell
bodies are naturally diverse in size and shape and have different orientations with respect to
their dendrite and axon processes. Neurons can also be cleaved at the cutting surface or
damaged by the cutting process, which affects their shape in the tissue. These variables lead
to diverse neuron cell profiles within the tissue slice. A further challenge is to discriminate
between neurons that overlap, a common finding as tissue sections are 3D volumes projected
onto a 2D image.

There are currently several published approaches to automatic retrieval of cell bodies from
images. Some methods use segmentation techniques based on thresholding (Slater et al.,
1996; Benali et al., 2003), Potts model (Peng et al., 2003), watershed (Lin et al., 2005), and
active contours (Ray et al., 2002). Others use trained neural networks to mark appropriately
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sized ‘pixel patches’ as cells of interest. The ‘pixel patch’ training methods use artificial neural
networks (Sjöström et al., 1999), local linear mapping (Nattkemper et al., 2001), Fischer’s
linear discriminant (Long et al., 2005) and support vector machines (Long et al., 2006). Another
method based on template matching has been recently introduced by Costa & Bollt (2006).

In this paper, we introduce and test an ANRA (Fig. 1) which uses a combination of segmenting
and training to overcome the challenges of retrieving neuron location in Nissl-stained tissue
sections. ANRA automatically identifies neurons from digital images and retrieves their (x,
y) locations.

Methods
Image input and preprocessing

The inputs for ANRA are photomicrographs of 30 μm thick Nissl-stained tissue sections taken
at 10× magnification and a resolution of 1.5 μm per pixel. Because the 30 μm tissue section
shrinks during processing to a thickness of less than 10 μm, all of the tissue is in focus when
viewed at microscopic magnifications of 20× or lower, thus the 2D image properly represents
neuron locations. Since the colour information is not as useful in the monotone Nissl-stained
images (Fig. 2a) the images are converted to grey scale images ranging from 0 (black) to 255
(white).

The photomicrographs are taken from different areas of the brain from different subjects at
different times. Therefore, images are of different ‘quality’, reflecting a combination of
variations in morphology, staining, slide preparation, and digitization (Fig. 2b). To reduce this
variability, the images are first ‘normalized’ such that every image has the same background
and foreground average optical density. This is done by thresholding each image into
foreground and background pixels and finding the average optical density for the foreground
and background separately. For each image, the optical density histogram is then shifted to
match the foreground/background averages of an ideal image (Fig. 3a). Figure 3(b) shows the
images final normalization as compared to the original images in Fig. 2(b). This preprocessing
step removes most of the image variations due to processing (staining, slide preparation,
digitization, etc.) and is a key step toward applying ANRA to an unlimited number of images
that do not vary drastically in intrinsic morphological differences (neuron density, shape, size,
etc.). There is no need for other preprocessing steps such as blurring or sharpening since ANRA,
by design, overcomes the challenges of noisy images and weak boundary information.

Main segmentation tool: OSM
Here we describe the segmentation procedure presented in Fig. 1, called the overall
segmentation method (OSM).

Overmarking the image—An initial step of the segmentation process is ‘seeding’ the image
with one or more points for each possible neuron cell body. A combination of two methods is
used (Fig. 4a): a hexagonal grid of points is placed over the thresholded foreground of the
image and the centre points of objects identified by the traditional watershed segmentation
(Javi, 2002).

Active contour segmentation—We employ active contour segmentation with statistical
shape knowledge (Cremers et al., 2000) because the method is designed to overcome the
challenges of noisy images and missing boundary data, the main identification challenge in
Nissl-stained tissue. Also, the method uses low-dimensional shape representations which are
ideal for modeling cell contours (outlines of cells). Because the image is initially overmarked,
the calculations of contour splitting (Zimmer et al., 2002) are not needed.
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The image fij is a digital image of sliced brain tissue which defines the optical density (grey
scale value) of each pixel (ij). We assume that the image contains at least one type of object
of interest (neurons) mixed with other objects (non-neurons). The goal of a single run of the
segmentation is to ‘segment’ a single object of interest (a single neuron) from the rest of the
image (all other neurons, non-neurons, and background). It does this by ‘evolving’ a loop of
pixels called a contour (C) from a circle of typical neuron diameter (12 μm) starting at one of
the overmarked starting points, to a location and shape that surrounds a potential neuron cell
body (Fig. 4b). This process is repeated for each starting location until all starting locations
have been exhausted.

The movement of C is controlled by a set of N points called control points {(xn, yn)}n=1..N for
which we use the compact notation (Cremers et al., 2000)

(1)

The control points are parameters in a closed quadratic Bezier-spline (B-spline) curve (Blake
& Isard, 1998) that define the exact location (pixels) of C (see Fig. 5 for definition). Hence,
C moves and changes shape by the iterative motion of the control points z. At each time step,
each control point z makes a small movement towards encircling an object close to its starting
location by minimizing a total energy E based on two energy considerations, E MS and E c:

(2)

A qualitative understanding of the energy terms is presented in Fig. 6. E MS is the Mumford–
Shah energy term, which determines how well the contour separates lighter and darker grey
scale regions in the image fij. E c(C) is the contour energy term, which quantifies the similarity
of the contour to a previously chosen set of training shapes (in our case, the training shapes are
oval-like). E MS is high when C does not separate different contrasts well, and is low if it does.
E c(C) is high if the shape is very contorted, and low if it is oval-like. α changes the relative
influence of the two energy terms. If α is a high value, then C will evolve into a rigid perfect
oval, ignoring all image information. If α is zero, then C will surround any nearby object in
the image with no regard to the final shape of C. When the two energy terms are balanced with
an appropriate α and the system is evolved to minimize E then objects in an image are encircled
properly. Figure 7 shows a typical evolution of C with an appropriate α value. uij is a variable
image, similar to a blurred version of fij, which is used in the algorithm, as described below.

The Mumford–Shah energy term E MS(f, u) quantifies the alignment of the contour with edges
in the image fij:

(3)

where λ is the Mumford–Shah energy parameter that determines relative strengths of the terms.
|∇uij (t)|2 is the square of the magnitude of the picture gradient:

(4)
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It should be noted that Cremers et al. (2000) includes an additional term ν||C|| to Eq. (3), which
minimizes the length ||C|| of the contour within its evolution. We do not include this term
because it adds an additional free parameter and does not contribute to the functionality of the
algorithm when identifying cell shaped objects.

Equation (3) is differentiated with respect to control point movement. Setting the solution of
the differentiation to a minimum of E MS[ f, u(t)] gives the evolution equation for each
individual control point n = 1, …, N during each iteration dt (Mumford & Shah, 1989):

(5)

where e+ and e− are E MS (Eq. 3) summed over the single line of pixels right outside (e+) and
right inside (e−) the segment of C centred around control point (xn, yn) (Fig. 8). nx and ny are
the outer normal vectors of C at each control point rn in the x and y direction respectively. ẋ
= dx/dt and ẏ = dy/dt, where t is the artificial time parameter.

Equation (3) is then differentiated with respect to the variable image uij. Setting the solution
to a minimum of E MS [ f, u(t)] gives the evolution equation for each pixel uij during each
iteration dt (Mumford & Shah, 1989):

(6)

At t = 0, uij (0) = fij. ∇2uij (t) is the Laplacian in 2D Cartesian coordinates:

(7)

Equation (6) describes a diffusion [∇2uij (t)] process limited by the original image [fij − uij
(t)]. The key component is that uij never evolves at the pixels that make up C. uij becomes
stable once C separates contrasted regions. Therefore, minimizing E MS tends to evolve C so
that the grey scale values vary slowly (smoothly) in the areas inside and outside the contour
but vary strongly (discontinuously) across the contour C.

The contour energy term Ec affects the shape of the contour irrespective of the images fij and
uij. Ec is minimized for contour shapes most similar to a previously chosen set of training shapes
χ = {z1, z2, …}. The energy is calculated using the following equation:

(8)

where the vector z0 and the matrix Σ (with an inverse Σ−1) contain the mean and covariant
information of the previously chosen set of training shapes χ = {z1, z2, …}:

(9)
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(10)

Here 〈〉 denotes the sample average. z0 is a 2N vector and Σ is a 2N × 2N matrix. Creating z0
and Σ for a set of shapes = {z1, z2, …} is equivalent to modeling the distribution of shapes in
ℝ2N as a Gaussian distribution (Cremers et al., 2000).

To minimize E c(C), the following evolution equation for each control point is used:

(11)

Combining the two Eqs (5) and (11) gives the final evolution equations for each control point
n during each iteration:

(12)

recalling that e+ and e− are E MS (Eq. 3) summed over the single line of pixels right outside
(e+) and right inside (e−) the segment of C centred around control point (xn, yn) (Fig. 8), and
are dependent on λ and uij.

The evolution of the contour is driven by Eqs (6, 12), with variables uij and contour points
(x1, y1, …, xN, yN). Note that Eqs. (6, 12) are coupled and must be solved simultaneously.

Performing a step by step evolution of the control points (Eq. 12) and uij (Eq. 6), C evolves in
the following way: If C begins to change into a contorted, non-ovular shape to minimize
E MS (such as ‘leaking’ out of an area of weak or missing boundary information in the image),
then Ec will increase, hence there will be a force opposing the movement. Similarly, if the
contour begins to move back to a perfect oval to minimize E c, E MS will increase and thus
limit such a change. When a local minimum is reached and the contour no longer moves, the
points internal to the contour are saved, and the process starts again at a new location until all
starting locations are exhausted.

There are several free parameters (α, λ, dt, N, etc.) that must be set within the OSM algorithm.
Some of these parameters, called secondary parameters, do not greatly affect the evolution,
and can be set the same for all Nissl-stained images. The secondary parameters are as follows:
N is set to 20, so that for a typical 80 μm circumference of a neuron cell body, neighbouring
control points are 3 μm, or roughly 4 pixels away from each other. z0 and Σ define the training
that depend on the typical shapes of the object of interest, in our case a neuron. We build these
parameters by creating a sample of 100 ellipses, ranging linearly from an eccentricity of 0–
0.4, a simple representation of the average shape of neuron cell bodies. To speed up the
evolution, we allow for different ‘time’ steps and Mumford–Shah parameters in Eqs (12,6). In
Eq. (12), dt → dtc and λ → λc. In Eq. (6), dt → dtu and λ → λu. In this schema, dtc, dtu and
λu can be set as secondary parameters which do not need to change for any of the pictures. We
set dtc = 100, dtu = 0.05 and λu = 1.
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In addition to the secondary parameters, there are two primary parameters which greatly affect
segmentation, and must be determined empirically: the energy ratio α between E MS and E c,
and the energy parameter λc within the E MS term.

Because the active contour algorithm described above was designed for generic object
recognition, the algorithm itself (in addition to the free parameters) can be ‘tuned’ for the task
of finding dark elliptical features that are overlapping or relatively close to each other on a
lighter background. We adjust the above algorithm in a simple way to accommodate
overlapping: if fij − uij (t) > 0 near and inside the given control point, the contour is ‘leaking’
out to find the edge of another feature next to it. We therefore multiply this control point’s
contribution to E MS by a free parameter η greater than 1. Here, η is a secondary parameter,
and is set to 1.5 for all images.

We now discuss each step in ANRA.

Step I: Image acquisition
We test ANRA on Nissl-stained tissue samples of seven young adult (6.4–11.8 years; mean
8.5 years) and seven aged (24.7–32.9 years; mean 30.1 years) female Rhesus monkey subjects
that were part of an ongoing study of the effects of aging on cognitive function (Cruz et al.,
2004). For each subject, eight (four from each of two sections) grey scale (1–256) 512 × 512
pixel images with 1.5 pixels μm−1 resolution (~150 neurons per image) were taken from area
46, layer III of the prefrontal cortex in the ventral bank of sulcus principalis. Three subjects
had appreciable differences in image quality between the two sections, therefore the total
number of different subject/image-qualities is 17. Figure 2(b) shows 12 of the 17 subject/image-
qualities.

Step II: Segmentation training
All images are normalized as described in Section ‘Image input and preprocessing’. Out of
each of the 17 subject/image-qualities, one image is randomly selected as a training image.
The digital image is marked for neuron cell bodies by an expert observer who ‘paints’ sets of
pixels over the neurons using a small graphical program. Different objects can share pixels, or
overlap, but the sets exist as separate entities even if there is an overlap. We designate these
sets of pixels created by an expert observer the training segments. The training segments will
be compared to computer segments from the OSM output. The manual identification is
relatively quick (2–4 seconds per neuron), and does not require a model image, i.e.: no feature
overlap (Lin et al., 2005). Furthermore, the cell marking method creates knowledge of the
extents of each cell body as viewed by an expert observer, independent of and unbiased to our
segmentation procedure. This information is saved and used repeatedly for multiple training
runs as needed, and does not have to be repeated for the same image if different training
parameters are checked (de Solórzano et al., 1999; Lin et al., 2005).

We next determine the values of the primary parameters α and λc, the two primary free
parameters which greatly affect the segmentation. We find that there is significant loss in
functionality when α is outside the [10−9, 10−8] range and λc is outside the [1, 5] range. We
therefore search this space of α and λc by comparing the resulting computer segments to the
training segments. A training segment is ‘found’ if the computer segment shares more than
70% of the pixels with the training segment (Fig. 9). The set called the final OSM parameters,
denoted α* and λc

*, is the set that correctly identifies 95% or more training segments. The
(α*, λc

*) values are then recorded and used for the rest of ANRA.

The OSM with the correct primary parameters (α*, λc
*) identifies 95% or more of neurons in

the images, but it also identifies other non-neuron objects, such as staining errors, glial cells,
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and improper coverings of neurons. To separate neurons from non-neurons, computer training
is performed.

First, we compare the (α*, λc
*)-parameter OSM computer segments to the training segments.

Each computer segment is either placed in the neuron segment category or non-neuron segment
category based on whether the segment mutually overlaps any training segment (Fig. 9).
Second, each segment is represented by seven segment properties v = (v 1, v2, …, v7). The
seven segment properties are chosen to be the most salient measures of identifying neurons
within an image. For the calculations of the segment properties, we denote the total number of
pixels within the segment as Ac and the total number of pixels within the contour as |C|. The
properties are based on the optical density of the original image fij as well as the square of the
magnitude of the image gradient |∇fij |2. The segment properties are presented in Table 1. ΣA

is a sum over all of the pixels within the segment area, ΣC is a sum over the edge pixels of the
segment circumference, rc is the location of the centre of the segment, and rij is the location
of the pixel (ij).

Using the WEKA machine learning toolkit (Witten & Frank, 2005), we assess the following
machine learning algorithm’s ability to discriminate between neuron property vectors
{ , …} and non-neuron property vectors { , …}: the 1-rule classifier (Holte,
1993), naive Bayes classifier (John & Langley, 1995), support vector machine classifier (Platt,
1998), nearest neighbour classifier (Aha & Kibler, 1991), decision tree classifiers (Quinlan,
1993), Bayes net and multilayer perceptron (Witten & Frank, 2005). The cost between Type
1 errors (marking a non-neuron property vector as a neuron) and Type 2 errors (marking a
neuron property vector as a non-neuron) is scanned by tuning the cost ratio term in the training
algorithm. A stratified cross-validation evaluation for various cost ratios (3:1, 2:1, …, 1:10)
creates a receiver operator characteristic (ROC) curve (Duda et al., 2001) for each training
method (Fig. 10). The Multilayer Perceptron (MLP) using a single, 4-node hidden layer, has
the best ROC curve, as it provides the highest percentage of neuron property vectors identified
and the smallest percentage of non-neuron property vectors incorrectly identified. MLP is
therefore chosen as the main training method for ANRA.

Step III: Application
Automatic neuron recognition is now applied on an unlimited number of other images that are
normalized and similar in morphology to the training images. The steps are as follows:

1. The OSM with the primary parameters (α*, λc
*) is performed on the new image.

2. The properties v are calculated for each computer segment.

3. A cost ratio is selected by the user.

4. All computer segments deemed non-neurons by the MLP are discarded.

5. For any two remaining computer segments that mutually overlap by more than 70%,
the computer segments with the smaller probability of being a neuron (as determined
by the MLP) is discarded.

The (x, y) centres, sizes, and shapes of the remaining computer segments are the final result of
ANRA.

Comparison method
A semi-automatic method (semi-auto) was used in prior neuron density maps correlation
studies (Cruz et al., 2005). In the semi-auto method a combination of computer software and
human intervention for each image is employed to identify neurons. Because the amount of
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human intervention scales with the number of images analyzed, the semi-auto method
represents a standard with which we evaluate our completely automated recognition method.

Density map method and microcolumnar strength
We give a description of the density map method, as it is the main analysis to be applied to the
results of ANRA. The density map method was initially described by Buldyrev et al. (2000)
and a more detailed description and validation was given by Cruz et al. (2005). The density
map is a 2D representation of the density correlation function g(x, y), which uses as input the
(x, y) locations of all neurons in the region of interest (ROI). This function g(x, y) is mapped
to a two-dimensional grey scale image (density map) in which different shades of grey are
proportional to the average local neuronal density. Thus, the density map quantifies the average
neuronal neighbourhood surrounding a typical neuron within the ROI.

Operationally, the density map is calculated by first assigning indices (i = 1, 2, 3…N) to all
the neurons in the sample. Next, we centre a grid of bins of size D over each neuron and count
how many other neurons fall in each bin constructing one matrix of accumulated neurons m
(x, y). We define g(x, y) = m(x, y)/N · D · 2, in which g(x, y) has units of an average density of
objects at position (x, y). As an example, the density map would be uniform if locations of
objects (neurons) are uncorrelated, but will show patterns when there are regular spatial
arrangements between the objects.

For the case of neurons forming microcolumns, their density map exhibits one central vertical
ridge, sometimes accompanied by two less pronounced parallel neighbouring ridges. For this
study, we are interested in the microcolumn strength S, which is extracted from the density
map by taking the ratio of the neuronal density within the average microcolumn to the average
neuronal density (Cruz et al., 2005). For the same images, S is calculated using ANRA (x, y)
locations as well as semi-automatic (x, y) locations, and the results are compared.

Results
For each of 17 subject/image-qualities, an evaluation image is randomly selected from the
remaining images and marked for neuron cell bodies by the expert. The evaluation image is
used as a ‘gold standard’ to assess the accuracy of ANRA and the comparison methods. A total
of 2448 ‘gold standard’ neurons are analyzed, for an average of 144 neurons per subject/image-
quality. For each of the two recognition methods (semi-auto and ANRA), we compare the
method’s identified neurons to the ‘gold standard’, and retrieve the following numbers (Fig.
11):

(13)

(14)

and

(15)

To compare methods for the different subject/image-qualities, we define the following
normalized metrics:
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(16)

and

(17)

A is the percent of correctly identified neurons (‘true positives’). B is the percentage of non-
neurons that are incorrectly identified as neurons (‘false positives’).

The results are shown in Fig. 12. The semi-auto method is characterized by one (A, B) set.
Because of the ability to adapt the cost ratio as described in Section ‘Step III: Application’,
ANRA is shown at seven different ratios (3:1, 2:1, 1:1, 1:2, 1:3, 1:5 and 1:10), ranging from
very selective, to no selectivity, creating an ‘adapted’ ROC curve. Since each point is an
average of the 17 subject/image-qualities, the error bars show the standard deviation of the
spread for both A and B. We choose the 1:2 cost ratio for further analysis because it is at the
inflection point of the ‘adapted’ ROC curve (Fig. 12), and it has the closest average (A, B) to
that of semi-auto. Table 2 and Fig. 13(a) shows the individual results for each subject/image-
quality for the semi-auto method and the ANRA with 1:2 cost ratio. Figure 13(b) shows an
example of semi-auto and ANRA points compared to the gold standard.

The results show that ANRA has a significantly higher A value of recognition (P-value: 0.002)
and a similar B value of recognition compared to the semi-auto method.

We also compare microcolumnar strength S (Section ‘Density map method and microcolumnar
strength) using the (x, y) locations from both ANRA and semi-auto methods of neuron
identification for the entire image database of rhesus monkey subjects as described in Section
‘Step II: Segmentation training’. Fourteen thousand neuron locations were used, for an average
of 1000 neuron locations for each subject. We find significant correlations between
microcolumnar strength measurements of the ANRA and semi-auto methods of neuron
recognition (Fig. 14). This shows that ANRA has the ability to find significant changes in
advanced neuron spatial arrangements within different subjects, and can therefore be applied
to large data sets where manual or semi-auto recognition are not viable.

Discussion
In this work, we introduce a method called an ANRA which uses a combination of image
segmentation and machine learning to retrieve neuron locations within digitized images of
Nissl-stained Rhesus monkey brain tissue. Despite challenges, such as overlapping of neuron
cell bodies and the presence of glial cells and artefacts in the tissue, we demonstrate that ANRA
has a significantly better recognition capability than a semi-auto method (Cruz et al., 2005)
which requires expert manual intervention for each image. ANRA’s recognition quality is
combined with computational efficiency, resulting in recognition of ~100 neurons per minute
using a standard personal computer. Consequently, large numbers of neuron locations can be
retrieved, spanning considerably larger brain regions than ever before. Furthermore, because
ANRA is capable of efficiently extracting neuron locations from durable and commonly used
Nissl-stained tissue, it can potentially be applied to vast stores of archival material existing in
laboratories and research collections around the world.
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Such a large data set of (x, y) neuron locations will allow for a variety of systematic analyses
that have previously not been possible. The ability to identify every neuron in entire sections
of the brain will allow for both global and local analyses of neuron numbers, glial cell numbers,
regional cell densities, and local variations in cell densities. Also, as was shown in the ‘Results’
section, studies of microcolumnarity or other spatial features of cortex, including spatial inter-
relationships among neurons and glia using autocorrelation and cross-correlation, are possible.
Lastly, ANRA also allows for less obvious applications, including the investigation of the
spatial network of the brain using the neuron locations as nodes. None of these studies are
possible with the elegant sampling methods of modern stereology.

We highlight the need for large data sets of neuron locations (103–104) in comparative studies
proposed in the Introduction and defined in Section ‘Density map method and microcolumnar
strength’. Generally, the goal of a comparative study is to find a statistically significant
difference in a measured quantity (i.e. microcolumn strength) due to a change in an independent
variable (age, species, sex, disease state, etc.). In the case of a 1D correlation between nearest
neighbours or the 2D microcolumnar analysis, the neuron locations are used to create 1D and
2D histograms, respectively. The number of neurons must be high enough to resolve the effect
of the independent variable above random noise of the histogram. Buldyrev et al. (2000)
showed that for a resolution of interest (seeing 3% changes between 10 μm bins), ~104 neuron
locations are needed in the comparative study of microcolumnarity. For the same resolution in
a 1D correlation comparative study, such as nearest-neighbour distances, only ~1000 neurons
are needed (Schmitz et al., 2002). For a given bin size, the theoretical calculation shows that
the required number of neurons scales as a power of dimensions that are being correlated. Thus,
automatic recognition becomes critical in higher dimension correlations. As an example we
consider a 30 subject study of neuron spatial arrangement using ~105 neuron locations, making
100 different measurements of 1000 neurons each through a certain layer across several
Brodmann regions. The semi-automatic approach, which allows for acquisition of 10 neurons
per second, would take 83 human hours to complete. Comparatively, ANRA could complete
the same task in 24 h on 20 Intel P4 processors with less than 1 h of preparation time.

ANRA has a further advantage of reducing experimental drift. Specifically, in terms of human
bias, the ‘criteria’ for neuronal identification will necessarily differ between different observers
that are often required for a huge analysis extending over months to years, whereas ANRA’s
criteria, once established from the training algorithm, remains constant. Furthermore, ANRA’s
criteria will not be subject to the kind of experimental drift that can occur over time when one
observer manually identifies thousands of neurons over a period of weeks to months.

Recently, there have been advances in level set methods to recognize overlapped cell nuclei
(de Solórzano et al., 1999; Lin et al., 2007). The recognition challenges with Nissl-stained
tissue are far greater than the challenges of confocal microscopy using fluorescence. Lin et
al. (2007) show how neurons and glial cells completely separate into two regions of parameter
space using only two parameters (texture and intensity) of the identified segmentations. If
plotted in a similar way, no two parameters that we consider (size, intensity, texture, gyration,
edge versus area, etc.) would yield such a separation. Thus, in a Nissl-stained tissue visualized
by optical microscopy, the parametrized method of Cremers et al. (2000), which, by design,
overcomes the challenges of noisy images and missing boundary data (Section ‘Active contour
segmentation’), is most efficient.

Our results suggest that the ANRA method is performing at maximal efficiency: when a second
expert’s marks are compared with the gold standard on the same Nissl-stained image, the
performance (A = 88 ± 5%) is not significantly higher than ANRA’s performance (A = 86 ±
5%).
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Although there are 10 free parameters within the algorithm, only two of them called the primary
parameters must be explored to find the correct values for proper segmentation. These primary
parameters are automatically found in the OSM parameter search during training. The other
eight free parameters, which we call the secondary parameters, can be fixed for the general
task of identifying elliptical features within noisy images with missing boundary data, thereby
solidifying them for the broadly applicable problem of neuron recognition in all Nissl-stained
tissue. For a given morphological feature of interest, once a small set of representative images
have been trained to, the training and parameters can be reused, due to the normalization of
images of different quality. This setup will allow for the study of large areas of montaged
images, or large data sets of hundreds of slides, all with the same training. Furthermore, the
free parameters and training can be adapted for identification of other types of neurons, glial
cells, etc.

Lastly, because of the modular nature of the method (Fig. 1), it will be relatively easy to replace
partial aspects of the overall algorithm by considering advances in recent published work. For
example, Tscherepanow et al. (2006) independently developed a method to identify living cells
that uses a larger set of training properties that is reduced with principle/independent
component analysis, and Costa & Bollt (2006) has applied advanced pattern matching to the
identification of neuron cell bodies in Nissl-stained tissue. By replacing the respective aspects
of ANRA with such methods, the ideal overall identification algorithm can be found for not
only the recognition of neuron cell bodies, but also the recognition of other objects of scientific
interest, for example living cells or glial cells.
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Fig. 1.
A schematic diagram showing processes involved in the Automated Neuron Recognition
Algorithm (ANRA). The schematic describes the two main steps of the algorithm: training and
application. Rectangles denote parameters that pass through the algorithm. Ovals, such as the
OSM, are the computational parts of the algorithm, which can have images, segmentations,
and parameters as their inputs and outputs.
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Fig. 2.
Challenges of automated neuron recognition. (a) 20× micrograph (scale bar: 50 μm) of a typical
section showing the difficulties of separating neurons from glial cells and other artefacts in
Nissl-stained tissue: 1. capillaries, and unidentified material, 2. large glia (astrocytes), 3. glial
as light as neurons in some cases, 4. neurons overlapped by glia (oligodendrocytes), 5. neurons
overlapped by other neurons, 6. multiple neurons and glial overlapped. (b) 10× micrograph
examples showing varying image quality. The highlighted micrograph is selected as an ‘ideal’
contrast to be used in image normalization.
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Fig. 3.
(a) Preprocessing ‘normalizes’ the images so that they every image has the same background
and foreground average optical densities, thereby removing the challenge of varying image
type within Nissl-stained tissue. This is done by mapping optical density values of non-ideal
images to an ideal image so that the average foreground and background averages are the same.
The graph shows the optical density ranges of the ideal and non-ideal images (0..255), and a
Bezier curve that passes through 4 points: (0,0), the background and foreground averages of
the ideal and non-ideal images, and (255,255). (b) Examples of image normalization.
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Fig. 4.
Steps of the overall segmentation method (OSM). (a) Overmarking the image with a hexagonal
grid of points that lay on the thresholded foreground and centre points of a traditional watershed
segmentation. Points within 5 pixels are combined to avoid redundancy. (b) Active contour
segmentation: using each starting location found in (a), a segmentation (clustering) process is
performed within a small region of the image to find one possible neuron cell body. This process
is then repeated for each starting location until all starting locations are exhausted. (c) The final
set of computer segments, shown in different solid colours, is the output of the OSM.
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Fig. 5.
(a) The contour C is described by the control points r1, r2, …, rN. (a) Quadratic Bezier curve
B(t) is defined for control point n using the control points rn−1, rn, and rn+1. The points  are
halfway between rn−1 and rn. The equation for the contour is

, t = 0..1. The equations guarantee that at the points r′ the
curve is continuous and smooth. Combining several Quadratic Bezier curves creates a quadratic
B-spline contour. An example with 5 control points is presented in (b) which shows how the
B-spline contour moves when one control point (r1) moves. (c) Contour C (white pixels) with
20 control points (single black pixels) that is overlaying the image.
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Fig. 6.
Schematic drawing showing the relative energies of E MS and Ec for the same image (shown
as grey) and four different contour shapes (shown as black loops). The first three cases are
examples of improperly fit contours with a high overall energy E = E MS + α E c. The last case
is an example of an optimal contour minimizing the overall energy.
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Fig. 7.
Examples of the active contour movement within the image during the OSM segmentation
phase. The number of control points (black dots) is 20. The B-spline contour is white. The
contour starts at a location determined by the overmarking step of the OSM. (a) Evolution of
the energy terms EMS and E c. (b) Contour evolution after 0, 4, 8, 30, 48, 60, and 120 steps.
When a local minimum is reached, the contour no longer moves, and the points internal to the
contour are saved.
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Fig. 8.
Control point movement based on E MS follows Eq. (12). The terms e+ and e− are EMS (Eq. 3)
integrated over the single line of pixels right outside (e+) and right inside (e−) of the contour
centred around each control point n. nx and ny are the x and y components of the outer normal
vector of C at the control point.
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Fig. 9.
Two segments represent the same object when they mutually share more than 70% of their
pixels. The two segments in (a) do not pass the required criteria because neither segment
overlaps the other by more than 70%. The two segments in (b) do not pass the required criteria
because only one segment overlaps the other by more than 70%. Only in (c) does the required
overlap occur. This analysis is used when computer segments are compared to ‘gold standard’
training segments and either designated a neuron or non-neuron, and during the overlap deletion
phase, when the segment with the highest probability of being a neuron is selected among all
overlapped segments.
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Fig. 10.
Receiver operating characteristic (ROC) curve for each training method evaluated. It is seen
that the Multilayer Perceptron (MLP) has the best ROC curve – the highest percentage of
neuron property vectors identified with the smallest percentage of non-neuron property vectors
incorrectly identified. MLP is chosen as the main training method for ANRA.
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Fig. 11.
Venn diagram showing the relative quantities for evaluating the quality of a neural recognition
method. The bold black line separates neuron from non-neuron objects in the image. The dotted
area shows the objects that are identified by a method. The method correctly identifies most
of the neurons (a), but misses some neurons (c) and identifies some non-neurons as neurons
(b). Using the quantities a, b and c, standardized percentages of neuron versus non-neurons
can be calculated.

INGLIS et al. Page 25

J Microsc. Author manuscript; available in PMC 2009 September 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
Results of ANRA. The semi-auto method is characterized by one (A, B) set. Because of the
ability to adapt the cost ratio as described in Section ‘Step III: Application’, ANRA is shown
at 7 different ratios (3:1, 2:1, 1:1, 1:2, 1:3, 1:5 and 1:10), creating an ‘adapted’ ROC curve.
Since each point is an average of the 17 subject/image-types, the error bars show the standard
deviation of the spread for both A and B.
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Fig. 13.
(a) Individual results for 17 subject/image-types for the semi-auto method and the ANRA (with
1:2 cost ratio). (b) Recognition results for the semi-auto method (left) and the ANRA method
(right) for example subject/image-quality #1 (Table 2). Dark green: gold standard marks that
match with the method. Blue: gold standard marks that DO NOT match with the method. Light
Green: method points that match with gold standard points. Pink: method points that do not
match with gold standard points.
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Fig. 14.
Comparison of microcolumnar strength measurement (S) using the (x, y) locations from both
ANRA (with 1:2 cost ratio) and semi-auto methods of neruon identification. A total of 14,000
neuron locations were used, for an average of 1000 neuron locations for each subject (plot
point). Both the neuron density and microcolumnar strength show significant correlations of
ANRA with the semi-auto method.
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Table 1
Segment properties used in training.

Description Equation

v1 Segment area Ac

v2 Average optical density (f̄) 1
Ac

∑A f ij

v3 Variance of optical density 1
Ac

∑A ( f ij − f̄ )2

v4 Radius of gyration of optical density 1
Ac

∑A ∣ rij − rc ∣ f ij

v5 Segment edge length (|C|) versus segment area |C|/Ac

v6 Average gradient of segment edge 1
∣ C ∣ ∑C ∣ ∣ f ij∣

2

v7 Average change in gradient of segment edge 1
∣ C ∣ ∑C ∣ ∣ f i+1 j∣

2 − ∣ ∣ f ij∣
2
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Table 2
Results of ANRA for 1:2 cost ratio.

Semi-auto ANRA

# A(%) B(%) A(%) B(%)

1 81 13 82 11

2 71 14 84 7

3 82 14 91 21

4 79 15 78 4

5 90 43 92 30

6 65 3 85 16

7 76 18 87 21

8 83 15 88 6

9 76 12 93 15

10 79 10 85 23

11 73 6 77 7

12 82 4 88 11

13 92 44 84 6

14 90 26 95 16

15 80 20 80 11

16 77 23 91 28

17 75 7 86 17

Avg. 80 ± 7 17 ± 12 86 ± 5* 15 ± 8
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