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Abstract
Schizophrenia and autism both feature significant impairments in social cognition and social
functioning, but the specificity and mechanisms of these deficits remain unknown. Recent research
suggests that social cognitive deficits in both disorders may arise from dysfunctions in the neural
systems that underlie social cognition. We explored the neural activation of discrete brain regions
implicated in social cognitive and face processing in schizophrenia subgroups and autism spectrum
disorders during complex social judgments of faces. Twelve individuals with autism spectrum
disorders (ASD), 12 paranoid individuals with schizophrenia (P-SCZ), 12 non-paranoid individuals
with schizophrenia (NP-SCZ), and 12 non-clinical healthy controls participated in this cross sectional
study. Neural activation, as indexed by blood oxygenation level dependent (BOLD) contrast, was
measured in a priori regions of interest while individuals rated faces for trustworthiness. All groups
showed significant activation of a social cognitive network including the amygdala, fusiform face
area (FFA), superior temporal sulcus (STS), and ventrolateral prefrontal cortex (VLPFC) while
completing a task of complex social cognition (i.e. trustworthiness judgments). ASD and P-SCZ
individuals showed significantly reduced neural activation in the right amygdala, FFA, and left
VLPFC as compared to controls and in the left VLPFC as compared to NP-SCZ individuals during
this task. These findings lend support to models hypothesizing well-defined neural substrates of social
cognition and suggest a specific neural mechanism that may underlie social cognitive impairments
in both autism and paranoid schizophrenia.
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1. Introduction
Social cognition is defined as “the mental operations underlying social interactions, which
include the human ability to perceive the intentions and dispositions of others” (Brothers,
1990, p. 28). Neurobiological models of social cognition posit that a network of neural
structures is critically involved in processing social stimuli (Adolphs, 2001; Brothers, 1990;
Phillips et al., 2003a). These models focus on regions of the occipital and temporal cortices
such as the Fusiform Gyrus (FG) and Superior Temporal Sulcus (STS) which underlie face
processing (Haxby, Hoffmann, & Gobbini, 2000; Winston, Henson, Fine-Goulden, & Dolan,
2004) and the amygdala which plays a critical role in detecting threat, recognizing emotions,
and making complex social judgments (Adolphs et al., 1994; Adolphs et al., 1998; Amaral et
al., 2003; Winston et al., 2002). Such models provide a foundation for understanding the neural
mechanisms underlying social deficits in several clinical disorders, particularly schizophrenia
and autism.

Although schizophrenia and autism have different symptom presentations, ages of onset, and
developmental courses, impaired social functioning is a hallmark characteristic of both
disorders (DSM-IV-TR), and these social deficits are related to impairments in social cognition
(Couture et al., 2006; Hughes et al., 1997; Klin et al., 2002; Pinkham et al., 2003). Behavioral
data suggest both disorders show comparable social cognitive deficits, particularly on tasks
requiring higher levels of social cognitive skill (i.e. complex social judgments; Craig et al.,
2004; Pilowsky et al., 2000); however, our understanding of these deficits, and the potential
similarities between disorders, remains incomplete. Specifically, behavioral findings are
complicated by heterogeneity within disorders, particularly in schizophrenia, as individuals
with persecutory delusions perform differently both at behavioral and neural levels on social
cognitive tasks relative to individuals without persecutory delusions (Bentall et al., 2001; Davis
and Gibson, 2000; Phillips et al., 1999; Ueno et al., 2004; Williams et al., 2004). Additionally,
despite evidence of abnormal activation in the neural systems of social cognition in
schizophrenia and autism (Pinkham et al., 2003; Pelphrey et al., 2004), no studies have used
fMRI to directly compare the neural substrates underlying social cognitive performance in both
disorders. Thus, comparing these two disorders may illuminate the general mechanisms
underlying social cognitive deficits and inform the etiologies of social dysfunction seen in these
disparate disorders.

We used event-related functional magnetic resonance imaging (fMRI) to measure neural
activation during complex social judgments (i.e. trustworthiness) of faces in four groups: high-
functioning individuals with autism spectrum disorders (ASD), paranoid individuals with
schizophrenia (P-SCZ), non-paranoid individuals with schizophrenia (NP-SCZ), and non-
clinical healthy controls. As previous research has demonstrated significantly greater amygdala
activation in non-paranoid, relative to paranoid individuals with schizophrenia (Phillips et al.,
1999; Williams et al., 2004), two separate groups of patients with schizophrenia were recruited
in order to provide the most comprehensive comparison with ASD and to account for known
differences between schizophrenia subgroups. Further, decisions of trustworthiness were
employed due to previous work demonstrating that these judgments fully engage the neural
regions implicated in social cognition in healthy individuals (Winston et al., 2002) and to the
likelihood that these judgments would be particularly salient in assessing differences between
paranoid and non-paranoid individuals.

Based on neurobiological models of social cognition and face processing, and previous
behavioral and imaging work utilizing trustworthiness judgments (Adolphs et al., 1998;
Winston et al., 2002), comparisons of neural activation were limited a priori to discrete, brain
regions comprising a face processing/social cognitive neural circuit, which included the
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amygdala, fusiform face area of the FG, STS, and ventrolateral prefrontal cortex (VLPFC; BA
47). Although the VLPFC has not been included in all previous studies of face processing,
recent evidence implicates this region in making evaluative judgments (Cunningham et al.,
2003), and it has been found to modulate activation of the amygdala while viewing faces and
labeling facial expressions (Cunningham et al., 2004; Hariri et al., 2003). As such, this region
may play an important role in top-down processing of social stimuli.

We predicted healthy controls would show greater neural activity than all clinical groups in
the amygdala, FFA, STS, and VLPFC when making complex social judgments. For the direct
comparison between schizophrenia and ASD, one would expect the ASD group to differ from
both the NP-SCZ and P-SCZ groups due to clinical distinctions between the disorders;
however, careful examination of the social cognition literature actually suggests that ASD
should be most similar to the P-SCZ group. Specifically, increased rates of paranoia are often
seen clinically in individuals with Asperger’s syndrome (Hare, 1997; Wing, 1996), and two
studies have found increased rates of paranoia in ASD as compared to healthy controls
(Blackshaw et al., 2001; Craig et al., 2004). Further, only minimal differences in social
cognition have been observed between individuals with autism and those with schizophrenia
when the latter group was higher in paranoid symptoms (Craig et al., 2004; Pilowsky et al.,
2000). Thus, based on this evidence and in conjunction with work suggesting greater amygdala
activation in NP-SCZ relative to P-SCZ (Phillips et al., 1999; Williams et al., 2004), we
tentatively hypothesized that the ASD and P-SCZ groups would show less amygdala activation
than the NP-SCZ group.

2. Methods and Materials
2.1 Subjects

Participants comprised four groups: non-clinical control participants (n=12), individuals with
schizophrenia or schizoaffective disorder without paranoid symptoms (NP-SCZ: n=12),
individuals with schizophrenia or schizoaffective disorder with prominent paranoid symptoms
(P-SCZ: n=12), and high-functioning individuals with ASD (ASD: n=12). All participants were
male, between the ages of 18 and 35, reported no history of head injury, identified themselves
as right-handed, had a visual acuity of 20/20 (natural or corrected via contact lenses), and did
not meet current criteria for substance abuse or dependence. The University of North Carolina
Behavioral IRB approved the research protocol, and all participants provided written informed
consent.

Control participants were recruited via informational emails soliciting participation in research
and from other studies conducted in our lab. These participants were screened for personal and
family history of psychopathology to ensure that they, and their first-degree relatives, did not
meet past or present criteria for any psychotic, affective, or developmental disorder.

Individuals in the schizophrenia groups had a diagnosis of schizophrenia or schizoaffective
disorder based on the Structured Clinical Interview for DSM-IV (SCID-P) and chart review.
Severity of symptoms was assessed with the Positive and Negative Syndrome Scale (PANSS;
Kay et al., 1992), administered by research assistants trained to adequate reliability (ICC of
> .80 with a gold standard rater). Participants experiencing significant symptoms of paranoia
at the time of scanning, scoring at least a 4 or above on the suspiciousness/persecution item,
constituted the P-SCZ group, and participants scoring a 2 or below on this item, indicating
absence or only sub-clinical levels of paranoia, constituted the NP-SCZ group.

Overall, the P-SCZ group received higher ratings for both positive (F(1,22)=33.2, p<.001) and
general symptom clusters (F(1,22)=6.69, p=.017); however, these differences were not
statistically significant after controlling for paranoia. All SCZ individuals adhered to a stable
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regimen of atypical antipsychotic medications for at least four weeks, and the mean
Chlorpromazine equivalent dose did not significantly differ between these two groups (F(1,22)
=1.51, p=ns) (Woods, 2003).

All individuals with ASD had documented DSM-IV diagnoses of autism or Asperger’s
syndrome and were recruited through the TEACCH (Treatment and Education of Autistic and
Related Communication Handicapped Children) program of Chapel Hill, NC. Diagnoses were
confirmed where possible (n=8) with the Autism Diagnostic Interview-Revised ADI-R; Lord
et al., 1994) and/or the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 1999).

Groups did not differ in ethnicity (χ2=3.74, ns), age (F(3,44)=1.47, ns) or premorbid verbal IQ
as assessed by the WRAT Reading subscale (F(3,44)=2.29, ns; Wickert et al., 2000). Education
significantly differed between groups (F(3, 44)=8.03, p<.001); controls completed more years
of education than all three clinical groups (p<.001 for all comparisons), who did not differ from
each other (Table 1).

Finally, all participants completed the Paranoia Scale (PS; Fenigstein and Vanable, 1992), a
self-report measure assessing sub-clinical paranoid thought. The PS is sensitive to subclinical
levels of paranoia in normal populations (Combs and Penn, 2004), and correlates well with
clinical ratings of paranoia in psychotic populations (Smari et al., 1994).

2.2 Imaging Stimuli and fMRI Experiment
Functional magnetic resonance imaging (fMRI) was utilized while individuals viewed and
evaluated 84 grayscale frontal images of faces taken from the Trustworthiness/Approachability
Task (Adolphs et al., 1998). For the first 42 faces, which comprised the abbreviated version of
this task, individuals made a forced choice of trustworthiness, rating each face as either
trustworthy or untrustworthy, via a button-press response. In a secondary task, participants
then made an age determination for the remaining 42 faces, classifying face stimuli as either
“30 years of age or younger” or “over 30 years of age.” This procedure was based on that used
by Winston et al. (2002). Button-press responses and reaction times were recorded as
behavioral indices of task performance.

The imaging session was comprised of four functional runs, each containing 21 photographs.
Each photograph was displayed for 2 seconds, followed by a 16 second inter-stimulus interval,
during which participants were instructed to keep their eyes focused on a white fixation cross
presented in the middle of the screen.

Following the Trustworthiness and Age tasks, individuals participated in a block design
localizer session intended to isolate the face responsive region of the FG, or fusiform face area
(FFA) (Kanwisher et al., 1997). Details of this task are provided in online supplemental
material.

2.3 Image Acquisition
Data was collected using a Siemens Allegra 3T MRI scanner to acquire echo planar T2*
weighted images with BOLD (blood oxygenation level dependent) contrast (EPI free induction
decay, 2D; 32 transverse slices, voxel size 3.8×3.8×3.8 mm, matrix=64×64; FOV=243×243,
TR=2 sec, TE=30ms, Flip angle = 80). All functional runs were collected using an interleaved
sequence (bottom to top), and each functional run was preceded by four volumes that were
discarded to allow for equilibration effects. A structural scan sequence (MPRAGE) was also
conducted to obtain a T1 weighted anatomical image (128 slices, voxel size 1×1×1 mm,
matrix=256×256, FOV=208×256, TR=1520 ms, TE=4.38 ms) for co-registration and display
of functional data. Cushioned head restraints were used to control for movement.
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Images were spatially preprocessed using SPM2 (Wellcome Department of Cognitive
Neurology, Queen Square, London, United Kingdom). Data was corrected for slice-acquisition
time and motion. Images were then normalized to an EPI template corresponding to standard
MNI (Montreal Neurological Institute) space and smoothed using an 8-mm FWHM (full-width
half-maximum) Gaussian kernel. In-plane anatomical images were co-registered to the
functional images prior to normalization, and the same normalization parameters for the
functional scans were then used to normalize the anatomical images.

2.4 Data Analysis
As the number of individuals in each group was somewhat limited, hypotheses were tested via
region of interest (ROI) analyses conducted using a combination of SPM2 and the WFU Pick
Atlas (Maldjian et al., 2003). First, for each subject, statistical contrast maps using a
hemodynamic response function with the temporal derivative were generated to examine task
dependent activation relative to fixation baseline during trustworthiness judgments. These
contrast images were then used in one-sample t-tests conforming to random effects analyses.
Statistical threshold was set at p<.05, family-wise error (FWE) corrected for multiple
comparisons across a small volume of interest, using ROIs derived as detailed below.

A one-way ANOVA (group: control vs. ASD vs. NP-SCZ vs. P-SCZ) conforming to random
effects analyses was then conducted to examine group differences on the Trustworthiness Task.
Significant clusters of activation within each ROI were identified based on a statistical
threshold of p<.05 (uncorrected) and a spatial extent of 3 contiguous voxels (Holt et al.,
2006; Williams et al., 2004). Clusters showing a main effect across all four groups were
explored with post-hoc paired comparisons. Here, the threshold for statistical significance was
defined more liberally in order to be most sensitive to group differences.

As supplemental, exploratory analyses, contrasts were calculated for age judgments relative
to baseline and for trust>age1. The later provides a preliminary examination of the specificity
of the ROIs for processing complex social judgments relative to nonsocial judgments of faces.
Within and between group activations were examined with the same procedure as that used
for the primary analyses.

2.5 Masks Defining Regions of Interest
ROIs for right and left amygdala were defined by drawing a mask around the regions
unilaterally using the software package MRIcro (Rorden and Brett, 2000) on a mean anatomical
image of all participants in the study. All other regions required that they be defined
functionally, as anatomical definitions of STS, VLPFC, and Fusiform gyrus encompass
portions of the brain beyond the sub-areas involved specifically in social cognition. ROIs for
bilateral STS and bilateral VLPFC were defined using statistical results from a one sample t-
test of positive activation during trust judgments using all 48 participants (p<.05 FWE whole
brain corrected) (Cannon et al., 2005). A region of interest for the FFA was defined by use of
the localizer task in which data were combined across all participants, and significant
activations from a faces > tools contrast (p<.001 uncorrected) were examined. Details are
provided in supplemental online materials.

1The trustworthiness task was always administered before the age task because it was unclear if all participants in all clinical populations
would be able to complete the entire MRI session and the primary goal of this experiment was to assess neural activation during a social
cognitive task (i.e., trustworthiness). Although all participants did complete the session, we view the age task analyses as exploratory
due to this lack of task-counterbalancing.
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3. Results
3.1 Behavioral Data

One-way (group: control vs. ASD vs. NP-SCZ vs. P-SCZ) ANOVAs conducted on behavioral
ratings made during scanning revealed significant between-group differences in
trustworthiness (F(3, 44)=2.87, p=.047, Cohen’s f=.443), but not age (F(3, 44)=1.23, p=ns),
judgments. For trustworthiness, Tukey’s HSD post hoc tests revealed trend level differences
indicating that P-SCZ rated more faces untrustworthy than control and NP-SCZ groups (p=.
064 and p=.076, respectively), who performed comparably to each other. Ratings from the
ASD group did not significantly differ from any other group (Table 1, bottom). A repeated
measures ANOVA on reaction time with type of judgment (trustworthiness vs. age) as the
within-subjects factor and group as the between-subjects factor revealed a significant main
effect for type of judgment (F(1, 44)=21.99, p<.001, Cohen’s f=.71); all groups responded
faster when rating age, which suggests that trustworthiness judgments were indeed more
complex than age judgments. There was no main effect for group (F(3, 44)=.99, ns), nor was
there a significant interaction (F(3, 44)=1.71, ns).

A one-way ANOVA on PS scores revealed significant differences between groups (F(3, 41)
=4.36, p=.009, Cohen’s f=.57). Post hoc tests indicated that both ASD and P-SCZ, who did
not differ from each other, showed more agreement with paranoid statements than control and
NP-SCZ, who also did not differ from each other (Table 1).

3.2 Primary Neuroimaging Analyses
3.2.1 Trustworthiness Task: Overall activation and group differences—
Completion of the trustworthiness task resulted in significant activation in each key structure
implicated in social cognition. Averaged contrasts for trustworthiness judgments relative to
baseline, revealed that each group showed significant activation of bilateral amygdala, bilateral
VLPFC, STS, and right FFA (p<.05, FWE corrected; Table 2; Figure 1). Variation was seen
in laterality of STS activation between groups; however, all other regions were consistently
activated across groups.

To test the hypothesis that clinical groups would show reduced neural activation relative to
controls, a voxel-based ANOVA was conducted across overall activation during the
trustworthiness task. Significant group differences were revealed in right amygdala, FFA, and
left VLPFC (effect sizes provided in supplemental materials). Post-hoc follow-up comparisons
demonstrated that compared to controls, the ASD group had significantly reduced activation
in right amygdala, FFA, and left VLPFC. The P-SCZ group showed a similar pattern of
significantly less activation than controls in right amygdala, FFA, and left VLPFC. The NP-
SCZ group also demonstrated significantly less activation in the FFA compared to controls.
However, in contrast to the other groups, NP-SCZ showed comparable levels of activation to
controls in all other regions (Figure 2), suggesting relatively intact neural functioning
throughout the rest of this social cognition circuit.

Comparisons among clinical groups demonstrated greater activation for the NP-SCZ group in
the right amygdala and left VLPFC as compared to the ASD group, and greater activation in
left VLPFC as compared to the P-SCZ group. The direct comparison of the ASD and P-SCZ
groups across ROIs identified in the omnibus test yielded no significant differences (all results
summarized in Table 2).

3.3 Supplemental Neuroimaging Analyses
3.3.1 Age Task: Overall activation and group differences—Results from the age task
showed activity throughout the social cognitive network for all 4 groups, with the exception
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of STS activation in controls. Differences in lateralization were apparent; notably, the three
clinical groups continued to display bilateral amygdala activation whereas controls showed
significant activation of right amygdala only (Table 3).

A voxel-wise one-way ANOVA conducted to assess group differences during age judgments
showed significant omnibus group differences in left amygdala, left STS, and right VLPFC.
Follow-up comparisons revealed that in all three regions, the clinical groups displayed either
similar or greater levels of activation than control participants. Comparisons between the
clinical groups demonstrated that both SCZ groups showed greater activation of the left
amygdala and right VLPFC than ASD (Table 3 lists all significant differences between groups
in this circuit).

3.3.2 Trustworthiness vs. Age: With-in group comparisons—To explore if trust
judgments resulted in greater activation of our ROIs than age judgments, a trust>age contrast
was examined in each group. Control participants showed significantly increased BOLD
responses (all p<.05 FWE small volume corrected) in bilateral amygdala (right: x,y,z = 15, −6,
−24; Z=3.47; left: x,y,z = −18, −9, −24; Z=3.16;), bilateral STS (right: x,y,z = 51, −36, −9;
Z=3.14; left: x,y,z = −48, −48, 0; Z=3.29;), and left VLPFC (x,y,z = −36, 24, −21; Z=3.53)
indicating that greater responses in these areas were associated with judgments of
trustworthiness (Figure 3). Activation in the right FFA did not differ between trust and age
judgments. Within the NP-SCZ group, greater activation of left VLPFC (x,y,z = −30, 15, −15;
Z=4.47; p<.05 FWE small volume corrected) was also associated with judgments of
trustworthiness as compared to age. In contrast, both the ASD and P-SCZ groups failed to show
greater activation during trustworthiness judgments compared to age judgments in any ROI.

To ensure that no ROIs were showing greater activation during age judgments, a contrast of
age>trustworthiness was also examined. No regions within any group showed greater
activation to age than trustworthiness judgments.

4. Discussion
Results of this study indicate that individuals with autism spectrum disorders and individuals
with paranoid schizophrenia show significant reductions in neural activation compared to
control and NP-SCZ individuals during tasks of complex social cognition. Reduced activation
was evident in the amygdala, fusiform face area, and the ventrolateral prefrontal cortex.
Reductions in amygdala and FFA activation in ASD and P-SCZ are consistent with several
studies that have investigated these disorders independently, although primarily without
examining schizophrenia subtypes, and while utilizing more basic tasks of social cognition
such as viewing faces and recognizing emotion (Critchley et al., 2000, Hempel et al., 2003;
Piggot et al., 2004; Quintana et al., 2003; note that Piggot et al., (2004) found reduced FG
activation in ASD, but no difference in amygdala activation between controls and individuals
with ASD). Overlapping reductions in the social cognitive network, across two distinct
disorders, therefore suggest that social cognitive impairment may be subserved by specific
neural abnormalities and that this pattern of neural abnormalities may be deficit specific rather
than disorder specific. In other words, it is possible that any individual who shows specific
social cognitive deficits may show the same pattern of neural abnormalities regardless of
clinical diagnosis. Additionally, the lack of reduced activation in P-SCZ and ASD during age
judgments suggests that reduced neural activity for complex social judgments cannot be
attributed to overall reductions in activation, generalized deficits in social information
processing, a failure to view the stimuli, or failure to engage in the task.

Additionally, exploratory analyses suggest that unlike control participants, and to lesser extent
NP-SCZ participants, ASD and P-SCZ failed to show greater activation in face processing/
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social cognitive neural regions during trustworthiness, as compared to age, judgments.
Although this finding needs to be interpreted cautiously as trustworthiness judgments always
preceded age judgments, the lack of neural modulation seen in P-SCZ and ASD may suggest
that these individuals are processing all judgments of faces in a similar manner, irrespective
of their social nature or complexity. Given that the amygdala has been linked to associating
stimuli with social and emotional value (Adolphs, 2001), it is possible that individuals with
ASD and P-SCZ are not assigning appropriate emotional significance to facial stimuli when
asked to make a complex social judgment. This may, in turn, contribute to social dysfunction.
Though speculative, these findings suggest a mechanism for social impairments in
schizophrenia and ASD that warrants further research.

It should also be noted that the ASD group did not differ from controls on behavioral ratings
of faces despite reduced activation of the amygdala, FFA, and VLPFC. While somewhat
counterintuitive, this may be explained by the fact that the ASD group showed normative STS
activation. Such differential activation across regions within the social cognitive network is
consistent with a systemizing strategy in which individuals with ASD use feature- and rule-
based strategies for processing faces (Ashwin et al., 2007). Thus, these findings may provide
further evidence that individuals with ASD do not assign emotional significance to faces.

Interestingly, both ASD and P-SCZ showed comparably increased levels of paranoid ideation.
Similar levels of paranoia may explain the observed neural and behavioral similarities in this
study. As noted previously, behavioral comparisons between schizophrenia and autism have
yielded few to no differences in social cognitive performance when the schizophrenia group
shows prominent paranoid symptoms (Craig et al., 2004; Pilowsky et al., 2000; for an exception
see Bolte and Poustka (2003); however in this study the symptom presentation of the
schizophrenia sample was not detailed, and an effort to recruit only individuals with paranoid
symptoms was not reported). These results underscore the importance of a symptom-based
approach in the study of clinical disorders. As applied here, a symptom based approach suggests
that a long-standing paranoid perceptual process may serve as the mechanism for the
equifinality found between the two disorders in social cognitive neural activation.

The present study also extends previous work by highlighting an important distinction between
schizophrenia subgroups. More normative activation of social cognitive regions for non-
paranoid relative to paranoid individuals is consistent with previous work showing normal
levels of amygdala activation in non-paranoid schizophrenia during passive viewing of
emotional facial expressions (Williams et al., 2004) and may help explain why individuals with
non-paranoid schizophrenia rated faces similarly to healthy individuals. The finding that this
differentiation between subgroups is also present during complex social information
processing and in other regions implicated in social cognition underscores the vital importance
of symptoms and sub-typing for fully understanding social cognitive deficits in schizophrenia.

Although the present study provides new data regarding mechanisms of impaired social
cognition in two distinct clinical populations, a number of issues require further clarification.
First, the effect of medication was not addressed here, as all SCZ individuals were taking
neuroleptic medication at the time of the study and it is possible that type of medication or
duration of neuroleptic exposure may influence neural activation. It is unlikely however that
our results were due solely to medication effects given the SCZ groups did not differ in
medication dosage but did differ in neural activity. Furthermore, ASD individuals were not
taking neuroleptics but showed similar neural patterns to the P-SCZ group. Second, while the
P-SCZ and ASD groups reported a similar amount of paranoid ideation, we are unable to
determine if these symptoms are qualitatively similar, and thus future work will be necessary
to clarify this interesting overlap between disorders. Third, the trustworthiness vs. age results
are complicated by the fact that these conditions were not counterbalanced. It is possible that
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patients may have continued to assess faces for trustworthiness during the age task; however,
this seems unlikely as there were no behavioral differences, and more importantly, no
differences in reaction times, between the groups on age judgments. If the clinical groups were
continuing to process trustworthiness in addition to age, this should have been reflected in
longer reaction times than those seen in the trustworthiness task. Fourth, while 48 individuals
were examined, the size of each group was relatively small and only right handed male
participants were included. These factors limit the generalizability of the results (e.g. to females
and individuals who are left handed or lack handedness, which may be more common in autism
(Cornish & McManus, 1996)) and suggest that replication with a more diverse sample is
required. Finally, given recent work demonstrating that neural activation is related to how
individuals visually scan face stimuli (Dalton et al., 2005), it is possible that our results may
in part reflect abnormal visual face scanning in the clinical groups. Here, we investigated the
natural viewing of faces by these groups, but future fMRI work should employ concurrent eye-
tracking to investigate these effects.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Activation in response to the Trustworthiness Task. Statistical parametric maps overlaid on
the mean T1 anatomical image showing activation within each ROI for each group while rating
faces for trustworthiness (significance and display threshold = p<.05, FWE corrected for
multiple comparisons across a small volume of interest). Each column of images is masked by
the specified ROI.
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Figure 2.
Group differences in activation while making trustworthiness judgments. Statistical parametric
maps overlaid on the mean T1 anatomical image showing regions of greater activation for each
comparison (statistical and display threshold = p<.05, uncorrected, spatial extent of 3
contiguous voxels). Images are masked by ROI.
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Figure 3.
Social cognitive neural regions showing greater activation for trust judgments than age
judgments in the control and NP-SCZ groups. Statistical parametric maps overlaid on mean
T1 anatomical images showing activation in bilateral amygdala, bilateral STS, left VLPFC that
is specific to judgments of trustworthiness as compared to judgments of age (statistical and
display threshold = p<.05, FWE corrected for multiple comparisons across a small volume of
interest). All images are masked by ROI.
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Table 1
Demographic Information and Behavioral Data

ASD (n=12) P-SCZ (n-12) NP-SCZ (n=12) Control (n=12)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Demographic Information

 Ethnicity 10 10 11 10

  Caucasian 1 2 1 2

  African American 1 0 0 0

  Other

 Age 24.08 (5.71) 26.42 (5.25) 28.0 (3.93) 27.08 (3.99)

 WRAT reading 110.0 (10.91) 103.83 (14.24) 100.5 (15.37) 112.58 (9.28)

 Educationa,b,c 13.5 (1.83) 13.29 (2.73) 13.29 (2.05) 16.92 (1.98)

 SCZ Diagnosis

  Schizophrenia 8 9

  Schizoaffective Disorder 4 3

 CPZ Equivalent 404.86 (249.2) 297.22 (173.03)

 PANSS

  Positivef 18.08 (4.34) 9.83 (2.41)

  Negative 11.83 (6.16) 10.67 (3.28)

  Generalf 31.0 (6.55) 25.0 (4.65)

 Paranoia Scale a,b,c,f 48.25 (21.18) 48.08 (20.48) 33.82 (11.69) 27.6 (5.27)

Behavioral Tasks

 Trustworthiness Task

  % Rated as Trustworthyg 54.4 (15.3) 46.3 (14.3) 60.3 (13.3) 60.7 (11.9)

  Reaction Time (sec) 2.49 (1.06) 2.83 (1.20) 2.71 (1.60) 2.01 (.90)

 Age Task

  % Rated as 30 or Under 41.9 (08.3) 37.3 (07.9) 44.6 (18.5) 37.2 (06.8)

  Reaction Time (sec) 2.34 (1.10) 2.13 (.90) 2.09 (1.13) 1.67 (.65)

a
Controls significantly different from ASD at p<.05

b
Controls significantly different from P-SCZ at p<.05

c
Controls significantly different from NP-SCZ at p<.05

d
ASD significantly different from P-SCZ at p<.05

e
ASD significantly different from NP-SCZ at p<.05

f
P-SCZ significant different from NP-SCZ at p<.05

g
The omnibus test of group differences was significant, but no pair-wise comparisons survived Tukey’s HSD poc-hoc tests. LSD pair-wise comparisons

showed P-SCZ significantly different from controls (p=.014) and NP-SCZ (p=.017).
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