
A Comparison of Models to Predict Clinical Failure Following
Radical Prostatectomy

Scott E Eggener1, Andrew J Vickers1, Angel M Serio1, Michael J Donovan2, Faisal M
Khan2, Valentina Bayer-Zubek2, David Verbel2, Carlos Cordon-Cardo3, Victor E Reuter1,
Fernando J Bianco Jr1,4, and Peter T Scardino1
1Section of Urology, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York,
New York
2Aureon Laboratories, Inc, Yonkers, New York
3Department of Pathology, Columbia University, New York, New York
4Department of Urology, George Washington University, Washington DC

Abstract
Purpose—Models are available to accurately predict biochemical recurrence (BCR) following
radical prostatectomy (RP). Since not all patients experiencing BCR will progress to metastatic
disease, it is appealing to determine post-operatively which patients are likely to manifest systemic
disease.

Methods—The study cohort consisted of 881 patients undergoing RP between 1985 and 2003.
Clinical failure (CF) was defined as metastases, a rising PSA in a castrate state, or death from prostate
cancer. The cohort was randomized into training and validation sets. The accuracy of four models
to predict clinical outcome within five years of RP were compared: “post-operative BCR nomogram”
and “Cox regression CF model” based on standard clinical and pathologic parameters, and two CF
“systems pathology” models which integrate clinical and pathologic parameters with quantitative
histomorphometric and immunofluorescent biomarker features (“systems pathology models #1 and
#2”).

Results—When applied to the validation set, the concordance index for the post-operative BCR
nomogram was 0.85, Cox regression CF model 0.84, systems pathology model #1 0.81, and systems
pathology model #2 0.85.

Conclusions—Models predicting either biochemical recurrence or clinical failure following
radical prostatectomy exhibit similarly high levels of accuracy since standard clinical and pathologic
variables appear to be the primary determinants of both outcomes. Patients and clinicians interested
in predicting clinical failure can recalibrate standard biochemical recurrence models to estimate the
likelihood of systemic disease. It is possible that introducing current or novel biomarkers found to
be uniquely associated with disease progression may further enhance the accuracy of the systems
pathology-based platform.
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Introduction
There are many prognostic models that predict biochemical recurrence (BCR) after radical
prostatectomy (RP)1, 2. BCR, however, is suboptimal as it lacks a standardized assay or
definition, suffers from false-positives stemming from non-prostatic or non-cancerous
pathologies, and, most importantly, poorly predicts subsequent metastases or death from
prostate cancer3. Much effort has focused on identifying patients with a high likelihood of
manifesting these endpoints3, 4 so that patient expectations are realistic, appropriate
surveillance initiated, adjuvant treatment considered, and entry into clinical trials discussed.

We analyzed a series of patients undergoing RP and compared the accuracy of several different
models to predict clinical endpoints of unequivocal importance to patients and physicians,
namely metastases, biochemical progression of cancer following androgen deprivation therapy
(ADT), or death from disease.

Methods
Following IRB approval, information was compiled on 971 patients treated with radical
prostatectomy by multiple surgeons at Memorial Sloan-Kettering Cancer Center (MSKCC)
between 1985 and 2003 for localized and locally advanced prostate cancer and for whom tissue
samples were available. We excluded patients who received treatment either before
prostatectomy or immediately after but before biochemical recurrence, leaving 881 patients in
the full cohort. Secondary treatment following a BCR was acceptable and administered at the
discretion of the treating physician.

BCR was defined as a PSA > 0.2 ng/ml confirmed by a subsequent rising value and clinical
failure (CF) as unequivocal radiographic or pathologic evidence of metastases (skeletal and/
or soft tissue disease in lymph nodes or solid organs), a rising PSA while on androgen
deprivation therapy, or death attributed to prostate cancer. Patients were censored at CF or last
known follow-up. Time to CF was measured from RP to the first of these events.

To obtain training and validation sets of equivalent size and case mix, patients were randomized
using the following strata: preoperative PSA (by quartile), pathologic Gleason score (≤ 6, 7, ≥
8), surgical margin (SM), extracapsular extension (ECE), seminal vesicle invasion (SVI),
lymph node involvement (LN), BCR, and CF. Patients without exact matches on all
aforementioned characteristics (n=58) were randomized based on PSA, pathologic Gleason,
BCR, and CF status. The remaining patients (n=13) were randomized based on BCR and CF
only.

Our objective was to compare four models constructed to predict outcome within five years
following RP. The first was a model (“Kattan post-operative nomogram”) that predicts the
probability of BCR based on PSA, Gleason grade, and pathological stage5. The second model
(“Standard Cox model”) was to create a Cox proportional hazards model on the training set
using CF as the outcome event. Predictors included PSA (using restricted cubic splines with
knots at the tertiles), pathological Gleason grade (≤ 6, 7, ≥ 8) and stage (coded as a binary
categorical variable: 1 if the patient had any of SM, ECE, SVI, LN, and 0 otherwise).

The final two models utilized a “systems pathology” approach developed by Aureon
Laboratories (Yonkers, NY) which integrates standard clinical and pathologic parameters with
automated histomorphometric and immunofluorescent biomarker variables6. In brief,
hematoxylin and eosin (H&E) stained sections from prostatectomy blocks were assessed by
two pathologists for tumor content and quality prior to construction of tissue microarray (TMA)
blocks. Twelve blocks containing triplicate 0.6 mm cores from 881 prostatectomy specimens
were constructed at MSKCC. Digitized H&E images were acquired from the TMA slides and
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analyzed using a proprietary histology labeling tool software designed by Aureon. Image
objects were classified into histopathological classes according to their spectral (e.g. color,
channel values), generic shape (e.g. area, length), and spatial relationship properties. A
multiplex immunofluorescence assay consisting of 5 antibodies [androgen receptor (AR), α-
methyl CoA racemase (AMACR), cytokeratin 18 (CK18), high molecular weight keratin
(HMWK), and p63] was performed on all 12 TMA blocks. Images were acquired and evaluated
using image analysis software with extraction of selected features reflecting intensity, area and
distribution of selected antigens.

The systems pathology predictive models were constructed using a version of the support
vector machine regression (SVR) machine learning algorithm. To accomplish this, a modified
loss/penalty function was defined within the support vector regression algorithm, which allows
censored (left and right censored) and non-censored data to be processed.

The systems pathology models were generated utilizing preoperative data, prostatectomy
pathologic findings, and quantitative histologic and biomarker features. The model provided
a risk score from 0 to 100, with a higher value connoting an increased risk of CF. If the score
is greater than the threshold, a patient is predicted as being an “early” CF (prior to 5 years after
RP); if the score is less than or equal to the threshold, he is predicted as being at either low risk
of CF or a possible “late” CF. The thresholds, as determined by Aureon were 40.1 and 36.9
for Model 1 and Model 2, respectively.

Pre-treatment clinical information, pathologic findings at prostatectomy, and post-treatment
outcome (e.g. BCR, CF) for all patients in the training set were provided to Aureon. Following
construction of the training models, preoperative and pathologic data from patients in the
validation set were forwarded to Aureon and two predictions, one for each model, made for
each patient. The accuracies of these models, as well as the post-operative nomogram and the
standard Cox model, were then calculated by MSKCC statisticians. At no point in the study
did Aureon have access to outcome data for the validation set.

The systems pathology platform did not provide predictions for 217 (25%) patients due to
insufficient tumor content as assessed from the H&E analysis (<50% tumor on a core). The
systems pathology models were therefore developed on 345 evaluable patients in the training
set and the standard Cox model developed on all 440 training patients. All models were then
applied to the 319 patients in the validation set that were evaluable by systems pathology.

Predictive accuracy was defined in terms of the concordance index, ranging from 0.5 (chance)
to 1.0 (perfect accuracy) and reflecting the probability that in two randomly selected patients,
one who had an event and the other who was event-free for at least a similar period of time,
the patient with the event had a higher risk prediction. As a second measure of accuracy, we
estimated the sensitivity and specificity of the models to predict CF within 5 years. To calculate
sensitivity and specificity for survival time data, we first define x = 1 if the patient is classified
as being at ‘high risk’ by the systems pathology score and x = 0 otherwise; s(t) is the Kaplan-
Meier survival probability at time t, predefined as five years. The sensitivity is calculated as
[1 − (s(t) | x = 1)] · P(x = 1) ÷ [1 − s(t)] and the specificity as (s(t) | x = 0) · P(x = 0) ÷ s(t)7.
Sensitivity and specificity for the systems pathology models were developed in the training set
and applied to the validation set. Specificities for the postoperative BCR and Standard Cox
models predicting CF were chosen to match the specificities of the systems pathology models.

Binary predictions for the post-operative nomogram and standard Cox model were obtained
by dichotomizing the model predictions so that specificity was close to that of the systems
pathology models (∼80%). Statistical analyses were performed using Stata 8.2 (Stata Corp,
College Station, TX).
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Results
The clinical and pathologic characteristics of the study sample are summarized in Table 1.
Training and validation set data include only those patients evaluable by systems pathology.

The systems pathology modeling began with a set of 40 variables (10 clinicopathologic, 12
morphometric, and 18 immunofluorescence features). Table 2 lists the 11 features selected by
Model #1 (5 clinicopathologic, 5 morphometric, and 1 molecular) and 7 features selected by
Model #2 (3 clinicopathologic, 3 morphometric, and 1 molecular) in order of weighted
importance. The standard Cox model predicting CF included PSA, Gleason grade, and
pathologic stage (Table 3).

The concordance indices, sensitivity, and specificity of the four models are summarized in
Table 4. In a sensitivity analysis, the standard Cox model was developed using only the 345
patients in the training set that were evaluable for the systems pathology models. This did not
have an important impact on model accuracy (c-index reduced from 0.838 to 0.826).

Discussion
A rising PSA after RP does not invariably culminate in symptomatic local or distant recurrence.
For example, 28% of patients with BCR, defined as a PSA > 0.4 ng/ml, may never experience
a subsequent increase in PSA or clinical symptoms8 and among patients experiencing BCR
defined as a PSA > 0.2 ng/ml, half remained without evidence of metastatic disease 8 years
later9. Yet, despite the broad spectrum of clinical behavior for patients with BCR, nearly all
will eventually undergo secondary forms of therapy as Bianco et al estimated the 10-year
probability of being alive and free from secondary treatment as only 13%10.

Given the heterogeneous nature of BCR, its loose association in heralding systemic disease,
and uncertain management, the utility of identifying an individual at high risk of BCR is
unknown. For these reasons, it is a more appealing objective to accurately determine which
patients are destined to manifest metastases, the lethal variant of prostate cancer, so that
secondary therapy can be administered judiciously and appropriately.

We sought to construct CF models to predict outcome following RP and found no evidence
that incorporation of the extra variables included in the systems pathology models improved
predictive accuracy. We feel there are multiple reasons for this finding. A PSA recurrence
serves as an intermediate endpoint for subsequent metastases, occurring prior to but not
guaranteeing its development. Nevertheless, D'Amico et al have shown that for patients treated
by external beam radiation, those at high-risk for BCR are similarly at high-risk for metastases
and cancer-specific death, regardless of competing risk11. Models predicting BCR and CF are,
logically, destined to have similar predictive variables and accuracy. Patients and clinicians
wishing to predict CF can therefore use standard models for BCR and recalibrate the resulting
probabilities. For example, if we hypothetically assume a 10-year probability of BCR of 30%
and a 10-year probability of CF of 10%, then by using a standard nomogram for BCR5 and
multiplying the probability by 0.33 (10/30) the estimated likelihood of CF can be obtained.

Another finding was the addition of 27 histologic morphometric features and 5 candidate
biomarkers to standard clinicopathologic features did not enhance the predictive accuracy of
the CF model. All three CF models provided a similarly high level of accuracy and their
indistinguishable outcome, while disappointing, is not surprising. First, among the myriad of
tumor markers studied in prostate cancer, few have been shown to be clinically useful. It is
possible the addition of current or novel biomarkers found to be uniquely associated with
disease progression may further enhance the systems pathology approach. Second, the models
based on standard clinical and pathologic parameters (“Kattan post-operative nomogram” and

Eggener et al. Page 4

Cancer. Author manuscript; available in PMC 2009 September 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



“Standard Cox Model”) presumably benefit from the expertise of an experienced pathologist
at an oncology referral center. How the systems pathology approach would perform compared
to a standard model based on data from less experienced pathologists is not known. Third, the
finding of model equivalence lends further support to the force of traditional and universally
predictive disease characteristics, such as Gleason grade and lymph node involvement.

To enhance the likelihood of improving upon currently available predictive models, how
should future modeling studies be designed? Ideally, the model would be created from and
validated on a sufficiently large cohort with a diverse spectrum of demographic and disease
characteristics followed for an extensive period of time, treated uniformly, and analyzed with
contemporary modeling procedures using both established and novel markers12. For a novel
feature to be included it must improve the accuracy of the model without it. Following RP,
validated instruments exist that predict BCR with a relatively high degree of accuracy (CI:
0.81)5. Therefore, to improve the accuracy of such a model would require the addition of robust
markers not significantly confounded by prior parameters. Paradoxically, the success of current
models has impeded their further improvement; however previous studies demonstrating that
gene expression data enhances a post-prostatectomy model predicting BCR supports the idea
that additional genetic or molecular tumor characteristics are important13.

Our objective was to reliably predict CF based on information available immediately following
prostatectomy. This is an arduous task, largely due to the typically prolonged natural history
of prostate cancer. Most men not cured by local definitive treatment live many years9,
frequently die of non-prostate cancer related causes14, and their rate of cancer-related death
even in large, mature series is relatively small15, 16. Pre-treatment PSA, PSA velocity, and
certain pathologic characteristics are associated with cancer-specific mortality15-17 and
additional predictive factors available at the time of BCR (PSADT, time to BCR, and response
to androgen deprivation therapy) have individually, and in combination, been successful in
predicting cancer-specific survival3, 18, 19.

Multiple limitations should be considered when interpreting our study. All analyses were
performed retrospectively and are therefore subject to the inherent limitations of this approach.
Systems pathology is a novel platform, of which only an early version was available at the
onset of our study. Subsequent developments and ongoing modifications may further improve
its ability to evaluate smaller volume cancers and enhance its predictive accuracy. The post-
operative BCR nomogram in this study outperformed previous applications to similar cohorts
(CI: 0.85 versus 0.79 - 0.81)5 and may represent a fortuitously optimistic model. Such an
improved performance may also be explained by a significant portion of the 881 patients in
our study being present in the cohort used to develop the BCR nomogram. Additionally, our
cohort consisted solely of patients undergoing RP and therefore it is unknown how the accuracy
of these models would compare when analyzed in biopsy specimens before therapy.

Nevertheless, the ‘systems pathology’ approach described herein may well prove valuable,
with further refinements, in elucidating prostate cancer biology or predicting prognosis.
Through multiplexing of numerous immunofluorescent markers, members of our group have
previously reported prostate cancer mechanistic insights20. Further, as candidate biomarkers
are discovered and proposed, ‘systems pathology’ instruments may aid in defining their role.
Studies are underway to apply ‘systems pathology’ to biopsy specimens pre-treatment and also
to a cohort of men treated conservatively without primary therapy.

Conclusions
Models to predict either biochemical recurrence or CF (metastases, androgenindependent
disease, or death from prostate cancer) following RP exhibit similarly high levels of accuracy,
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regardless of statistical techniques or inclusion of selected morphometric and quantitative
immunofluorescent features. Standard clinical and pathologic variables such as Gleason score
and lymph node involvement appear to be the driving forces of clinical outcome. Clinicians
and investigators wishing to predict CF can use standard models for biochemical recurrence
and recalibrate the resulting probabilities.
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Table 1
Characteristics of the study cohort, training set, and validation set. Training and validation set data included only
patients successfully analyzed by the systems pathology platform.

Entire cohort Training Validation

Number of patients 881 345 319

Follow-up from prostatectomy (years)

     Median 6.1 6.4 6.6

     IQR 4.6, 8.0 4.8, 8.5 5.3, 8.7

Age (years)

     Mean (SD) 60.8 (6.6) 61.0 (6.6) 60.5 (6.7)

Pre-operative PSA (ng/dl)

     < 4.0 72 (8%) 22 (6%) 31 (10%)

     4.0 – 9.9 495 (56%) 193 (56%) 163 (51%)

     10.0 – 20.0 222 (25%) 90 (26%) 87 (27%)

     > 20.0 92 (11%) 40 (12%) 38 (12%)

Clinical Stage

     T1 439 (50%) 176 (51%) 152 (48%)

     T2 427 (48%) 160 (46%) 162 (51%)

     T3 15 (2%) 9 (3%) 5 (1%)

Biopsy Gleason Score

     ≤ 6 564 (64%) 224 (65%) 199 (62%)

     7 256 (29%) 93 (27%) 97 (31%)

     ≥ 8 61 (7%) 28 (8%) 23 (7%)

Pathologic Gleason Score

     ≤ 6 316 (36%) 128 (37%) 118 (37%)

     7 478 (54%) 182 (53%) 167 (52%)

     ≥ 8 87 (10%) 35 (10%) 34 (11%)

Surgical Margins

     Positive 305 (35%) 117 (34%) 120 (38%)

     Negative 576 (65%) 228 (66%) 199 (62%)

Extracapsular Extension

     Yes 262 (30%) 103 (30%) 97 (30%)

     No 619 (70%) 242 (70%) 222 (70%)

Seminal Vesicle Involvement

     Yes 79 (9%) 29 (8%) 28 (9%)

     No 802 (91%) 316 (92%) 291 (91%)

Lymph Node Involvement

     Yes 27 (3%) 13 (4%) 11 (3%)

     No 854 (97%) 332 (96%) 308 (97%)

Biochemical Recurrence (PSA > 0.2 ng/ml)

     Yes 214 (24%) 87 (25%) 79 (25%)

     No 667 (76%) 258 (75%) 240 (75%)

Clinical Failure*

     Yes 81 (9%) 30 (9%) 27 (8%)

Cancer. Author manuscript; available in PMC 2009 September 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eggener et al. Page 9

Entire cohort Training Validation

     No 800 (91%) 315 (91%) 292 (92%)

*
Metastases, rising PSA in castrate state, or death from prostate cancer
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Table 2
Features selected for systems pathology clinical failure models, in order of
weighted importance. AR: androgen receptor, AMACR: α-methyl CoA racemase

Systems Pathology Model #1

1) Biopsy Gleason sum

2) Texture variation within cytoplasm

3) Lymph node involvement

4) Relative area of epithelial nuclei

5) Mean brightness of cytoplasm

6) Pre-op PSA

7) Prostatectomy Gleason sum

8) Variation of color between cytoplasm

9) Mean brightness of AR in AR+/AMACR+ epithelial nuclei

10) Surgical margins

11) Variation of color between cytoplasm

Systems Pathology Model #2

1) Mean brightness of cytoplasm

2) Biopsy Gleason sum

3) Lymph node involvement

4) Texture variation in stroma

5) Color variation between epithelial nuclei

6) Prostatectomy Gleason sum

7) Mean brightness of AR in AR+/AMACR+ epithelial nuclei
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Table 3
Standard Cox model predicting CF derived from training set

Hazard ratio 95% C.I. p value

PSA (ng / ml)* 1.02 1.00 1.05 0.10

Gleason score

     Gleason ≤ 6 Reference

     Gleason 7 0.91 0.40 2.08 0.8

     Gleason ≥ 8 3.47 1.43 8.41 0.006

Pathologic stage

     Organ-confined Reference

     Non-organ confined** 2.74 1.19 6.32 0.02

*
non-linear terms with splines at tertiles

**
extracapsular extension, seminal vesicle invasion, or lymph node involvement
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Table 4
Accuracy of each predictive model on the training and validation sets ; BCR (biochemical recurrence), CF (clinical
failure), CI (concordance index)

Model Outcome CI:
Validation set

Sensitivity Specificity

Post-operative nomogram BCR 0.853 93.4% 82.4%

Standard Cox model CF 0.838 81.8% 81.0%

Systems Pathology Model 1 CF 0.807 76.4% 79.9%

Systems Pathology Model 2 CF 0.849 85.7% 79.0%
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