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Abstract
Molecular targeting of apoptotic signaling pathways has been extensively studied in recent years and
directed towards the development of effective therapeutic modalities for treating advanced androgen-
independent prostate tumors. The majority of therapeutic agents act through intrinsic or
mitochondrial pathways to induce programmed cell death. The induction of apoptosis through
endoplasmic reticulum (ER) stress pathways may provide an alternative to treat patients. The
functional interaction between the BCL-2 family members and regulation of calcium homeostasis in
the ER provides a critical link to the life or death outcome of the cell. Apoptosis induction mediated
by ER stress-inducing agents is just beginning to be exploited for therapeutic targeting of prostate
tumors. Insightful dissection of recently discovered apoptotic signaling pathways that function
through the endoplasmic reticulum may identify novel molecules that could effectively target both
androgen-dependent and androgen-independent prostate tumors. In this review, we focus on linking
ER stress-induced apoptosis to therapeutic targeting of prostate tumors and dissect its cross-talk with
the intrinsic and extrinsic apoptotic pathways.
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INTRODUCTION
Prostate cancer is a major cause of mortality in American men and ranks as the second highest
contributor of all male cancer mortality [1]. Charles Huggins first advocated androgen ablation
monotherapy through medical or surgical castration for the treatment of prostate cancer sixty
years ago. Today, androgen ablation remains a primary strategy to combat metastatic disease
via apoptosis induction among androgen-dependent prostate cancer cells [2]. Androgens play
a critically recognized role in the growth of androgen-dependent prostate tumors by blocking
apoptosis [3]. Although reducing circulating androgen levels is initially effective in eliciting
cell death and in reducing the cancer burden, this strategy affords a median patient survival of
less than 36 months [4]. Prostate cancer cell survival may be maintained due to the fact that
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current hormone ablation treatment regimens, although effective in reducing circulating levels
of hormone, only decrease tissue androgen levels by 75% [5]. By further understanding the
apoptotic signaling pathways utilized by prostate tumors, new therapeutic targets may be
identified to combat metastatic prostatic cancer that are independent of, or work in combination
with, the current hormonal ablation regimens.

Signaling Apoptosis Execution: Key Players and Key Pathways
There are two well-understood pathways by which a cell can initiate its own death: intrinsic
(mitochondrial) and extrinsic apoptosis. The extrinsic apoptotic pathway is a receptor-mediated
mechanism that involves binding of a death ligand to its corresponding death receptor. Death
ligands are members of the tumor necrosis factor (TNF) family of ligand, which include FasL,
TNF-α-related apoptosis inducing ligand (TRAIL) and the weak apoptosis inducer, TNF-α.
These ligands bind to members of the tumor necrosis factor (TNFR) family of death receptors,
specifically FAS, DR4/DR5 and TNFR-1, respectively [6]. A functional death ligand – death
receptor interaction results in receptor clustering drove most likely by plasma membrane
localized ceramide [7,8]. Clustering of death receptors allows for the formation of the death-
induced signaling complex (DISC). The DISC is comprised of Fas-associated death domain
(FADD), procaspase-8 and the apoptotic inhibitor c-FLIP [9]. While associated with FADD
through their death effector domains (DED) [10–15], procaspase-8 is autocatalytically
processed to form an active p10/p18 homodimer [16]. Active caspase-8 leaves the DISC where
it is free to cleave effector caspases-3 and -7, as well as other substrates, inducing the extrinsic
apoptotic pathway.

A cell can activate the intrinsic apoptotic pathway in response to a number of cellular cues,
including DNA damage, defective cell cycling, extracellular matrix detachment, hypoxia,
survival factor loss or other types of severe cell distress [6]. Mitochondrial outer membrane
permeabilization (MOMP) is the key event in the execution of intrinsic apoptosis and is
regulated by members of the BCL-2 family of proteins. Once mitochondrial permeabilization
occurs there is release of cytochrome-c, SMAC/DIABLO and other proapoptotic proteins into
the cytoplasm. Cytochrome-c binding to Apaf-1 leads to the oligomerization and formation of
a cytochrome-c/Apaf-1 complex which upon association with three mediators (PHAPI, CAS
and HSP-70) forms the apoptosome. [17]. Procaspase-9 binds to the central ring of the
apoptosome, autoactivates and subsequently cleaves effector caspases-3 and -7 resulting in
apoptosis. Smac/DIABLO release is critical for promoting intrinsic apoptosis by binding to
and inhibiting the inhibitor of apoptosis proteins (IAP) [18,19].

The BCL-2 oncoprotein was originally defined as a player in the survival of IL-3-deprived
lymphoid cells [20–22]. BCL-2’s key role in sustaining cellular homeostasis was substantiated
by the in vivo evidence that Bcl-2 null mice suffered from excessive apoptosis in lymphocytes,
melanocytes and developmental renal cells [23–25]. The BCL-2 family members are divided
into three groups: the anti-apoptotic group, including BCL-2; the proapoptotic “multi-BH
domain” group, including BAX and BAK; and the proapoptotic “BH3-only” group, including
Bid. The activity of BCL-2 family members is multi-faceted. BCL-2 helps maintain both
mitochondrial membrane homeostasis and calcium homeostasis within the cell. BAX and BAK
can respond to an intrinsic death stimulus by translocating (BAX), oligomerizing and inserting
into the outer mitochondrial membrane to promote permeabilization. Proteolytic Bid cleavage
mediated by caspase-8 leads to Bid myristoylation, mitochondrial localization and MOMP
induction, an event that suggests a crosstalk event between the two major apoptotic pathways.
It is the ratio of pro- and anti-apoptotic proteins that most likely controls the cellular
vulnerability to apoptosis.

In addition to the major intrinsic and extrinsic apoptotic pathways, the endoplasmic reticulum
(ER) can act as a functional forum for apoptosis induction and regulation. The BCL-2 members
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BAK and BAX can localize to the ER [26]. It is here where they maintain Ca2+ homeostasis
by regulating its release. Analysis of Bax/Bak double knockout mice has shown reduced
Ca2+ release from the ER, resulting in reduced mitochondrial Ca2+ uptake [27]. This evidence
provides a potential mechanism via which BAX and BAK contribute to the induction and
propagation of the intrinsic apoptotic response. In this model, proapoptotic BAX/BAK
responds to an apoptotic stimulus by inducing Ca2+ efflux from the ER. Ca2+ from the ER is
then taken up by the mitochondria, resulting in Ca2+ overload, which triggers mitochondrial
localized BAX/BAK to induce MOMP.

Sensing and Transducing Stress Signals by the Endoplasmic Reticulum
Covering approximately half of the total membrane area and a third of newly translated proteins
in a typical eukaryotic cell, the endoplasmic reticulum (ER) plays a major role in a number of
cellular processes, including protein synthesis, targeting, folding and secretion [28]. It is also
a critical site for vesicle trafficking, lipid and membrane biogenesis, steroid biosynthesis and
intra-cellular calcium storage [29]. In addition, this organelle possesses a unique capacity to
sense various cellular insults. In response to these perturbations an endoplasmic reticulum
stress response (ESR) can be mounted. The ESR can be triggered by the accumulation of
misfolded, unfolded or excessive protein, fluctuations in calcium levels, deprivation of glucose,
and ER lipid or glycolipid imbalance [28,30–32]. Experimentally, the ESR is commonly
initiated by thapsigargin and tunicamycin, drugs that affect intra-cellular calcium levels and
protein trafficking, respectively [33,34]. The ESR serves to restore homeostasis through a set
of three primary mechanisms, together termed the unfolded protein response (UPR). The UPR
deals with the accumulation of unfolded proteins by folding them with the aid of additional
chaperone proteins [32,35]. Another strategy is to eliminate the unfolded proteins by activating
proteasome-mediated degradation through a unique reverse-translocation process referred to
as ER-associated degradation (ERAD) [36–39]. Since the 26S proteasomes are only located
in cytoplasm and nucleus, proteins targeted for ubiquitination must be pumped out of the ER
prior to degradation through a process that is regulated, at least in part, by proteins upregulated
by the UPR. Reduction of global protein translation is the third important activity that
effectively reduces the excessive protein burden in the ER [40,41]. Together, these UPR
activities normally succeed in restoring ER homeostasis and ensure cellular survival.

Much of what is known regarding the specific ESR pathways has been learned in the yeast
model. In S. cerevisiae, the ER-resident transmembrane dual endoribonuclease/kinase Ire1p is
solely responsible for sensing ER stress and coordinating the ESR [42,43]. Once ER stress is
detected by Ire1p (through the amino-terminal luminal region), the protein dimerizes,
undergoes a conformational shift and becomes auto-phosphorylated [44,45]. In this active state,
a non-conventional endoribonuclease activity is turned on which acts on the transcription factor
HAC1 mRNA, its only known substrate [46]. Ire1p splicing removes an intron in the 3′ region
of HAC1, thereby conferring robust translation with the subsequent transcription of Hac1p-
dependent genes responsible for carrying out the ESR [47,48]. In contrast to single-celled
organisms, the ESR in metazoans is significantly more complex and has evolved considerably.
Flies and worms express a single copy of three ER-resident transmembrane proteins that serve
as ER stress sensors, which include IRE1, ATF and PERK [49]. Similar to yeast, the C.
elegans and D. melanogaster IRE1 homolog alone remains sufficient to induce the complete
UPR program in response to ER stress [50,51]. In mammals, an additional level of complexity
arises, as two forms of each stress-sensing gene exist. IRE1α and β are both localized to the
ER membrane, but only IRE1α is ubiquitously expressed and essential for normal development
[52,53]. IRE1β is expressed exclusively in the gut and its loss can lead to intestinal colitis.
Similar to the yeast homolog, only one target, X-box binding protein (Xbp-1) mRNA, exists
for metazoan endoribonuclease activity [54]. When activated by ER stress, mammalian IRE1
removes a 26 nucleotide region from XBP-1, a process that creates an alternative reading frame
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ultimately allowing a transcriptional activation domain to be translated after the DNA binding
domain. Therefore, two forms of XBP-1 exist, one that is unspliced and contains only a DNA-
binding domain (uXBP-1) and a second that can bind to DNA and activate transcription
(sXBP-1) [54]. In contrast to yeast, mammalian IRE1 is not the primary UPR regulator. Instead,
recent work demonstrates that the ER stress sensor ATF6 performs these critical functions
[55]. The mammalian transcription factor ATF6 is also present in two isoforms (α and β) that
are ubiquitously expressed [49]. When ER stress is sensed, ATF6 is released from the
chaperone GRP78. This exposes the Golgi localization signal sequence, permitting ATF6 to
travel to the Golgi [56,57]. At the Golgi, site-1 (S1P) and site-2 (S2P) proteases cleave ATF6
[57]. The resulting N-terminal bZIP domain (ATF6 (N)) is capable of nuclear entry and
transcription of the ER-stress inducible genes CHOP, GRP78, GRP94, HRD1 and EDEM
[55,58]. The use of ATF6α null mouse embryonic fibroblasts (MEFs) led to the discovery that
the ER stress response is carried out by the activity of ATF6α alone or by dimerizing with
sXBP-1 [55].

PERK is a third ER stress-sensing protein that plays a major role in stifling protein synthesis
initiation and global translation. In response to an ER insult, PERK oligomerizes and
autophosphorylates to an active kinase. Activated PERK is capable of phosphorylating the α-
subunit of eukaryotic translation initiation factor 2 (eIF2α), which subsequently down regulates
global translation [59–61]. Phosphorylation of eIF2α also arrests cells in the G1 cell cycle phase
via cyclin D1 loss, which prevents ER stressed cells from propagating [62].

One central regulator that ties together each UPR pathway is the chaperone protein GRP78.
This protein interacts with each stress sensor in the inactivated state and functionally serves as
a negative regulator [57,63]. When unfolded and/or misfolded proteins accumulate in the ER,
they compete for GRP78 binding and, thereby, the chaperone interaction with the
transmembrane protein sensors is abrogated.

Apoptotic Signaling in the Endoplasmic Reticulum: Stress Response Goes Deadly
As outlined above, three ER-resident transmembrane proteins (IRE1, ATF6 and PERK) can
sense ER stress. The ESR carried out by the individual sensor molecules provides a protective
feature to ensure survival until the stimulus is eliminated (Fig. 1). For example, PERK and
ATF6 null MEFs die much more readily to ER stress induced by thapsigargin and tunicamycin
[55,59]. When the ER stress perturbation is too great, however, apoptosis can result [29,64,
65]. While the precise event driving this effect is unclear, one line of thought suggests that
either a prolonged or a sufficiently great induction of one or more ER stress sensor proteins
triggers an irreversible apoptotic cascade through induction of the ATF/XBP transcription
factors (as shown in Fig. 1). CHOP/Gadd153 is an ER stress target that is transcriptionally
upregulated by ATF6 [66] and encodes for a transcription factor with apoptotic activity. Its
proapoptotic function can be blocked by GRP78 overexpression, thus placing CHOP apoptotic
pathways as downstream from the ER [67]. Mechanistically, CHOP may control apoptosis via
both intrinsic and extrinsic pathways by downregulating BCL-2, while upregulating DR5
expression [68,69].

In addition to translational repression, PERK has also been shown to have apoptotic activities
mediated through eIF2α activity. The PERK-associated eIF2α has two phosphatase cofactors,
Gadd34 and CReP, which can mediate apoptotic signaling downstream from the ER.
Gadd34−/− cells in the presence of an ER stress exhibit constant eIF2α phosphorylation,
resulting in fewer misfolded proteins in the ER lumen [70–72]. Furthermore, the Gadd34−/−

mice are resistant to the toxicity induced upon tunicamycin treatment [71]. Likewise, CReP
knockdown provides protection from ER stress [73]. In addition to these genetic studies,
pharmacological eIF2α inhibition by the agent salubrinal provides protection from ER stress-
mediated apoptosis [74]. Another potential mechanism by which ER stress may induce
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apoptosis is dependent on IRE1, but does not rely on its endoribonuclease activity. IRE1 can
interact with the TRAF2 adaptor protein to recruit ASK1, a proapoptotic kinase. This
interaction leads to the formation of an IRE1/TRAF2/ASK1 complex that activates JNK [75].
As ASK1−/− cells are partially resistant to apoptosis, this ternary complex may potentially
regulate ESR-induced cell death [76]. Moreover, BAX and BAK can physically associate with
IRE1 in the ER and positively regulate their proapoptotic activity [77].

Integration of the ER-Specific Death Signal to the Apoptotic Machinery
Due to their central role in dictating cellular life and death decisions, it is no surprise that the
BCL-2 family can functionally control ESR-induced apoptosis. The regulation of calcium
homeostasis by the ER provides a direct link to BCL-2 activity. ER Ca2+ dynamics is a principal
avenue whereby BCL-2 phosphorylation alters susceptibility to apoptosis. When BCL-2 is
phosphorylated, Ca2+ discharge from the ER is increased, with a secondary increase in
mitochondrial Ca2+ uptake, thus enabling a mechanism through which posttranslational
modification of BCL-2 inhibits its anti-apoptotic activity [78]. Moreover, BAX and BAK
overexpression is sufficient to enhance Ca2+ release into the mitochondria, leading to
permeabilization and increased cytochrome c release. Furthermore, MEFs lacking BAX and
BAK exhibit notable resistance to ER stress-induced apoptosis, a finding which is substantiated
by Bax−/−/Bak−/− cells exhibiting reduced Ca2+ release from the ER in response to arachidonic
acid and oxidative stress [26,27,79]. Other studies involving ER stress stimuli, established that
the presence of BAX and BAK at both the ER and mitochondria is indispensable for normal
apoptosis execution [27] and proceeds via an Apaf-1-independent pathway [80].

As in the other apoptotic signaling pathways, NF-κB has recently found its connection to the
ER stress-induced apoptotic cell death. In MCF-7 cells, NF-κB regulation suppresses ER stress-
induced apoptosis [81]. Interestingly, IRE1-dependent NF-κB regulation also has been
associated with TRAF2 down-regulation, upregulation of TNF-α expression and signaling
through TNF receptor 1. Therefore, NF-κB may enable a cross-talk between ER-induced
apoptosis and the death receptor mechanism [82].

The class of initiator caspases activated is a hallmark of the signaling pathway that the cell
engages towards apoptosis induction. For instance, caspase-9 is an initiator for the intrinsic
pathway, while caspase-8 and -10 are activated upon extrinsic stimuli. Two lines of evidence
have suggested that caspase-12 is the initiator caspase for the ESR apoptotic response. First,
caspase-12 is found in the ER membrane and can directly interact with IRE1 and the adaptor
protein TRAF2 [83]. Second, caspase-12 is selectively processed through ER stress and not
by other apoptotic stimuli [83]. The involvement of caspase-12 in ESR-induced apoptosis
remains controversial due, in part, to the absence of a human homolog (caspase-12 is expressed
in rodents and not in primates). The recent association of human caspase-4 as the caspase-12
human homolog, as well as its similar localization to ER membrane, points to a functional
overlap between the two caspases in ER stress-induced apoptosis [84]. However, the role of
both caspase-4 and -12 in the apoptotic ESR has not been supported in cells lacking these genes
[85]; this study demonstrated that caspase-9 was the sole initiator caspase responsible for
apoptosis induction in response to ER stress stimuli. A potential interactive scenario is
illustrated in Figure 2, in which all three apoptosis signaling mechanisms, the mitochondrial,
death receptor and ER stress apoptotic pathways are recruited by the cell towards its apoptotic
execution when triggered by various ER stress stimuli.

Targeting ESR-Induced Apoptosisin Prostate Cancer: Current Value
Therapeutic exploitation of ESR apoptotic pathways has recently been attempted for the
treatment of advanced prostate cancer. The theory that the SERCA pump could be a therapeutic
target used against prostate cancer merits close examination. The sarcoplasmic/endoplasmic
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reticulum Ca2+ ATPase (SERCA) pump is present in all cell types and serves to transfer
Ca2+ from the cytosol to the sarcoplasmic lumen. SERCA pump inhibition often leads to ER
Ca2+depletion and elevation of cytoplasmic Ca2+. Thapsigargin, a known pharmacological
inducer of ER stress and an effective apoptosis-inducing agent, inhibits the SERCA pump. In
order to control targeting specificity and prevent bystander cytotoxicity, a PSA-cleavable,
inactive thapsigargin derivative was synthesized [86]. In theory, proteolysis in PSA-producing
sites will hydrolyze this pro-drug into an active bioavailable agent at prostate tumor sites.

Although the use of PSA to cleave pro-drugs may allow the induction of ER stress-induced
apoptosis in prostate cells, there is yet to be identified a specific biochemical activity, biological
process or prostate-specific gene to suggest that targeting prostate cancer cells through ESR
pathways may have high therapeutic value compared to other apoptotic routes. Targeting the
ESR/UPR pathways may be the ultimate mechanism to treat prostate cancer, but much needs
to be learned first and fast. One problem is that the UPR has been best characterized in yeast
and in the mouse model. Due to the evolution of the ER stress pathway, the exact biochemical
pathways that each ER stress gene activates in human cells must be characterized. Second,
while prostate tumors are highly heterogeneous, they are primarily composed of epithelial cells
and one has to consider that much of the mammalian ESR research has exploited fibroblast
models that may not accurately reflect pathways utilized in prostate cancer cells. For example,
studies using mouse plasma cells demonstrated a function of XBP-1 that was unknown in
fibroblasts [87]. Considering that mice lacking ATFα and β, IRE1α, and XBP-1 are not viable,
one must assume that these players have multiple vital functions in other cell types that remain
to be identified. Finally, the challenge will be to dissect the role of the individual stress sensors
in the process of prostate tumor progression such that drugs can be designed to selectively
target the proper ESR regulatory molecules, with the therapeutic promise recently shown by
the targeting of the extrinsic death receptor pathway [88].
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Abbreviations
PSA  

prostate-specific antigen

DISC  
death-inducing signaling complex

SERCA  
sarcoplasmic/endoplasmic reticulum Ca2+ ATPase

BCL-2  
B-cell lymphoma 2

p53  
tumor protein 53

Smac/DIABLO 
second mitochondria-derived activator of caspases

Apaf-1  
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apoptotic protease activating factor 1

IAP  
inhibitor of apoptosis proteins

ESR  
endoplasmic reticulum stress response

OMI/HTRA1 
high temperature requirement protein A2

AIF  
apoptosis inducing factor

IL-3  
interleukin 3

BH  
BCL-2 homology regions

NGF  
nerve growth factor

TNFR  
tumor necrosis factor receptor

XIAP  
X-linked inhibitor of apoptosis protein

FASL  
Fas ligand

TRADD  
TNF receptor-associated death domain

FADD  
Fas-associated death domain protein

TRAIL  
TNF-related apoptosis-inducing ligand

NF-κB  
nuclear factor of κB

JNK  
JUN N-terminal kinase

eIF2α  
eukaryotic translation initiation factor 2

UPR  
unfolded protein response

ERAD  
ER-associated degradation

CHOP  
CCAAT/-enhancer binding protein homologous protein
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GRP78  
glucose regulated protein 78

ATF6  
activating transcription factor 6

PERK  
protein kinase-like endoplasmic reticulum kinase

S1P  
site 1 protease

XBP-1  
X-box binding protein 1

TRAF2  
TNF receptor associated factor 2

IRE1  
inositol-requiring kinase 1

bZIP  
basic leucine zipper

ASK1  
apoptosis signal-regulating kinase 1

GADD  
growth arrest and DNA damage inducible protein

CReP  
constitutive repressor of eIF2α

MEFs  
mouse embryonic fibroblasts

MCF-7  
Michigan Cancer Foundation 7 cells
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Fig. 1.
Sensing ER stress and subsequent signal transduction. Three main ER-resident transmembrane
proteins (IRE1, ATF6, and PERK) in mammals can act as ER stress sensors. When ER stress
is sensed, GRP78 becomes disassociated with the proteins allowing their activation. PERK
responds to the ER stress by decreasing global translation. Signaling through IRE1 and ATF6
results in a transcription response to the ER stress mediatedbyXBP-1 and ATF6. These genes
can act alone or in concert to increase protein folding machinery and initiate proteasomal
degradation ofER-resident proteins. The full role for unspliced and spliced forms of XBP1
(uXBP1 and sXBP1) in confronting the ER stress is not yet understood.
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Fig. 2.
ER stress-induced apoptotic signal transduction. This cartoon highlights how hyperactive ER
stress stimuli sensed by IRE1, ATF6, and PERKmight result in apoptosis induction. A cross-
talk between the mitochondrial, death receptor and ER stress apoptotic pathways may
contribute to apoptosis mediated by chemical agents or by the accumulation of unfolded
proteins.
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